Parallel Processing Letters,
© World Scientific Publishing Company

SELF-STABILIZING ALGORITHMS FOR TREE METRICS

AJOY K. DATTA
Department of Computer Science, University of Nevada
Las Vegas, Nevada 89154, USA
E-mail: datta@cs.unlv.edu

TEOFILO F. GONZALEZ
Department of Computer Science, University of California
Santa Barbara, CA 98106, USA
E-mail: teo@cs.ucsb.edu

VISALAKSHI THIAGARAJAN
Department of Computer Science, University of Nevada
Las Vegas, Nevada 89154, USA
E-mail: visa@cs.unlv.edu

Received August 1995
Revised November 1997
Communicated by Sajal K. Das

ABSTRACT
We present algorithms for finding the diameter, centroid(s), and median(s) for tree
structured networks subject to transient faults. In our solutions, the system reaches its
final correct configuration in a finite time after the faults cease. The fault-tolerance is
achieved using Dijkstra’s paradigm of self-stabilization. A self-stabilizing algorithm, re-
gardless of the initial system configuration, converges, in finite time, to a set of legitimate
configurations.

Keywords: Distributed algorithms, diameter, centroid, median, self-stabilization.

1. Introduction

Topological information, such as location of centroid and median, plays an im-
portant role in distributed systems. This information is used for dynamic routing
of messages among nodes. But it cannot be taken into account once and for all at
design time since several unpredictable factors make it time varying. The problem
of dynamically finding the diameter and locating centroids and medians of a tree
structured network therefore assumes importance. This paper presents protocols for
finding the diameter and locating centroids and medians of a dynamic tree network.
The solutions presented require only local topological knowledge at each node, and
are self-stabilizing [1,2]. The self-stabilizing algorithm terminates after it computes
the metrics, but any unexpected perturbation reactivates it, and possibly new val-
ues for the metrics are computed if there are changes in the network topology. The

2 Parallel Processing Letters

model assumes that there are n nodes 1, ..., n arranged in a tree configuration, 1 be-
ing the root. The tree is maintained by a self-stabilizing spanning tree protocol over
a graph, thus making the model more general. Work has been done by Karaata et
al [3] in this area. They require that each action has a very large atomicity whereas
we have no such requirement. Also, every node in the network knows the identity of
the centroid and median of the network when our protocol terminates, thus making
it an ideal underlying protocol for routing purposes. In [3], only the medians and
the centroids themselves know who they are.

The rest of the paper is organized as follows. Section 2 contains a description of
the protocols while Section 3 provides proofs of correctness. Section 4 states some
conclusions. In the Appendix, we give some properties of centroids and medians of
a tree which we used in developing the protocols.

2. Tree Metrics Protocols

Each node maintains a read /write register r containing several fields. The state
of the system is defined by a value for every field of the registers maintained by the
nodes. Each node in the system executes a protocol which has the form: {Phase

name} < phase > {Phase name} ...{Phase name} < phase > Each phase is
of the form: < rule > || ... || < rule>
Fach rule has the form: < guard > —» < assignment statement >

A guard is a Boolean expression over the state of a node and its neighbors. An
assignment statement updates the state of a node. A rule whose guard is true at
some state of the system is said to be enabled at that state. A node i depends on a
node j if a change in the state of j enables some rule of i.

We define a phase to be convergent if its rules are so constructed as to make
the dependency relation between the nodes of the system a partial order, and upon
execution of these rules, the state of the system eventually satisfies a global state
predicate. Intuitively, the dependency relation is antisymmetric so that thrashing
cannot occur. A phase is defined to be closed if no rules in it are enabled once the
state of the system satisfies a global state predicate. A phase is said to be stabilizing
if it is convergent and closed [4].

The write set of a phase is the set of register fields that are updated in the phase.
If the write sets of the phases constituting the protocol are mutually disjoint and
each of the phases is individually stabilizing, then the protocol is stabilizing.

The read/write register r; of node 1 contains the following fields:

r;.parent The id of the parent of 1;
zero for the root.
r;.ht The height of 1.
ri.dt.up Used to convergecast the diameter information.
ri.dt.down The diameter of the tree.
r;.center.up Used to convergecast the centroid information.

r;.center.down The centroid of the tree.

A. K. Datta, T. F. Gonzalez & V. Thiagarajan 3

ri.count Number of nodes in the subtree rooted at i.
r;.nodes Number of nodes in the tree.

r;.median.up Used to convergecast the median information.
r;.median.down The median of the tree.

Node 7 can perform read/write operations on its local register r;, but it can only
read from registers r; of its neighbors (i.e., its parent and children). We assume
that an underlying spanning tree protocol [5,6,7] maintains the consistency of the
parent field in the registers. We do not make any assumption about a fair scheduler.
Our protocols also work under a distributed scheduler [8,9]. Although we do not
use the read/write atomic model [7], our protocols will also work in this model.

The protocols for diameter, centroid and median computation work in two
phases. In the up phase, the value of the metric is computed in each node’s up
variable using the up variables of its children, so that the up of the root stabilizes
to the correct value of the metric. The root then copies its up variable to its down
variable. In the down phase, each node copies the down variable of its parent into
its down variable, so that down contains the correct value for the metric.

2.1. Functions Used in the Protocols

In order to simplify the presentation of the rules in Sections 2.2 and 2.3, we use
the following functions. The function NOTRHS is used to avoid the following type
of situations:

ri.ht # MAX CHILD HT(i)+1 — ri.ht == MAX CHILD_HT(?) + 1,

This check is done so that the protocol will work correctly even with an unfair
scheduler. Rules whose guards are false will not be scheduled and are “blocked out”
of execution.

(* Returns the set of registers of the children of ¢, and the null set if i is a leaf. *)
CHILD(Z) { {r;} ={}; (¥ {r;} is a local variable. *)
for each j | (r;.parent = 1)

add*({r;}, r;);
return {r;}; }

(* Returns the largest ht value of the children of ¢, and 0 if 7 is a leaf. *)
MAX_CHILD_HT(i) { MAX(CHILD().ht); }

(* Returns the second largest ht value of the children of i, and 0 if ¢ is a leaf. *)
MAX2.CHILD_HT(i) { return MAX2(CHILD(3).ht); }

(* Returns the largest dt.up value of the children of 4, and 0 if 7 is a leaf. *)
MAX_CHILD_DT(3) { return MAX(CHILD(3).dt.up); }

CENTROID(i)!{ return r;.ht == [(r;.dt.down/2)] + 1);}

*The add function adds an element to a set if it is not already a member of the set.
TFor the other centroid, replace [] with | |

4 Parallel Processing Letters

ROOT(i) { return ry.parent == 0; }

(* Returns the register of the parent of i *)
PARENT(3) { return r; | ry.parent = j;}

MEDIAN(3) { return 2 x M AX(CHILD(i).count) > r;.nodes; }

NOTRHS { Let X be the boolean expression obtained from the right hand side
of the rule, i.e., the ‘assignment statement’,
after replacing := with #.
Return the boolean value resulting from the evaluation of X. }

2.2. Diameter and Centroid Protocol

The protocol consists of eight rules—R0 ... R7, RO ... R3 for diameter calculation
and R4 ... R7 for centroid identification. The function M AX in R1 and R3, and
the function M AX2 in R3 calculate the greatest and second greatest values of their
parameters, respectively. These functions return zero when applied to the null set
and the singleton set, respectively.

Definition 1 The height of a non-leaf node is one plus the mazimum height of its
children; the height of a leaf being one.

Definition 2 The diameter of a tree is the number of edges in a longest simple
path in the tree.

The diameter protocol ensures that the register field »;.dt.down in each node
stabilizes to the value of the diameter of the tree. This occurs in three phases. In
Phase I, rule RO calculates the height of the node in r;.ht. Rule R1 performs a
convergecast so that the variable dt.up at the root stabilizes to the value of the
diameter of the tree. This is Phase 2. The variable dt.up at each node is the sum of
the two greatest ht values of its children, or the greatest dt.up value of its children,
which is the diameter of the subtree rooted at the node. dt.up of a leaf is zero.
Rules R2 and R3 constituting Phase 3 broadcast the diameter, so that the value of
dt.down at each node equals the diameter of the tree. Each node except the root
copies dt.down from dt.down of its parent (R3). The root copies it from its own
dt.up instead (R2).

Definition 3 A node in a tree is called a centroid if it is a middle node in a longest
stmple path in the tree.

The centroid protocol has two phases. In Phase 1, a convergecast of the index of
the centroid occurs (R4 and R5). One of the two centroids of the tree (or the only
one: refer to Lemma A.3 in the Appendix) is the node whose At equals [%‘Eﬁ] +1
(R4). In Phase 2 (R6 and RT), the index of the centroid is broadcast to all nodes.
Each node copies center.down from center.down of its parent (R7). The root copies
center.down from its own center.up (R6).

A. K. Datta, T. F. Gonzalez & V. Thiagarajan 5

{Compute ht values}
RO :: NOTRHS — riht = MAX_CHILD_HT(i) + 1

{Convergecast the diameter}
| R1:: NOTRHS — ri.dtup = MAX(MAX_CHILD_HT(i)+
MAX2 CHILD_HT(i), MAX _ CHILD_DT(i))

{Broadcast the diameter}
|| R2 :: ROOT(i) A NOTRHS — ri.dt.down := r;.dl.up

|| R3 :: ~ ROOT(i) A NOTRHS — r;.dt.down := PARENT(i).dt.down

{Convergecast the centroid }
|| R4 :: CENTROID(i) AN NOTRHS — r;.centerup = i

|| R5 :: ~CENTROID() A
NOTRHS — r;.centerup = MAX(CHILD(i).center.up)

{Broadcast the centroid}
[| R6 :: ROOT({) AN NOTRHS — r;.center.down = r;.center.up

|| R7 :: ~ ROOT (i) A
NOTRHS -3 r;.center.down = PARENT(i).center.down

2.8. Median Protocol

The protocol consists of seven rules, R8 ... R14. The function M AX in R11 and
R12 calculates the greatest value of its parameters, and the function SUM in RS
calculates the sum of its parameters. Both of these functions return 0 when applied
to the null set.

Definition 4 A node in a tree is called a median if the sum of the distances from
this node to all other nodes in the tree is the least possible.

The protocol ensures that the register field r;.median.down in each node stabi-
lizes to the index of one of the medians of the tree. This occurs in four phases. In
Phase 1, rule R8 calculates the count at each node ¢, which is the number of nodes
in the subtree rooted at 7. At the end of Phase I, the value of count at the root
is the count of nodes in the tree. In Phase II, the value of nodes at each node 1
stabilizes to the value of the number of nodes in the tree. The rules for Phase II
involve the root copying its nodes from its count (R9) and each node copying nodes
from the variable nodes of its parent (R10). In Phase III, the median is computed
using the rules R11 and R12. These rules perform a convergecast so that the value
of median.up at the root stabilizes to the node index of one of the medians of the
tree. A node ¢ checks if twice the greatest rj.count of all its children is less than
nodes, and if so, it declares itself the median by setting r;.median.up to its own
index (R11). Otherwise, it copies the greatest median.up from its children into
r;.median.up (R12). The value of median.up at the root stabilizes to the index of
the median of the tree.

6 Parallel Processing Letters

In Phase IV, a broadcast of the index of the median is done. The root copies
its median.up variable into its median.down variable (R13). Each non-root node
copies median.down from its parent’s median.down (R14). Thus the value of
median.down at each node stabilizes to the index of the median of the tree.

{Compute count values}
R8 :: NOTRHS — ry.count := SUM(CHILD(i).count) + 1

{Broadcast value of nodes}
|| R9 :: ROOT () A NOTRHS —> r;.nodes := r;.count

[| R10 = ~ ROOT(i) A NOTRHS — ri.nodes := PARENT(i).nodes

{Convergecast the median}
| R11:: MEDIAN (i) A NOTRHS — rimedian.up = i

| R12 :: ~ MEDIAN(i) A
NOTRHS —» rimedian.up := MAX(CHILD(i).median.up)

{Broadcast the median}
[| R13 :: ROOT'(i) A NOTRHS — r;.median.down = r;.median.up

|| R14 :: ~ ROOT(z) A
NOTRHS — r;.median.down := PARENT(i).median.down

3. Proof of Correctness

To prove that a protocol is correct, we prove that each phase constituting the
protocol is convergent and closed. Closure is proved by defining a global state
predicate for each phase and proving that once this state is reached, no rule in the
phase is enabled for any node. In each phase, we prove the convergence by induction.
This is acceptable since every phase is either up convergent or down convergent. An
up convergent phase maintains a linear order < among the nodes of the system such
that

VOV G < 7y it rht < r;.ht
For a down convergent phase, the order < is such that

VoV < j4) if rht > rpht
Intuitively, information flow is upwards towards the root for an up convergent phase,
while it is towards the leaves for a down convergent phase. For an up convergent
phase, the leaves are the minimal elements of the partial order while for a down
convergent phase, the root is the minimal element. Hence, for an up convergent
phase, induction is done with the leaves as the bases, while for a down convergent
phase, the root forms the basis of the induction.

Convergence is guaranteed even with an unfair scheduler because the nodes form
a partial order, and thus, the scheduler is constrained to schedule those nodes which
have not stabilized yet. Therefore, convergence is achieved in finite time.

The distributed scheduling permits simultaneous actions by different nodes. Qur

RS

A. K. Datta, T. F. Gonzalez & V. Thiagarajan 7

protocols work with a such a scheduler because the dependency graph of the nodes is
acyclic. Thus one node executing actions concurrently with another cannot interfere
with, and undo the actions of, another.

3.1. Diameter and Centroid Protocols

The following global state predicates are defined for different phases in our pro-
tocols:

Gh = Vi, rht = MAX_ CHILD_HT() + 1
Gar = Gu A (Yi, ridtup = MAX(MAX_CHILD_HT()
+ MAX2.CHILD_HT(:), MAX CHILD_DT(3)))
Gaz @ Ga1 A (Vi, (ROOT(H) A (ry.dt.down = r;.dt.up)) V
(~ ROOT(3) A (ri.dt.down = PARENT(i).dt.down)))
Ge1 it Gaga N (Vi, (CENTROID(%) A (ri.centerup = 1)) V
(~ CENTROID(i) A (rs.centerup = MAX(CHILD(i).center.up))))
Gez @ Ger A (Vi, (ROOT() A (ri.center.down = r;.center.up)) V
(~ ROOT (%) A (ri.center.down = PARENT(i).center.down)))
Lemma 1 The phase {Compute ht values} is stabilizing.

Proof: 1t is evident that the only rule for this phase, R0, is not enabled in the
state Gp. So, the phase is closed. This phase is up convergent by inspection. This
can be proved inductively using the definition of At of a node. o

Lemma 2 The value of r;.dt.up in each node i stabilizes to the diameter of the
subtree rooted at i after a finite number of executions of Rule R1.

Proof: R1 implements an up convergent phase since the guard of R1 for 7 is an
expression over registers r; of the children j of ¢. The guard of R1 is not true in
state G41. So, this phase is closed.

The convergence can be proved by induction on the height of the subtree rooted
at ¢ as follows.

Basis: The minimal elements are the leaves. If 7 is a leaf, rule R1 stores in
r;.dt.up the value zero which is the diameter of the tree rooted at 7. Thus, the base
case is true.

Induction Hypothesis: Assume that R1 converges r;.dt.up to the diameter of the
subtree rooted at j where js are those nodes which have height A > 1.

Induction Step: We now establish that R1 converges r;.dt.up to the diameter of
the subtree rooted at ¢ when the subtree has height A +1 > 1.

Let p be a largest simple path in the subtree rooted at 7. Since the subtree
rooted at 7 has height > 1, it must have at least one child. We deal with two cases:
(1) % has exactly one child and (2) ¢ has more than one children.

Case 1: Node 7 has exactly one child (node j).

In this case, either path p has 7 as an endpoint, or it does not include i. If 7 is
an endpoint of p, the diameter of the tree rooted at ¢ is r;.ht which, by definition, is
greater than or equal to the diameter of the subtree rooted at j. By the induction
hypothesis, r;.dt.up has converged, so that r;.dt.up also converges.

8 Parallel Processing Letters

If p does not include 7, the diameter of the subtree rooted at ¢ equals the diameter
of the subtree rooted at j which, by the hypothesis, has already converged. Since
path p does not include node 7, r;.At must be less than or equal to the diameter of
the subtree rooted at j. Thus, in either case, the variable r;.dt.up converges to the
diameter of the subtree rooted at 4.

Case 2: Node ¢ has more than one children.

Again, either path p goes through node ¢ or it does not include :. In the former
case, the rule R1 computes r;.dt.up as the sum of the largest two heights of the
children of i (the value of ht at all nodes has stabilized), which by definition, is
greater than or equal to the diameter of any subtree rooted at a child of . By
the induction hypothesis, the value of r;.dt.up has converged to the value of the
diameter of the subtree rooted at j for every child 7 of i.

In the latter case, the diameter of the subtree rooted at i is equal to the diameter
of the subtree of a child j of i. By definition, this value is greater or equal to the
sum of the largest two heights of the children of ¢ (which have already stabilized).
In either case, it is simple to verify that the value of r;.dt.up converges to the value
of the diameter of the subtree rooted at 4. a

Corollary 1 The variable dt.up at the root stabilizes to the value of the diameter
of the tree after a finite number of executions of the rules RO and R1.

Proof: Follows directly from Lemma 2.]

Lemma 3 The variable dt.down in each node i stabilizes to the value of the diam-
eter of the tree after a finite number of executions of R2 and R3.

Proof: The phase is closed with respect to Ggs since rules B2 and R3 are not
enabled when the system is in this state.

R2 and R3 implement a down convergent phase since the guards of R2 and
R3 are expressions over registers r; of the parent of i, if one exists. The proof of
convergence by induction is as follows.

Basis: The root is the basis of the induction. By Corollary 1, the value of
r1.dt.down eventually becomes equal to the diameter of the tree. By applying R2,
the root sets dt.down equal to dt.up. Hence the value of r;.dt.down equals the
diameter of the tree.

Induction Hypothesis: Assume that all nodes at level | have dt.down equal to
the diameter of the tree.

Induction Step: We now establish that all nodes at level I + 1 will eventually
have dt.down equal to the diameter of the tree. The down convergence of this phase
implies that the nodes at level I + 1 depend only on those at levels I and below, so
that if those at level { have converged, then so do those at level I + 1. m]

Theorem 1 The diameter protocol is correct.
Proof: The write sets of the phases of this protocol are { »;.ht }, { r;.dt.up } and
{ ri.dt.down }. These are mutually disjoint, by observation. Hence, the diameter

protocol is correct since its individual phases have been proven correct by Lemma
1, Corollary 1, and Lemma 3.)

A. K. Datta, T. F. Gonzalez & V. Thiagarajan 9

Lemma 4 The value of rj.center.up at the root stabilizes to the index of one of the
centroids of the tree after a finite number of executions of rules R4 and R5.

Proof: It is evident that the guards of R4 and RbH are not enabled once the
system reaches (G.;. Hence this phase is closed with respect to G¢1. The proof of
convergence follows.

For at least one node P, the expression (re.ht = [fe4t49%n7 1 1) js true. Refer
to Lemma A.1 in the Appendix for a proof. This expression forms part of the
guards of R4 and R5 and hence will be true for at least one node, namely, one of
the centroids of the tree. This node sets its register field r..center.up to its index.
Since this phase is up convergent, it can be proved by induction using this node
as the basis that the root eventually gets the centroid’s index in its register field
center.up. 0O

Lemma 5 The variable center.down in each node i stabilizes to the index of the
centroid of the tree after a finite number of executions of R6 and R7.

Proof: 1t is evident that the guards of R6 and R7 are not enabled once the system
reaches G.g. Hence this phase is closed with respect to Ges.

The phase {Broadcast the centroid} being down convergent, an inductive proof
can be constructed similar to that of Lemma 3.]

Theorem 2 The centroid protocol is correct.

Proof: Notice that the centroid protocol includes the three phases of the diameter
protocol, apart from the two phases that find the centroid. By inspection, the write
sets of the five phases are mutually disjoint. Thus, the centroid protocol is correct
since its individual phases have been proven correct by Lemma 1, Corollary 1,
Lemmas 3, 4 and 5. o

3.2. Median Protocol

The following global states are defined for the phases in this protocol and will
be used in the lemmas that follow:

Ge Vi, ri.count = SUM(CHILD(i).count) + 1
Gn = Ge A (Vi,(ROOT(i) A (rinodes = r;.count)) V
(~ ROOT(i) A (rinodes = PARENT(i).nodes)))
Gmi1 2 Gu A (Vi,(MEDIAN (i) A (ri.medianup = 7)) V
(~ MEDIAN(i) A (ri.median.up = MAX(CHILD(i).median.up))))
Gmz 2 Gma A (Yi,(ROOT (i) A (ri.median.down = r;.median.up)) V
(~ ROOT (i) A (ri.median.down = PARENT(i).median.down))))
Lemma 6 {Compute count values} stabilizes the value of r;.count at each node i
to the count of the nodes in the subtree rooted at 1.

Proof: 1t is easy to verify that this phase is closed when the system reaches the
state G.. This phase is up convergent and a proof for this is inductive with the
leaves as the bases. (]

Lemma 7 {Broadcast value of nodes} stabilizes the value of r;.nodes in each node
to the count of nodes in the tree.

k-

10 Parallel Processing Letters

Proof: The proof is similar to that of Lemma 3. The system is closed when it
reaches the state G,,. |

Lemma 8 {Convergecast the median} stabilizes the value of ri.median.up at the
root to the index of the median.

Proof: Refer to Lemma A.5 in the Appendix for a proof that for at least one node
Py, in the tree, the predicate (Vj) (rj.parent = m) (24+maz(rj.count) < rm.nodes)
will be true, this node being one of the medians of the tree. This expression being
part of the guards of R11 and R12, the node P, sets r,,.median.up to its node
index. Using this node as the basis, we can prove that this phase is up convergent.
The proof is similar to that of Lemma 4. The system is closed when it reaches the
state G, 0

Lemma 9 {Broadcast the median} stabilizes the value of r;.median.down at each
node to the index of one of the medians.

Proof: The proof for this lemma is again identical to that of Lemma 3. When
the system reaches state G,a, it is closed since no rules are enabled. a

Theorem 3 The median protocol is correct.

Proof: Notice that the write sets of the phases constituting the median protocol
are disjoint. Since we have proven that each phase is individually stabilizing, the
median protocol is correct.]

3.3. Complexity

Lemma 10 The time complexity of any phase is proportional to the length of the
longest dependency chain of the partial order for the phase.

Proof: The minimal elements of the partial order stabilize immediately. Each
non-minimal element depends directly or indirectly on those elements that precede
it in the partial order. Thus the time taken for a phase to stabilize increases with
increasing length of the longest dependency chain.]

4. Conclusion

The protocols presented in this paper are self-stabilizing algorithms for com-
puting the diameter and locating the centroids and medians of a distributed tree
structured network. They provide fault-tolerant means of drawing topological in-
formation about a tree network. No assumptions are made about the fairness of the
scheduler. A distributed scheduling model may also be assumed for the network
and the protocol will still work correctly. The model assumed has very weak atom-
icity. The ideas behind these algorithms could conceivably be extended to finding
the diameter, centroids, and medians of a general graph network; this would be a
challenging problem.

References

A. K. Datta, T. F. Gonzalez & V. Thiagarajan 11

[1] E. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed Control,” Communica-
tions of the ACM, Vol. 17, 1974, pp. 643-644.

[2] M. Schneider, “Self-Stabilization,” ACM Computing Surveys, Vol. 25, No. 1, March
1993, pp. 45-67.

[3] M. H. Karaata et al, “Self-Stabilizing Algorithms for Finding Centers and Medians of
Trees,” The 13th Annual ACM Symposium on Principles of Distributed Comput-
ing , Los Angeles, CA, August 14-17, 1994, pp. 374.

[4] A. Arora and M. Gouda, “Closure and convergence: A foundation of fault-tolerant
computing,” 22nd International Symposium on Fault-Tolerant Computing, pp.
396-403, 1992; also IEEE Transactions on Software Engineering, Vol. 19, No. 11,
1993, pp. 1015-1027.

[5] A. Arora and M. Gouda, “Distributed Reset,” 10th Conference on Foundations
of Software Technology and Theoretical Computer Science, Bangalore, India,
pp.816-331, December 17-19, 1990, Lecture Notes in Computer Science 472,
Springer-Verlag; also IEEE Transaction of Computers, Vol. 19, No. 11, Novem-
ber 1993, pp. 1015-1027.

[6] N.Chen, H. Yu, and S. Huang, “A Self-Stabilizing Algorithm for Constructing Spanning
Trees,” Information Processing Letters, Vol. 39, pp. 147-151, 1991.

[7} S. Dolev, A. Israeli, and S. Moran, “Self-Stabilization of Dynamic Systems Assum-
ing only Read/Write Atomicity,” 9th Annual ACM Symposium on Principles of
Distributed Computing, Quebec City, Canada, pp. 103-117, 1990; also Distributed
Computing Vol. 7, 1993, pp. 3-16.

[8] G. Brown, M. Gouda, and M. Wu, “Token Systems that Self-Stabilize,” IEEE Trans-
actions on Computers, Vol. 38, No. 6, pp. 845-852, 1989.

[9] J. Burns, M. Gouda, and R. Miller, “On Relaxing Interleaving Assumptions,” Proc.
MCC Workshop on Self-Stabilization, Austin, Texas, November 1989.

[10] E. Korach, D. Rotem, and N. Santoro, “Distributed Algorithms for Finding Centers
and Medians in Networks,” ACM Transactions on Programming Languages and
Systems, Vol. 6, No. 3, pp. 380-401, 1994.

[11] N. Deo, “Graph Theory with Applications to Engineering and Computer Science,”
Englewood Cliffs, N.J., Prentice Hall, 1974.

Appendix A. Properties of Centroids and Medians

Lemma A.1 [Korach, Rotem, and Santoro [10]] The statement r;.ht = [Tididown]
1 holds for only one node of the tree T, that node being a centroid of the tree.

Proof: 1t is simple to see that for at least one centroid P, of the tree, the
statement rq.ht = [T 'dt‘zd"w"] -+ 1 holds.

We will prove Lemma A.1 by contradiction, by assuming that there is another
node P, in the tree for which the statement 7.1.ht = [m'—d%g—oﬂﬂ] + 1 holds.

Since the nodes P, and P,y are not identical, but have the same height, it cannot
be that one is a predecessor of the other in the tree. Let P, be the node which is
the closest ancestor of both P, and P.;. Then the path consisting of a longest path
from P, to a leaf, plus the path from P, to P, plus the path from P, to P.;, plus
a longest path form P.l to a leaf, is a simple path and has length greater than or
equal to 2 % [T ‘dt'gdow"] ~+ 2 > rp.dt.down. Since this contradicts the definition of
diameter of a tree, it cannot be that the statement r;.ht = [ﬁ'—g%@w—"] +1 holds for
more than one node in 7.]

12 Parallel Processing Letters

Lemma A.2 The statement r;.ht = ["‘dtédo“’"J + 1 holds for only one node of the
tree, that node being a centroid of the tree.

Proof: The proof is similar to that of Lemma A.1.]
Lemma A.3 [Deo [11]] There are at most two centroids in a tree.
Proof: Refer to [11] for the proof. a

Lemma A.4 There may be more than one longest path in a tree, but all of them
contain the centroid(s) in the tree.

Proof: Refer to [11] for the proof. 0

Lemma A.5 A median of the tree, Py, satisfies the condition, 2¢t(j) > n where
ct(j) is the mazimum count of the children of P, as defined below and n is the
number of nodes in the tree.

Proof: Before we can prove this lemma, we will need the following definitions
and observations:

Definition A.1 The count of a leaf is 1, and the count of a non-leaf node is one
plus the sum of the counts of its children.

Definition A.2 The total distance from node 1 to all the nodes in a tree is the sum
of the lengths of the path from node i to each node in the tree.

Observation A.1l [Korach, Rotem and Santoro [10]] If node i in a tree has total
distance to all nodes in T equal to dis(i), then the corresponding value for its child
7 is

dis(j) = dis(?) + n — 2¢t(5),
where ct(j) is the count of j.

This formula follows from the fact that the length of the path from a node ¢ to
a node k, which is not j or a descendant of j, is one less than the length of the path
from node j to node k. The length of the path from 7 to a node k, which is either
node j or a descendent of j, is one more than the length of the path from j to node
k. The number of nodes in the subtree rooted at i is ct(3).

Observation A.2 If node i in the tree T' has 2¢t(i) > n, then for at most one of
its children j, 2ct(j) > n. When such a child exists, dis(j) < dis(q).

This follows from the fact that n is the total number of nodes in the tree and
ct(i) < n.

The proof of Lemma A.5 can now be stated. Assume that we know that all
medians of the tree are in the subtree rooted at ¢ and that 2¢t(¢) > n. Then by
Observation A.2, one of the following three cases applies:

Case 1: There is one child j of 1 for which 2¢t(j) > n. Then by Observation
A1, dis(i) < dis(j), and dis(k) > dis(¢) for all the other children & of i. Therefore,
all medians are in the subtree rooted at j and 2¢t(j) > n.

Case 2: There is only one child j of ¢ for which 2¢t(j) = n. By Observation A.1,
dis(i) = dis(j) and dis(k) > dis(z) for all other children k of i. Therefore j and i
are the medians of the tree.

e

s

A. K. Datta, T. F. Gonzalez & V. Thiagarajan 13

Case 3: There is no child j for which 2ct(j) > n. By Observation A.1l, there
cannot be a median in the subtrees rooted at any child of i. Therefore node 7 is the
median of the tree.]
Lemma A.6 [Korach, Rotem, and Santoro [10]] There are at most two medians
in a tree.

Proof: Refer to [10] for the proof. O

