
Parallel Processing Letters, Vol. 19, No. 1 (2009) 129-139 ^Mkfe W id <5 " t"f
© World Scientific Publishing Company w S ^ .,„.„„ ,„n,u..inntifi. ^nm

-̂̂ G ^ J w B www.woriascieritific.com

Improved Communication Schedules with Buffers*

TEOFILO F. GONZALEZ

Department of Computer Science, University of California,
Santa Barbara, CA 93106-5110, USA

Received June 2007
Revised July 2008

Communicated by K. Qiu

ABSTRACT

We consider the multimessage multicasting over the n processor complete (or fully con
nected) static network when there are / incoming (message) buffers on every processor.
We present an efficient algorithm to route the messages for every degree d problem in
stance in d? /I + I — 1 total communication rounds, where d is the maximum number
of messages that each processor may send (or receive). Our algorithm takes linear time
with respect to the input length, i.e. 0{n + q) where q is the total number of messages
that all processors must receive. For / = d we present a lower bound for the total com
munication time. The lower bound matches the upper bound for the schedules generated
by our algorithm. For convenience we assume that the network is completely connected.
However, it is important to note that each communication round can be automatically
translated into one communication round for processors interconnected via a replication
network followed by a permutation network (e.g., two adjacent Benes networks), because
in these networks all possible one-to-many communications can be performed in a single
communication round.

Keywords: Approximation Algorithms, Multimessage Multicasting, Buffers, Networks,
Communication Schedules.

1. Introduction*1

Parallel and distributed systems were introduced to execute programs at unprece
dented speeds. To accomplish this goal a program must be partitioned into tasks
and the communications that must take place between these tasks must be identi
fied to ensure a correct execution of the program. To achieve high performance one
must assign each task to a processing unit (statically or dynamically) and develop
communication programs to perform all the intertask communications efficiently.
Efficiency depends on the algorithms used to route messages to their destinations,

*A preliminary version of this paper appeared in the Proceedings of the IASTED PDCS'05 Con
ference.
a O u r introduction is a condensed version of our previous papers which include a complete justifica
tion for the multimessage multicasting problem as well as motivations, applications, and examples.

129

Pa
ra

lle
l P

ro
ce

ss
. L

et
t.

20
09

.1
9:

12
9-

13
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n
06

/0
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.woriascieritific.com

130 T. F. Gonzalez

which is a function of the underlying communication network, the primitive opera
tions and the communication model. Given a network with a communication model,
a set of communication primitives and a set of messages that need to be exchanged,
our problem is to find a schedule to transmit all the messages in the least total
number of communication rounds. Generating an optimal communication schedule,
i.e., one with the least total communication rounds, for our message routing prob
lems over a wide range of communication networks is an NP-hard problem. Xo cope
with intractability efficient message routing approximation algorithms for classes of
networks under different communication assumptions have been developed. In this
paper we consider the message communication problem where / buffers have been
placed at the receiving end of each processor. We show that speedups with factor
of about Z, over the case without buffers, can always be achieved.

The Multimessage Multicasting, MMc, problem was introduced by Gonzalez [1,
2] and Shen [3]. The problem consists of constructing a communication schedule, for
an n processor static network (or simply a network), with least total communication
time for multicasting (transmitting) any given set of messages. Specifically, there are
n processors, P = {Pi, P2, • • •, Pn}, interconnected via a network N. Each processor
is executing processes, and these processes are exchanging messages that must be
routed through the links of N. Our objective is to determine when each of these
messages is to be transmitted so that all the communications can be carried in the
least total amount of time.

Each processor Pi initially holds the set of messages hi and needs to receive the
set of messages n/. We assume that [jhi = (Jn*, and that each message is initially
in exactly one set hL. We define the degree of a problem instance as d = max{| hi \
, | m | } , i.e., the maximum number of messages that any processor sends or receives.
Let q be the total number of messages that all processors must receive. Consider
the following example.

Example 1.1. There are nine processors (n = 9). Processors Pi, P2, and P3 send
messages only, and the remaining six processors receive messages only b. The mes
sages each processor holds and needs are given in Table 1. For this example the
degree d is 3 and q is 18.

Table 1. Hold and Need Vectors for Example 1.1.

Hold Vector

hi

W,b]
h2

{c,d}
hz

{e,f}

ll4

0
h5

0
ha
0

h7

0
lis

0
I19

0

Need Vector

n±

0
n 2

0
n-s
0

714

{a,c,e}
n$

{ a , d , / }
n6

{6,c,e}
717

{M,/}
ng

{c, d, e)
n9

{c ,d , / }

bNote that in general processors may send and receive messages.

Pa
ra

lle
l P

ro
ce

ss
. L

et
t.

20
09

.1
9:

12
9-

13
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n
06

/0
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Improved Communication Schedules with Buffers 131

One may visualize problem instances by directed multigraphs. Each processor
Pb is represented by the vertex labeled z, and there is a directed edge (or branch)
from vertex i to vertex j for each message that processor Pi needs to transmit to
processor P:r The set of directed edges or branches associated with each message
are bundled together. The problem instance given in Example 1.1 is depicted in
Figure 2 as a directed inultigraph with additional thick lines that identify all edges
or branches in each bundle.

Fig. 1. Directed Multigraph Representation of Example 1.1. The thick line joins all the edges
(branches) in the same bundle.

In the single port communication mode every processor sends at most one mes
sage and receives at most one message during each communication round. A pro
cessor may send at each communication round one of the messages it holds (i.e.,
a message in its hold set hi at the beginning of the time unit), but such message
can be multicasted to any set of processors. The message also remains in the hold
set hi. During each time unit each processor may receive at most one message. The
message that processor Pi receives (if any) is added to its hold set hi at the end of
the communication round.

The communication process ends when each processor has rii C hi, i.e., each
processor holds all the messages it needs. The total communication time is the
total number of communication rounds. Our communication model allows us to
transmit any of the messages in one or more stages. I.e., any given message may
be transmitted at different times. This added routing flexibility reduces the total
communication time. In many cases it is a considerably reduction.

Algorithms for the completely connected architecture have wide applicability in

Pa
ra

lle
l P

ro
ce

ss
. L

et
t.

20
09

.1
9:

12
9-

13
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n
06

/0
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

132 T. F. Gonzalez

the sense that the schedules can be easily translated to communication schedules
for every pr-network (MEIKO CS-2 machine), a large family of communication
networks [2]. There is some penalty one has to pay for the translation process which
is either doubling the communication rounds or extending the network. However,
this penalty is not always incurred [4].

There are relatively inexpensive ways to speed-up communication. One such
technique consists of adding / buffers at the receiving end of each processor and
developing controlling hardware so the buffering behaves as follows: (1) if at the be
ginning of a communication round one buffer has a message, then one such message
(perhaps in a FIFO fashion) is passed to the processor and the buffer will be labeled
empty for the current communication round; and (2) if there are j empty buffers
during the current communication round, then up to j messages may be received
and stored in these free buffers. In this paper we present an efficient algorithm to
construct for every degree d problem instance a communication schedule with total
communication time at most d2/l +1 — 1, where d is the maximum number of mes
sages that each processor may send (or receive) and I is the number of input buffers
on each processor. For I = d we present a lower bound for the total communication
time. The lower bound matches the upper bound for the schedules generated by our
algorithm. For convenience we assume that the network is completely connected.
However, it is important to note that each communication round can be automati
cally translated into one communication round for processors interconnected via a
replication network followed by a permutation network (e.g., two adjacent Benes
networks), because in these networks all possible one-to-many communications can
be performed in a single communication round [2, 4].

2. Applications and Previous Results

The multimessage multicasting communication problem arises naturally when solv
ing large scientific problems via iterative methods in a parallel or distributed com
puting environment, for example, solving large sparse system of linear equations
using stationary iterative methods. Another application of multimessage multicas
ting arises when executing most dynamic programming procedures in a parallel or
distributed computing environment. Dynamic programming procedures are heav
ily used in bioinformatics, operations research and computer science applications.
In information systems, multimessage multicasting arises naturally when multicas
ting information over a 6-channel ad-hoc wireless communication network. Other
applications include sorting, matrix multiplication, discrete Fourier transform, etc.
Message routing problems under the multicasting communication primitives arise
in sensor networks. Other applications in high performance communication sys
tems include voice and video conferencing, operations on massive distributed data,
scientific applications and visualization, high performance super computing, medi
cal imaging, etc. The need to deliver multidestination (multicasting) messages is
expected to increase rapidly in the near future.

Pa
ra

lle
l P

ro
ce

ss
. L

et
t.

20
09

.1
9:

12
9-

13
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n
06

/0
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Improved Communication Schedules with Buffers 133

The case when each message has fixed fan-out k (maximum number of processors
that may receive any given message) has been studied [2]. For A: = 1 (the problem is
called multimessage unicasting MUc), Gonzalez [2] showed that the problem corre
sponds to the makespan openshop preemptive scheduling problem (a generalization
of the edge coloring of bipartite multigraphs) which can be solved in polynomial
time, and each degree d problem instance has a communication schedule with total
communication time equal to d [5].

It is not surprising that several authors have studied the MUc problem as well
as several interesting variations for which NP-completeness has been established,
subproblems have been shown to be polynomially solvable, and approximation al
gorithms and heuristics have been developed [6, 7, 8, 9, 10, 11].

With the exception of the work reported in [1, 2, 3, 4, 12, 13, 14, 15], research
has been limited to unicasting and most multicasting results are limited to single
messages. Shen [3] has studied multimessage multicasting for hypercube connected
processors. The heuristic try to minimize the maximum number of hops, amount
of traffic, and degree of message multiplexing. Thaker and Rouskas [15] survey
strategies for multimessage multicasting problems defined for all-optical networks.

Gonzalez [2] shows that a very restricted version of the MMc problem is NP-
complete. Gonzalez [2] also shows that every degree d instance of the MMc problem
with n processors has a communication schedule with total communication time at
most d?. This algorithm corresponds to our algorithm for the case when the number
of buffers is 1. This bound is best possible in the sense that for all d, > 1 there are
problem instances that require d2 communication time [2]. This is a lower bound
holds the case when the number of buffers is 1.

When forwarding is allowed the problem is referred to as the MMFc problem.
In this case messages may be sent through indirect paths even though single-edge
paths exist. At first glance it appears that forwarding will not really help deliver
messages faster for the MMc problem because forwarding consumes more resources,
and the networks is complete (all the bidirectional links are present). The reduction
used to establish that the MMc is NP-hard [2] can be easily modified to estab
lish that the MMFc problem is an NP-hard problem [4]. Gonzalez [4] developed
algorithms to construct communication schedules with total communication time
at most 2d, in 0(r(min{r,n2} + n log n)) time, where r is the total number of
message destinations (therefore, r < dn). Clearly, these approximation algorithms
are slower than the ones discussed above; however, they generate communication
schedules with significantly smaller total communication time.

The distributed version of the MMFc, which we refer to as the DMMFc problem
has also been studied. An algorithm that performs all the communications in 0{d +
\ogri) expected communication steps is given in [13].

It is simple to see that the DMMFc problem is more general than the MMFc
and the MMc problems, but the best communication schedule for the DMMFc
problem has total communication time Sl{d + \ogn) where as for the MMc problem

Pa
ra

lle
l P

ro
ce

ss
. L

et
t.

20
09

.1
9:

12
9-

13
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n
06

/0
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

file:///ogri

134 T. F. Gonzalez

is d?, and just 2d for the MMFQ problem. Therefore, knowing all the communication
information ahead of time allows one to construct significantly better communica
tion schedules, and forwarding plays a very important role in reducing the total
communication time in our message routing problems. However, forwarding in all-
optical communication systems is very expensive as it requires expensive optical to
electrical to optical conversion of signals.

3. Algorithms and Lower Bound

We present a linear time algorithm to construct for every degree d problem instance
a communication schedule with total communication time at most d2/l + l — 1, where
d, is the maximum number of messages that each processor may send (or receive)
and I is the number of input buffers on each processor. For / = d we present a
lower bound for the total communication time. The lower bound matches the upper
bound for the schedules generated by our algorithm.

When / = 1 our algorithm generates a schedule with the same communication
time as the one for the MMQ problem. On the other hand when I = d our algorithm
generates a schedule with slightly smaller communication time than the one for
the MMFc problem. Our new algorithm has the added property that it does not
forward any of the messages and the time complexity to generate the solution is
considerably smaller. Forwarding requires heavier link traffic since messages will
be sent through more than one link. In other words, our new algorithm utilize the
minimum amount of network capacity, but it requires buffers.

We assume that d is a multiple of the number of buffers, I. First we define the
set of d2/l colors as follows: {('i, j)\l < i < d and 1 < j < d/l}. Now assign an order
(1 < i < d) to all the bundles emanating from each vertex. In Figure 2 we show a
problem instance with 9 processors and of degree d — 6. To simplify the figure the
top three nodes do not receive messages and the bottom three processors do not
send messages. Messages are represented by edges and multidestination messages are
drawn with all the edges joined together by a horizontal line segment, for example
the two edges emanating from node A and ending at vertices D and E.

Each outgoing edge from a processor is assigned a label which is just the index
assigned to the bundle where it emanates, i.e., an integer value between 1 and d.
The numbers near the origin of the edges in Figure 2 represent the label given to
the bundles emanating from each vertex. The labeling of the bundles is an arbitrary
one consistent with the labeling in our algorithm.

We order all the incoming edges to each processor i in ascending order of their
labels. This can be easily done via radix sort in 0(d+di) time, where d; is the number
of incoming edges to processor z, since the labels are integers in the range [1, d).
Now with respect to this order assign the value of 1 to the first / incoming edges
to each processor, the value of 2 to next I incoming edges to each processor, . . . ,
and the value of d/l to last I incoming edges to each processor. For the example in
Figure 2 the edges incoming to vertex D have labels 3,4,1,4,1,3 as we traverse the

Pa
ra

lle
l P

ro
ce

ss
. L

et
t.

20
09

.1
9:

12
9-

13
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n
06

/0
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Improved Communication Schedules with Buffers 135

node in clock-wise order starting at its left side. So the algorithm assigns the values
1,2,1,2,1,2 to these edges. Note that another possible choice would have been
2, 2,1,2,1,1. Either one is consistent with the algorithm. All the values assigned to
the edges in Figure 2 are drawn closer to the end of each directed edge.

Assign color (i,j) to edge e = {p, r} if e belongs to the ith bundle emanating
form vertex p, and e is assigned the value of j as an incoming edge to vertex r. Now
we construct a schedule with total communication time d2/l + 1 — 1 as follows. All
the messages colored ('/', j) are transmitted at time i + (j — l)cZ, for 1 < ?' < d and
1 < j < d/l. In Figure 2 these transmission times are inside a small circle touching
the corresponding edge. For example an edge from vertex A to vertex B is colored
(3,1) and it is transmitted at time 3, where the two other edges between these two
nodes are labeled (4, 2) and (1,1) and are transmitted at time 10 and 1, respectively.
Note the all the multidestination messages are transmitted at the same time except
for two, one emanating out of vertex B and the other out of vertex E.

Since for each processor there are at most / messages incoming with the color
(z, 1) it then follows that none of the buffers for the processors will overflow from
time 1 to time d. But there may be I messages arriving at some processor at time
d. In the following theorem we show that the buffers will not overflow when the
remaining messages arrive. The algorithm overlaps in a clever way the process of
emptying the buffers after all the messages colored (i,j) and the messages (i,j -h 1)
are sent for all 1 < j < d/l. For example processor E receives its messages at times
1,11,8,1,8,1). Three messages are received at time 1, but the buffers will be empty
before the next message arrives at time 8.

Our formal algorithm is listed below.
Procedure Ordered-Coloring

Define the set of d2/l colors as {(i, j) | l < i < d and 1 < j < d/l};
for each processor P:)

Assign an order (1 < i < d) to all the bundles emanating out of processor j \
Assign label i to all the edges in the ith bundle of processor j ;

endfor
for each processor P7

Order all incoming edges to each processor j in ascending order of their labels;
With respect to this order assign the value of 1 to the first / incoming edges to

each processor, the value of 2 to next / incoming edges to each processor, . . . ,
and the value of d/l to last / incoming edges;

endfor
Each edge e is assigned color {p, r} , where p is its label and r is its value as

defined above;
Our schedule S transmits at time i + (j — l)d, for 1 < i < d and 1 < j < d/l,

all the edges colored (z, j) ;
end of Procedure Order-Coloring

Pa
ra

lle
l P

ro
ce

ss
. L

et
t.

20
09

.1
9:

12
9-

13
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n
06

/0
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

136 T. F. Gonzalez

Theorem 1. Procedure Ordered-Coloring described above generates a communi
cation schedule with total communication time at most d2 /I+ 1 — 1 for every degree
d instance of the MMQ when there are I buffers. Furthermore, the algorithm takes
linear time with respect to the number of nodes and edges in the multigraph.

Proof. The proof follows the same arguments discussed above, except that we need
to show that there is no overflow of buffers when we send the messages (i,j) for
1 < /' < d and 1 < j < d/l. All the messages colored (i, 1) are transmitted at time
?', for 1 < i < d. Since for each processor there are at most / incoming messages
colored (i, 1), it then follows that none of the buffers for the processors will overflow.
But it may be that for one or more processors there are I messages that arrive at
time d. Now, we need to show that that the messages colored (i, 2) that are sent at
time i for d + 1 < i < 2d will not overflow the buffers. Since the proof for the case
(i, j) for larger values of j is very similar, we only prove the case for j — 2.

Consider the case when one is sending the messages colored (1,2) and let us
consider any processor Q that receives any subset of those messages. Clearly all of
these messages belong to bundle 1 emanating out of some processors. All of the

Fig. 2. Solution (with 3 buffers, i.e., / = 3) to problem instance with d — 6 and n = 9.

Pa
ra

lle
l P

ro
ce

ss
. L

et
t.

20
09

.1
9:

12
9-

13
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n
06

/0
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Improved Communication Schedules with Buffers 137

incoming messages to processor Q were ordered according to their labels which
are just the index of their bundles where they were sent from. Since the messages
colored (1,2) have label 1, it then follows that all the messages received by processor
Q during the first d communication rounds were colored (1,1). But that was d, time
before messages (1,2) were sent, so the buffers are empty now since / < d. The same
argument can be applied to all the messages colored (z,2). Since the proof of the
cases when j > 2 is similar, we conclude the proof of the theorem.

The time complexity for the algorithm is bounded by the time required to color
all the messages plus the total number of processors (since some processors send
messages, but do not receive any message). The reason for this is that one can
output a schedule listing the time at which every message is to be sent to its specific
destination. Now, when describing the coloring algorithm we said we need to radix
sort the incoming edges to each processor according to their labels. Since the labels
have integer values in the range [l,cZ] it follows that via radix sort this can be
implemented to take 0(d -f di) time for each processor i, where d-, is the number
of incoming edges to processor i. The overall time complexity bound would then
be 0(nd + (/). When rid is about q it is linear time algorithm. But when nd is
significantly larger than q it is not a linear time algorithm. However, the coloring
can be implemented to take 0(n -f q) time by simply taking all the bundles labeled
1 and adding to the destination processor the appropriate label for the incoming
edge. Since the addition is sorted by label, it follows that the whole list for each
processor will be sorted. Since we need to check for messages emanating out of all
processors and once we have processed all the bundles emanating out of a processor
we do not need to check that processor again, we know that the time complexity
bound is 0(n -f q). •

The proof of the lower bound for the case when I = 1 that matched our upper
bound is given in [2]. We now establish a lower bound for the total communication
time of any schedule when I = d. Consider Example 3.1 given below.

Example 3.1. For any integer d > 1, we define problem instance /,/ as follows.
The number of processors is n = dd+d. Processors Pi, P 2 , . . . , Pa send messages and
do not receive any messages. The remaining processors Pj for J = (ji,J2, • • -jd),
where each ji E [1 : cZ], i.e., each ji is an integer whose value is between 1 and d,
just receive messages. Each processor Pj for J = (ji,J2,---jd), receives the jjth
message bundle of processor Pi.

For the problem instance given in Example 3.1 we know that processor P\ must
send one of its messages for the first time at time d or later simply because there are
d messages that processor P\ must be send and no two of these messages may be sent
concurrently. The same holds P2, P3, • • •, Pd- Let ji be the message that processor
Pi sends last. Let J = (ji, J2, • • • ,jd)- Now processor Pj receives a message from
all these processors at time d or later. Since only one message may be received at a
time, it requires d — 1 time units to receive all these messages. Therefore, the total

Pa
ra

lle
l P

ro
ce

ss
. L

et
t.

20
09

.1
9:

12
9-

13
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n
06

/0
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

138 T. F. Gonzalez

communication time for every schedule must be at least 2d— 1. It then follows tha t

the total communication time is at least 2d—I.

4. D i s c u s s i o n

We have shown the buffers, a relatively inexpensive ways to speed-up communi

cation, can be used to generate solutions tha t require considerable smaller total

communication time than tha t required for the MMc problems. The solutions are

similar to the ones obtained for the MMFc problems. However they can be gen

erated much faster than for the MMFc problem. Furthermore, the solutions pre

sented in this paper use the fewest number of communication links since messages

are sent directly, rather than indirectly though several links. The most important

open problem is to determine whether or not buffers can be used to reduce the total

communication time for the MMFc problem to obtain communication schedules

with at most 3d/2 communication rounds.

We have established tight lower bounds when I = 1 and d. We conjecture tha t

our solutions are also tight for all values of /.

R e f e r e n c e s

[I] T. F. Gonzalez, MultiMessage Multicasting, in Proceedings The Irregular796 WorksJiop
LNCS (1117), (Springer 1996) 217-228.

[2] T. F. Gonzalez, Complexity and Approximations for Multimessage Multicasting, J. of
Parallel and Distributed Computing 55(2) (1998) 215-235.

[3] H. Shen, Efficient Multiple Multicasting in Hypercubes, J. of Systems Architecture
43(9) (1997).

[4] T. F. Gonzalez, Simple Multimessage Multicasting Approximation Algorithms With
Forwarding, Algorithmica 29 (2001) 511-533.

[5] T. F. Gonzalez, and S. Salmi, Open Shop Scheduling to Minimize Finish Time, Journal
of the ACM 23(4) (1976) 665-679.

[6] E. J. Coffman Jr., M. R. Garey, D. S. Johnson, and A. S. LaPaugh, Scheduling File
Transfers in Distributed Networks, SIAM J. on Computing 14(3) (1985) 744-780.

[7] J. Whitehead, The Complexity of File Transfer Scheduling with Forwarding, SIAM J.
on Computing 19(2) (1990) 222-245.

[8] H. A. Choi and S. L. Hakimi, Data Transfers in Networks, Algorithmica 3 (1988)
223-245.

[9] B. Hajek and G. Sasaki, Link Scheduling in Polynomial Time, IEEE Transactions on
Information Theory 34(5) (1988) 910-917.

[10] I. S. Gopal, G. Bongiovanni, M. A. Bonuccelli, D. T. Tang, and C. K. Wong, An
Optimal Switching Algorithm for Multibeam Satellite Systems with Variable Band
Width Beams, IEEE Transactions on Communications 30(11) (1982) 2475-2481.

[II] P. I. Rivera-Vega, R. Varadarajan, and S. B. Navathe, Scheduling File Transfers in
Fully Connected Networks, Networks 22 (1992) 563-588.

[12] T. F. Gonzalez, Improved Approximation Algorithms for Multimessage Multicasting,
Nordic Journal on Computing 5 (1998) 196-213.

[13] T. F. Gonzalez, Distributed Multimessage Multicasting, Journal of Interconnection
Networks 1(4) (2000) 303-315.

Pa
ra

lle
l P

ro
ce

ss
. L

et
t.

20
09

.1
9:

12
9-

13
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n
06

/0
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Improved Communication Schedules with Buffers 139

[14] T. F. Gonzalez, On Solving Multimessage Multicasting Problems, International Jour
nal of Foundations of Computer Science 12(6) (2001) 791-808.

[15] D. Thaker and Rouskas, G., Multi-Destination Communication in Broadcast WDM
Networks: A Survey, Optical Networks 3(1) (2002) 34-44.

Pa
ra

lle
l P

ro
ce

ss
. L

et
t.

20
09

.1
9:

12
9-

13
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F

C
A

L
IF

O
R

N
IA

 @
 S

A
N

T
A

 B
A

R
B

A
R

A
 o

n
06

/0
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

