40

values of tl, t2,...,t in terms of t using (4.2.4).

m—-1

Corollary 4.2.2 There exist uniform processor systems

and job sets S for which F/f% = 1.5

Y

" proof From Theorem 4.2.1 we know that there are jobs

sets, S , for which f/f* = ¢ where ¢ 1is a positive
root of (4.2.8). Let s be a root. Rearranging terms,
we get:
26 - 1= 1 st
0<i<m
_ sTi—1
g-1

or 2sMtl _ 3sM - 5 + 2 =0

Since s > 1, for m + » we have s - 3/2 as

a root. |

Example 4.2.1

(a) m= 2 :

Then we have 2s§ - S, = 2 =0 , where we

. _ 1+v17 _ _
find Sy = 2 . Of course, s = 1. Let t2 = t3— 1.
From equation (4.2.4), we find t, = ZAS sy = 8 .

1

S2
One easily verifies that E/£* =‘l+aI: .

(b) m=3

The equation to use is 23% - s% -s, -2 =0.

Sy = 1.384 is an approximate root of this equation.

41

Using equation (4.2.7), we find Sy = ——%5 =1.223

and s, = 1 . Let t3 =t, = t = 1. Using equation

(4.2.4), £ind t, = 25 . s, = 1.767 and t; = 2t s,
53 S3

= 1.445. Again we can check that £/f* is approximate
ly 1.384.
(c) Some other roots of (4.2.8) are 1.493 for

m =10 and 1.499 for m = 20. @

4.3 Special Case (1, 1,...,1 , s)

In this section we study the special case in which
all but one of the m > 1 processors has a speed of 1.
The mEll processor Pm has a speed s > 1. The main

result of this section is stated below as Theorem 4.3.1.

" Theorem 4.3.1 For m > 2 the ratio £/£% has the

following bounds:

(i) E£/f*

A

(L + vY1I7)/4 for m = 2

(ii) E/f* < 3/2 - 1/(2m) for m > 2

Proof (i) is proved in Lemma 4.3.2. (ii) follows from
Lemmas 4.3.1 - 4.3.6 and the fact that the bound is a
monotone increasing function in m. e

Before proving the theorem we derive a general

bound for f/f* in terms of m and s .

Lemma 4.3.1 For an m-processor system with s; = 1 for

. r 2(m—l+s)
= * & et
1 < 1 < m and Sm S f/f >

42

Proof If m =1, the lemma is obviously true since

E/f* = 1. Now assume that the lemma holds for 1,2,...,

m-1 processors but fail for m (m > 2). For this m ,
Let S = (tl‘z_tz'z.;.i tn) be the smallest set of
: : 2 -2 (m-1+s)
* P Sats A
jobs for which £/f* > —{35s Suppose a processor

is idle in either the LPT or optimal schedule of S.

~ ~ . 2(m~2+s) 2 (m-1+s)
Then fS/f*S < f£5 xS < < b
m/ U m—l/ m-l — p-2+42s m-1+2s Y

Lemma 4.2.1 .
So we may assume that no processor is idle in
either the LPT or optimal schedule of S . We consider

two cases, both leading to a contradiction.

" Case 1 The LPT schedule is as shown in Fig. 4.3.1 ,
where each T represents the sum of execution times

of jobs scheduled on P; prior to the assignment of

T + T +eoot+ T = t + t +...+ t . B
e 4 2 m 1 2 n-1 ° Y

assumption, no processor is idle. Hence T; > 0 for

2 < i <m. Since the first m - 1 processors have

speed 1, we may assume that T, > T

i and 1 < i < m-1.

1
Now if T, = 0 , then £ =1t . But £* > t since by

assumption no processor is idle in the optimal schedule.

Then f/f* = 1. 8o we may also assume that T, > t,.

Then

E/E% < T * tn L melts) (T + tp)
(I + tp)/(m-1+s) — (m-1)T3 + Tp + t,

43

Tl t P Co T]_‘ :
Pl t 2 \ 1 i |
P T2 p. Ty
2 { 2 @ —A
L Y e
. .
P T . P Ty ;‘tn \
m 1 m ¥ i
Fig. 4.3.1 Fig. 4.3.2
Now, since tn determines the finish time,
Ty, + tp .
> Tl + tn or Tm > sTl + (s—l)tn . Then
~ (m~1+s) (T1+tp)
f/f* <
/ — (m=1)T;+sTy+(s-1) t+ty
_ {m=1+s) (Ty+ty)
T (m-1)Ty + s(Tytty)
- m-1l+s
L (m=1) Ty
Tl+tn
o T
o< _m-l+s since the minimum 1
T g 4L Ty+tn
2
with the constrain Tl > tn
occurs when T, =t .
~ 2(m-1+s) ! "
% < b : . . .
Hence, f/£*% < “m-li2s ' a contradiction
" Case 2 Suppose the LPT schedule is as shown in Fig.

4.3.2, where we again assume that T, 2 T, > tn . We

may also assume that T, > 0 ;

since f = tn/s .

otherwise f/f* =]

44

Tm + tn
h E f* <‘
Then /E% < (ZT;+t)/ (m=1+s)

Ty + t
(m-1+s) (—=—2)

(m—l)Tl + TL t ty

. . Tm + tp
Since t is scheduled on P_ , T4 + £t > 2———— .
n m 1 n

We have two subcase:

(a) We can find a T such that tﬁ ST <Ty and

Tm + tn

T + t = S . Then

f/f* . (m-1+s) (T+tp)
T (m-1)T + Tty

(m~1+s) (T+tp)
(m-1) T+s (Ty+ty)

_ (m—-1+s)
+ (m~1)T
T + tn ‘
< (m-1+s) 2(m-1+s)
= m-l T p-142s
s + s

Agaih, we get a contradiction.

(b) If (a) is not possible, we let T = t_ . Then

n
Tm + tn
T+ t, =2t, > g — or T, < (2s-1)t, . Then
Tm + tn
N (m-1+s) (—5—)
*
/5 S DTy + Ty * tg
< (m—l+s ‘ Tm + tp
= (m—l+s) S |
S - (m~1) t,
1+

45

-4_ """ (m—l) tn
1+
(2s-L)t, + t,
= 2(m-1+s) , @& contradiction.
" m=-1+2s :

The bound for m = 2 follows from the following lemma.

" Lemma 4.3.2 For an m processor system with sjy

i= 1

(3-m) + J{S-m)2+16(m—1)

1l <i<m and sy =8 , f/f* < 3

.

Moreover, for m = 2 , the bound is tight.

" Proof ILet k > 1 be the desired bound for f/f* .

Let Q = Zsi = m-l+s . First we show that if
s i Z%L%:%L ; then f/f* < k . Suppose not. Let

S = (ty > ty >...> tn) be the smallest set of jobs for

which f/f* > k . Then tn determines the finish time

(m‘l)tn

and by Lemma 4.2.2, £/£% < 1 + ——

Hence

£f* < —57£:IT . It follows that the number of jobs on
each processor in the optimal schedule of S is less
(m-1)s
Q(k-1)
This contradicts the assumption that S produces a
20(k-1)
m-1

than < 2 . But then this case, £f£/f* =1 .

, then £/f* <k .
- 20(k-1)
m-1 '

bound > k . Thus if s <
This, in turn, implies that if Q < (m-1) +

then E/f* < k or that

. (m-1) 2 A
if Q< T then f£/f%* < k . Now by

8 ew 2 (m-1+s) o 2 (m~1+s)
Lemma 4.3.1, we have f£/f* < = —975¢ = 2 (m-1+s)- (m-1)

(4.3.1)

46

=-———%9——— . It follows that if 20 < k , then
20~ (m—~1) 2Q0- (m-1) —
f/f* <k or
(4.3.2) if Q > 2 (k-1) then f£/f* < k .

To satisfy (4.3.1) and (4.3.2) simultaneously, we must

(m-1)2 (m-1)k , |
have m-2k+1 = 2(k-1) r from which we get

Kk = (3-m) + /{3—m)2-+ 16 (m~1)

7 . In this case f/f* < k

for all Q .
For the case m = 2 , we have k = 1—ijliz
which is tight since we have seen an example for which

the bound is achieved. @

In arriving at the proof of the theorem for m > 2,
it is necessary to prove four lemmas. To begin with,
we show that if for any set of jobs, S , an optimal

schedule has more than one job on any of the processors

Py, Py ,e-.s BP_; then £°/£%5 < 3/2 - 1/(2m).

Lemma 4.3.3 For any set of jobs, S , either

(1) processors P-P_ 4, have at most one job
scheduled on each in every optimal schedule

or (i) £5/£x5 < 3/2 - 1/(2m) .

Proof Suppose (ii) 1is not true for some set of jobs.
Let S = (tl >ty 20> tn) be the smallest set of
jobs for which fﬁ/f;s > 3/2 - 1/(2m) . From Lemna

4.2.2 we get

47

fm/fm A (m-l+s)f$ > 3/2 - 1/(2m)
or
(m-1) tn , m=1
(m—l+s)f$ 2m
or
m~-1+s
tn > —5m fﬁ
*
> (1/2) fm

I.e., f; < 2tn which, in turn, means that none of the
processors P;-P _, can have more than one job
scheduled on them in an optimal schedule. a

Next, we prove that if s > m-1 then £/f* < 4/3.

Lemma 4.3.4 Tf s > m-1 then £/f* < 4/3 < -g-_ '2'}}6

for m > 2 .

" Proof Lemma 4.3.1 gives

2 (m-1+s)

£/£% < mTisos

The right hand side of the above inequality is a

decreasing function of s . Hence, for s > m-1 we
obtain
E £r < 4dm—-4
o I S 3@m-1)
= 4/3
< 3/2 - 1/(2m) m>2 . @

As a result of Lemmas 4.3.3 and 4.3.4 the only
counter examples to Theorem 4.3.1 are sets of jobs, S,
for which the optimal schedules have at most one job on

each of Pl - P and the speed, s , of Pm is <m-1.

m-1

48

The next two lemmas show that for this kind of an
optimal and s < m-1 the bound of theorem 4.3.1 cannot

be violated.

" T.emma 4.3.5 Let S = (tl

smallest set of jobs for which £/f* > 3/2 - 1/(2m)

> tz >.,..> t_) Dbe the
— n

If in the LPT schedule, t; is the only job scheduled

on one of the processors, Pl’ P2,..., Pm—l and if in

an optimal schedule tj is the only job scheduled on

PYARRY Pm—l then, either
: 2S /£%S *

(1) fm‘/fm = fm—l/fm—l

one of the processors, Pl, P

oxr

(ii) ti < tj

"Proof From Lemma 4.1.1 it follows that tn determines

A

the finish time £5 | If anyone of the processors

Pl’ P2 geeo s Pm is idle in an optimal solution (i.e.

no jobs have been scheduled on it) then £F = X .1 -
2S _ 28 P S _ 28 «S
But, f_ < £, and so f_/fF" < fo-1/tk7, - We may

therefore assume that no processor is idle in any

optimal solution. Hence, f$s >t . If i =n then
E; =t (as t is the only job on some processor

£S /£%S < :
Pl' P2,..., Pm-l) and fm/fm < 1 . Therefore 1 # n.

Now, we have

£+5 = maxft , £+S7{t3)
m 3 m-1

gxS-{t5}
m

v

49

> £*S—{t: e . > .
> fm—l{ it as tl > tj
but, fg =>fi:£ti} ... as i # n
. £S /exS <« £5-{t;} eas={t;}
ve fm/fm S fm—l * /fm—l *
P *
= fm—l/'fm—l

" Lemma 4.3.6 When s < m-1 and an optimal schedule for

any set of jobs S has at most one job on each of

processors Pl—Pm__l then fm/fﬁ < 3/2 - 1/(2m) .

" Proof Let S =‘(t1 >ty 200> tn) be the smallest set
of jobs and m the least m > 2 for which the lemma

is not true. From Lemma 4.3.1 we obtain

m-1 tn
m-1l+s f*°

f/f*vi 1+ By assumption E/f* > 3/2 - 1/(2m) .

Therefore,

(m-1) tn -
+ I 0> 3/2 - 1/(2m)

or
2m

f* <
m-l+s I

e (4.3.3)

If #, is the number of jobs on Pj in an optimal

schedule then, £f* > #mtn/s . Substituting this
inequality into (4.3.3) yields:
#

<"25m
m m—-1+s ©°t

(4.3.4)

The right hand side of the inequality (4.3.4) is an
increasing function of s . Since s < m-1 (4.3.4)

yields the following bound on # :

50

2(m-1)m _ -
N e

The optimal schedule has at most one job on each of

-P

-1 ° Hence, n < 2m=-2 .

Py
The remainder of the proof shows that if n < 2m-2

then Lemma 4.3.5 can be used to show that

fg/fﬁs i_fg_l/fﬁfl thus contradicting the assumption

that this was the least m for which the lemma was

false . (The contradiction comes about as 3/2 - 1/(2m)

is monotone increasing in m and the fact that when

m = 3 this bound is 4/3 which is greater than the

- known bound for m = 2 .) Clearly, we may assume that

each processor has at least one job scheduled on it in
every optimal schedule.

Let k be the smallest index (i.e. largest job)
on any of the proéessors Pl—Pm_l in an optimal
schedule. Then, the schedule obtained by assigning job
tk+i—l to processor Pi » 1 < i< m and the remain -
ing jobs to processor Pm has a finish time no greater
than the optimal finish time f%s . Such a schedule
shall be denoted by OPT) . Clearly, 1 < k < n-m+2 .
Since, n < 2m - 2 at least one of the processors
Pl—Pm_l has exactly one job scheduled on it (every
processor must have at least one job on it as otherwise
, by the definition of LPT £ < t, but £* > t). Let

the index of this job be i . Then, +t; must be the

1

51

largest job amongst jobs scheduled on P,-P__, in the
LPT schedule (this again follows from the definition

of LPT). But, s < m-1 implies t. > t_

i2tgy asLPT

cannot schedule all of the first m-1 jobs on Pm

when s <m-1 . For all k > 1, OPT, has a job with
index j =k +m-2>m-1 on P, ¢ and this is the
only job on Py, 7 . By the ordering on the jobs,

tjii th-1 - So, t§ > tj . Lemma 4.3.5 now implies
that fi/f;s < fm—l/frfl—l ; a contradiction. a

Having shown that f/f* is indeed bounded as in
Theorem 4.3.1, the next question is: Héw good is the
bound. From the previous section we know that the
bound for m = 2 is tight. Lemma 4.3.7 shows that the
bound is also tight for m = 3 and that for all m > 3
it is possible to have an f/f*' arbitrarily close to
4/3. Lemma 4.3.8 shows that for m = 4 and 5 there
is no set of jobs S for which f/f* > 4/3. This
shows that the bound of 3/2 - 1/(2m) is not a tight
bound for all values of m and leads us to conjecture
that for m > 3 the bound is in fact 4/3 . Note the
closeness of this bound of 4/3 to the bound 4/3-1/(3m)
obtained by Graham [13] for the case of s =1 (i.e.

m identical processors) .

Lemma 4.3.7 For m > 3 and any ¢ > 0, there is a

set of jobs, S , and a speed s > 1 for which

52
£/6% > 4/3 - € .

" Proof For any m > 3 consider the set of jobs t., =1.5

1
t2 = 1.5, tj =1, 3<3j<m2 and s =2 + e' with
€' very close to zero . The LPT schedule has jobs tys
t2 and than OO0 Py with £ = 4/(2 + ¢') . One
optimal schedule is shown in figure 3.3 . £* = 1.5
. R g
Henc f/f* = > 4 !
ence, / cracT /3 as €' > 0
t t; = 1.5
Py 3 P, B
2 2
p o Eistaitne P Emetmiartue
m m
s=2 + ¢' s=2 + ¢!
LpT Optimal

Figure 4.3.3 LPT and Optimal Schedules

for Lemma 4.3.7

Lemma 4.3.8 For m=4 and 5 , £/f* < 4/3

- Proof We prove only the case m = 4 . The proof for
m=5 is very similar and does not use any new tech -
‘niques. The proof for m = 4 1is by céses on the
possible values of n and s . In what follows, we
assume that the smallest set of jobs for which %/f*
>'4/3 is of size n and then arrive at a contradic -

tion for all values of n .

53

case a s > 3 . Substituting in Lemma 4.3.1 we obtain,

for s >3 and m= 4 , £f/f%* <3S 6 = 4/3 .
- — 1.5+s T 4.5

case b n < 4 there is either only one job on each of
the four processors are idle in the optimal schedule .
In the first case f/f* =1, 1in the second §4/fz <

£4/F% < 4/3 .

case ¢ n =5 In both the LPT and optimal schedule
there is job ti schedule alone on one of P.~-P, .

173
Lemma 4.3.5 applies and 54/f3 < §3/f§ <473 .

"case d n=6 1.5 ¢ s <3 Lemma 4.2.2 yields E/E*

3t
<1+ —21 __ . By the assumption on the set of jobs
- (3+s) £* 3t 9
A n
£/f* > 4/3 . So, —— > 1/3 o £* < t
/ / Grsyex | PoF 3%s ™
<2t . The number of jobs on P, P, is thus

restricted to 1 and the number on P, is restricted to
<4 . The total number of jobs, n , must be < 7 .
When n =2m - 2 = 6 , the proof of Lemma 4.3.6 applies
as the optimal has at most one job on each of P-Pjy

and s < m—-1 . Hence, f4/fz < ?3/f§ <4/3 . s < 1.5:
(1) ty £ P, in optimal. There must be at least 2

jobs on P, as otherwisg we may interchange the job on

P, with ty without increasing the finish time. So, at
least two processors in the optimal schedule have only

one job each. We may assume these jobs to be tl and

t2 . Since s < 2 , t2 is in Pl and alone in the LPT

54

schedule. Lemma 4.3.5 now applies and F/Ex < 4/3 .
(ii) tl_e P4 and t2 7 P4 in optimal. Lemma
4.3.5 again applies.
(1ii) tl £ P4 and t2 c P4 in optimal. Now.

either Lemma 4.3.5 applies or £ = (tl+t6)/s

|
o

) < £ .

"case e n=7 : 1.5 < s < 3 From case d we know that
~in the optimal each of P;-P5 has exactly one job
scheduled on it while there are 4 jobs scheduled on Py, .
We examine all the possibilities.

(1) If t1 ¢ Py 1in the bptimal then the optimal

may be assumed to be:

Py €3
Py) ‘ t2.
Py - t3

p, _ta:ts5.terty

In the LPT schedule jobs t2 and t3
cannof be alone on Py P, or P3 as, then
Lemma 4.3.5 would apply and %4/fz < %3/f§ .
Also, if tj3 is the only job on Pg 1in the
LPT schedule, then t < (tl + t7)/s while
£x > t] . 8o, E/E% < (t + t;)/(sty) <

2/s < 4/3 . This takes care of all possible

LPT schedules with 7 jobs.

55

(ii) tq € Py in the optimal and t, ¢ Py . This
is very similar to (i). ©Unless in the LPT
schedule t; is the only job scheduled on
Py , Lemma 4.3.5 applies and E/f* < 4/3
If ty is the only job on P, then
£ < (£, +tg)/s while £* > (b + tg + tg +
t))/s > £ .

The only remaining possibility is :

(1ii) tl € P4 and t2 € P4 in optimal. Now ,

% < (tl +t, + ot t7)/s ‘for ;ll éossible

LPT schedules, while £* > (tl + t +t6+t7)/s.

2
s < 1.5: (i) if ty Z Py and t, £ Py in
optimal then f£* > t, + t, case d

9

f* < 375 tpn => no more than two jobs on each

of Pl - P3 . But, f < t2 + t7 as there
are only 7 Jjobs.
(ii) t; # Py and ty e Py in

toy + t7}

optimal => f* > maX{tl, since,

f < t2 + t7 f/f* < s and so s must be
> 4/3 if f£/f* is to be > 4/3 .

4/3 < s < 1.5:

If t4 is alone or with to only on P,
in the LPT schedule then £ < (tl + t7)/s

< 3f*/(2s) < 9£*/8

So, t; must be paired with a job other

than t7 . Hence, £ < t3 + t7

(iid)

56

if t4 £ Py 1in optimal then f£*

| v

t3 + ty
if ty € P, in optimal then f¥* i
(t2 + t3)/s

'_.l

=> t. < 2fk => F o< (2 4+ 1)f* <
. 3_5/ . __(2 2)f <

1.25f£% . (tq < f*/2 as with s < 1.5
the number of jobs on P, must be
less than 3)

t; € Py in the optimal

If ty 1is alone in the optimal then
%/f* is no worse than for identical
processors. SO, E/Ex < 4/3 (see
[13]) .

If t; is alone in the LPT séhedule

or coupled only with t5 then

E < (tl + t7)/s < £* . So, f must

be <t3+t7

If tye Py in optimal then £f* >
(tl + t2)/s > 2t2/s but £ < t3 + t7
< (§ + HEr < 1,256

If ty £ Py in optimal then t, is
alone on Py . 1In the LPT, since ,
ty is not alone on Py, , ty must be

alone on Py . So, Lemma 4.3.5 applies

and £/f* < 4/3 .

each of P,-

1

So, n < 7.
g £ 1.5

(1)

57

> 1.5 then case d requires at most 1 job on

P. in optimal and at most 4 jobs on P

3 4 -

If ty ¢ P4 in optimal then since there can

be at most 2 jobs on each processor, £* >

t] + tg . Using the technique of case d we

get for E£/f* > 4/3 , f£* < = tg < (9/4)tg

- (i1)

3+s
or tg > (4/9)f* . Hence, tj < (5/9)f* . If

ty is the only job on Py in the LPT
schedule or t; and tg are the only jobs
on P4 then £ < (tl + t8)/s < f* . Hence,

”~

f <ty + tg <2ty <. (10/9) £* .
ty e Py in optimal.

f* > (t; + tg)/s and so for £/£% > 4/3
there must be a job other than tj and tg
on Py in the LPT schedule. This implies

2 <ty + tg < £* if t, ¢ Py in optimal.
Assume now that both t; and t; are on
Py in the optimal. Then £* > (tl + tz)s >
2t2/s => t2 < s/2f%* . This, together with
the knowledge that tg < £%/2 and f < tp+

tg results in £ < (§ +)Ex < 1.25£% .

- 58

case g n > 8 Substittuting this into Lemma 4.2.2

yields
grex <1+l <14 (3/9) =473 .

This takes care of all the possibilities and so

for f4/ff < 4/3 . @

F

Conjecture E/f*‘i 4/3 for m >3 and s; =1

1< i < m and Sh > 1.

CHAPTER V

OPEN SHOP

5.1 Introduction

A shop consists of m > 1 processors (or
machines). Each of these processors performs a differ-
ent task. There are n > 1 jobs. Each job i has
m tasks. The processing time for task j of job i
is

tj r Task j of job 1 1is to be processed on
¥

processor j , 1 < j < m. A schedule for a processor

j is a sequence of tuples (li, Sy r fR), 1 <i<r.
i i
The Ri are job indexes, Sg is the start time of
i

job 5 and fl is the finish time. Job li is

i
processed continuously on processor Jj from Sy to
i
fz . The tuples in the schedule are ordered such
i
that s, < f <s

. L., — %, !
i 1 i+l

1 <i< r. There may be

more than one tuple per job and it is assumed that

L. # L. , 1 <i<r. 1It is also required that each
i i+l -

job i spends exactly t, , total time on processor
Jl

j. A schedule for a m-shop is a set of m processor

schedules. One for each processor in the shop. In

addition, these m processor schedules must be such

59

60

that no job is to be processed simultaneously on two or
more processors. A shop schedule will be abbreviated

to schedule in future references. The finish time of a

schedule is the latest completion time of the individual
processor schedules and represents the time at which

all tasks have been completed. An optimal finish time

(OFT) schedule is one which has the least finish time

‘amongst all schedules. A non-preemptive schedule is

one in which the individual processor schedules has at

most one tuple (i , Sit fi) for each job i to be
scheduled. For any processor, J, this allows for
tj,i = 0 and also requires that £, - s; = tj,i . A

schedule in which no restriction is placed on the num-

ber of tuples per job per processor is preemptive. Note

that all non-preemptive schedules are also preemptive
while the reverse is not true.

Open shop schedules differ from flow shop and job
shop [5,7] schedules in that in an open shop, no res-
trictions are placed on the order in which the tasks
for any job are to be processed. 1In this Chapter we
shall investigate OFT schedules for the open shop. It
is clear that when m = 1, OFT schedules can be
trivially obtained. We shall therefore restrict our-
selves to the case m > 1 . First, in section 5.2 we
show that preemptive and nonpreemptive OFT schedules

can be obtained in linear time when m = 2 . This

61

contrasts with Johnson's O(n log n) algorithm [7, p89]
for the 2 processor flow shop. When m > 2 OFT
preemptive schedules can still be obtained in polyno -
mial time (section 5.3).

For nonpreemptive scheduling, however, finding OFT
schedules when m > 2 1is NP-Complete. These results
may be compared to similar results obtained for flow
shop and job shop OFT scheduling. In [11] and in Chap
ter VI it is shown that finding nonpreemptive OFT
schedules for the flow shop when m > 2 and the job
shop when m > 1 are NP-Complete. In Chapter VI it
is also shown that finding preemptive OFT schedules for
the 3 processor flow shop and 2 processor job shop are
NP-Complete. Thus, as far as the complexity of finish
time scheduling is concerned, open shops are easier to

schedule when a preemptive schedule is desired.

5.2 OFT Scheduling for m = 2

In this section, a linear time algorithm to obtain
a nonpreemptive and preemptive OFT schedule for the
_case of two processors is presented. For notational

simplicity, we denote tl ., the task time on proces-

s 1

sor 1, by a and t2 . by Dby, 1 < i< n. Infor -
i r 1 - =

mally, the algorithm proceeds by dividing - the jobs

into two groups A and B. The jobs in A have aj; > bi

while those in B have aj;

i < bi . The schedule is

62

build from the "middle" with jobs from A being added on
at the right while those from B are added on at the
left. The schedule from the jobs in A is such that
there is no idle time on processor 1 (except at the
end) and for each job in A, it is possible to start its
execution on processor 2 immediately following its
completion on processor 1. The part of the schedule
made up with jobs in B is such that the only idle time
on processor 2 is at the beginning. In addition, the
processing of a job on processor 1 can be started such
that its processing on processor 2 can bé carried out
immediately after completion on processor 1. Finally,
some finishing touches involving only the first and
last jobs in the schedule are made. This guarantees an

optimal schedule.

1 Algorithm OPENSHOP
// This algorithm finds a minimum finish time non-
preemptive schedule for the open shop problem
with task times (ai : bi)’ 1 <ic<n
Initialize variables: agiby represent a dummy
job
T; = sum of task times

assigned to processor

i, 1<i<2.

10
11
12

13

63

2 = index of leftmost job in
the schedule

r = index of rightmost job in
the schedule.

S; = sequence for processor i

1 <i<2//
T, < T, <ajgcby+ &<+r<«0;5<null
// schedule the n jobs //

"for i+ 1 to n do

“if a, > b, then [if a. > b then
—_ i - T = == i = "r
[// put r on right, || means
string concatenation //
S<s || r;r<+i]
else [// put i on right//
S « S || ill]
else [if bi > a, then

2
[// put & on left //

S« 2 || s;: 2+ 1il]
else
[// put i1 on left //
s« i|] s1l]
end //now start finishing touch //
delete all occurrances of job 0 from S
if T) - ag < Ty - b, then [S; « S [| r || 2;

Sy« 2 || s]| rl

64

14 else [8y « 2 [| s || r;
S, «r || %] s
// an optimal schedule is obtained by processing
jobs on processor i in the order specified by
S;, 1 <i < 2. The exact schedule may be det-
érmined using Theorem 5.2.1 //
15 return

16 end of OPENSHOP @&

Example 5.2.1 Consider the open shop problem with 6

jobs having task times as below:

Job 1 2 3 4 5 6

Processor

Initially, &2 =r =0 and S = @. The following
table gives the values of S, r, & at the end of each

iteration of the for loop 3-12.

End of

iteration

0
00
200
4200
42001
420016

AU WN -
VIOl
WWWwWwh o

After deleting the 0's from S we have S = 4216, r = 5,

TR

65

2 =3, T =39 and T, = 40. Since T - a3 > T, - bg
we get S, = 342165 and S, = 534216. Processing by

these permutations gives the Gantt chart:

3 4 11 21 27 39
processor 1 | 23 |24 | 22 a -1 %6 as
processor 2 bg b b, by by bg

7 15 17 26 32 40

The following 2 lemmas will be useful in proving the

correctness of algorithm OPENSHOP.

" Lemma 5.2.1 Let the set of jobs being scheduled be

such that a; > bi + 1 <i<n and let D be the per-
mutation obtained after deleting the 0's from S 1in
line 12 of algorithm OPENSHOP and concatenating r to
the right. The jobs 1l-n may be scheduled in the order
D such that:

(1) there is no idle time on processor 1 except
following the completion of the last task on this pro-
cessor |

(ii) For every job i, its processor 1 task is
completed before the start of ité processor 2 task

(iii) for last job r, the difference, A ,
between the completion time of task 1 and the start

time of task 2 is zero.

Proof The proof is by induction on n. The lemma is

clearly true for n = 1. Assume that the lemma is true

66

for 1 < n < k. We shall show that it is also true for
n = k. Let the k jobs be Jqs JToreee s Ix and let r'
be the value of r at the beginning

of the iteration of thé "for" loop of lines 3-11 when

i = n. From the algorithm it is clear that the per -
mutation, D' , obtained at line 12 when the k-1 jobs
J1s Jpreeey Jr-1 are to be scheduled is of the form
D"r'. Moreover, D =D"r'k or D = D"kr'. From the
induction hypotheéis, it follows that tha jobs Jj7, Jj,
ceer Ty g can be scheduled according to the permuta-
tion D"r' so as to satisfy (i) - (iii) of the lemma.

I.e., these k-1 jobs may be scheduled as in figure

5.2.1 . Let i be the job immediately preceding r'
in D'. In case k = 2, 1let i =0 with ag = bO =0.
. ‘.

c— Qi k- -

o ié-bL-?lflSK-
Figure 5.2.1 Scheduling by D' =p'r'

N

N

indicate task processing. Last job

is r'. A'i 0o .

If Ak > b _, then D =D'k and it is clear the
= Txr'
job k can be added on to the schedule of figure 5.2.1

at the right end, so that (i) - (iii) of the lemma hold.

If A, < b_, then D = D"kr'. ©Now, job x' |is
k r :

RN

67

moved ap units to the right so that a, can be
accomodated between i and r' satisfying (i). Let
£y} be the finish time of a; and £, > f; be the

1

finish time of bj;. The finish time of a, is then

fq + ag < fl + a,r as apr > br' . By (iii) the start
time of br' has to be fl + ap +ar.. Also, we know,
from the induction hypothesis, that £, + a., - £, =

A' > 0. TI.e. £f; + a > £, . The earliest that by

rl

may be scheduled is max{f; + a , f2} < f; +a

rt °
This implies that there is enough time between the start
time of br' and the earliest start time of bk to

complete the processing of by . @

" Lemma 5.2.2 Let the set of jobs being scheduled be

such that a; < bi r 1 <i<n and let C be the
permutation obtained after deleting the 0's from 'S
in line 12 of algorithm OPENSHOP and concatenating £
to the left. The jobs may be scheduled in the order
C such that: |
(1) there is no idle time on processor 2 except
at the beginning
(ii) for every task i, its processor 1 task is
completed before the start of its processor
2 task.

(iii) for the first job, & , the difference, A

between the completion time of task 1 and

68

the start time of task 2 is zero.

Proof The proof is similar to that of Lemma 5.2.1.

" Lemma 5.2.3 Let (ai, b.

i) be the processing times for

job i on processors 1 and 2 respectively,
1 <i<n. Let f£f* be the finish time of an optimal

finish time preemptive schedule. Then, f* < max{max{
i .

. n n
a; + bi}, Ty, Tz} where T = iai and T, = ibi .

" Proof Obvious.

We are now ready to prove the correctness of

algorithm OPENSHOP.

" Theorem 5.2.1 Algorithm OPENSHOP generates optimal

finish time schedules.

“Proof Let Jj7, Jpseees Jp be the set of jobs being

scheduled. Let A ‘be the subset with a; > b; and

B Dbe the remaining jobs. It is easy to verify that
the theorem is true when either A or B is empty.
So, assume A and B to be nonempty sets. Let E

be the permutation obtained after deleting the 0's from
2|]s||r in line 12. Then E = CD where C consists

solely of jobs in B and D consists solely of jobs

in A . From Lemmas 5.1.1 and 5.1.2, it follows that

69

the jobs in A ang 3 may be scheduled in the orders
D and C to obtain schedules as in figure 5.2.2. 1
the schedules of figure 5.2.2; the processor 1 tasks
for C and the processor 2 tasks for p have to be
scheduled such that all the idle time appears either at

the end or at the beginning.

| lidie ;time on

NN/ AW
-Pz | ‘/////////'///// 1A ; \\\\\\\\.br

\ | ' idl% time on:
0
0 % % © Py By B,

Figure 5.2.2 Partial schedules obtained for sets

B and A Tespectively.

Let Tl =

[l]

n
aj and T, = g3 b; . The schedule for
1
the entire set of jobs is obtained by merging the two
schedules of figure 5.2.2 together so that either
(a) The blocks on Pl meet first. fThig happens
when (ay = aj) < By -
or (b) The blocks on P2 meet first. Thig happens
when (062 - Otl) > Bl

Let us consider these two cases Separately.

case a Gy = ay < Bl
This happens when Ty - ay 2Ty = b, . 1In this
case, line 14 of the algorithm results in the tasks

on Pl being processed in the order D while those on

70

P2 are processed in the order rCD' where D' is D
with r deleted. The section do ~ ap of figure
5.2.2 (a) is now shifted right until it meets with

Bl - 82 of figure 5.2.2 (b). Task br is moved to
the leffmost point. The finish time of the schedule

obtained becomes maX{ar + by, T1,T5} which by Lemma

5.2.3 is optimal.

" case b Oy = 0y > Bl

This happens when Ty - ap < T, - b.. 1In this

r
.case, line 13 of the algorithm results in the tasks on
Pl being processed in the order C'Df% where C' is C
with & deleted. Tasks on P2 are processed in the
order CD. The schedule is obtained by processing
tasks on P2 with no idle time starting at time 0.
Tasks on Pl are processed with no idle time (except at
the end) in the order C'D. Task a, is started as
early as possible following C'D. The finish time is
seen to be maX{az + by, Ty, Ty} which by Lemma 5.2.3
is optimal.

This completes the proof. @

Corollary 5.2.1 Algorithm OPENSHOP generates optimal

preemptive schedules for m = 2.

Proof Follows immediately from the proof of Theorem

5.2.1 . B

71

Lemma 5.2.4 The time complexity of algorithm OPENSHOP

is O(n)

" Proof The "for" loop of lines 3-11, is iterated n

times. Each iteration takes a fixed amount of time.
The remainder of the algorithm takes a constant amount

of time. Hence the complexity is 0O(n). @

5.3 Preemptive OFT Scheduling m > 2

We now show that optimal preemptive schedules can
be found in polynomial time when m > 2. To begin with,
we present a fairly simple algorithm to db this. This
algorithm reduces the problem to tﬁat of finding
maximal matchings in bipartite graphs [14]. Refine -
ments of this basic procedure then lead to a more
efficient algorithm.

Given a set of n jobs with task times tj,i ’

1 <i<n and 1 < j <m for a m processor open shop

» we define the following quantities:

T. = X tj,i ... total time needed
on processor j,
1 <3j<m

L; = I ty,4 ... length of job i,

1 <1i<n

From a simple extension of Lemma 5.2.3 to m pro-

cessors, we know that every preemptive schedule must

72

have a finish time that is at least

o = max {T5, L;} (5.3.1)

1.3

We will in fact show that the optimal preemptive
schedule always has a’finish time of o . From the
~given open shop problem we construct a bipartite graph
with 2(n+m) vertices. n + m of these are labeled
J1s Joreeer Jpym tO represent the n jobs together
with m fictitious jobs that we shall introduce. The
remaining vertices are labeled My, Mp,.«., Mpim
to represent the m processors together with n
fictitious processors. The bipartite graph, G, will
contain undirected weighted edges between J and M
type vertices. The weight, W(Ji, Mj), of an edge
(T4, Mj) will represent the amount of processing time
job i requires on processor Jj. The weight of a node

» p(J;) =L; or p(Mj) = T. is the sum of the

J 4
weights of the edges incident to this node. To begin
with, the following edges with nonzero weight are

included in G:

1<i<n, I<3<m} (5.3.2)
Now, a set of edges, E2(G), connecting‘ Jl’ CYERRY Jn
to Mm+l’ Mm+2""’ Mm+n are added in such a way that

p(Ji) =a, 1< i< n.

73

E2(G) = '{(Ji' M_m+1) and W(Ji' MITH":L) = o - L

@ - L; #0, 1 < i <n} (5.3.3)

A set of edges, E3(G), is included to connect Ml’ M2,
eeer My to Ty Tpgoreees Jpan in such a way that

p(Mj) =0o, 1<3j<m.

5 |
o -TyA0, 1<j<m (5.3.4)

n+j’

Finally, edges connecting J J

n+ls Y“n+2r°°°7 Jn+m to

Mm+l' My4ore«-r My, are added to make the Weight of
each of these vertices o . This set of edges, E,
is of size at most n+m as each (J;, Mj) edge

introduced brings the weight of either J;

i Or M. to

J
o . One may easily verify that E, can be so construc

ted.

The bipartite graph G(X,Y,E) is then ({Jy, J,,
coerTpgmts My My,oeo, Mp}, E{ U E;) UE3 UE,). X is
the set of vertices representing jobs, while Y is the
set representing processors.

We illustrate this construction with an example.

Example 5.3.1 Let m=3 and n = 4. The task times

are defined by the matrix:

74

job - 1 2 3 4 T

processor 1 10 20 0 0 30
2 10 0 20 0 30
3 10 0 0 20 30
L 30 20 20 20

«« a = 30. The bipartite graph obtained using the

above construction is :

I1 M
J2 M2
J3 M3
J4 M4
JIs Mg
Je M6
J—] M7
The edge set E3 is empty as Tj'= p(Mj) =qa ,

1<j<m 8@

Before proceeding with the description of the
preemptive OFT algorithm, let us review some terminology
regarding matchings in graphs. The following definition

and propositions are reproduced from [14].

T

75

Definition 5.3.1 Let G = (X UY, E) be a bipartite

~graph with vertex set X UY and edge set E . (If

(i,j) 1is an edge in E then either i ¢ X and jey
or ieY and j e X.) A set ICE is a matching if
no vertex v g X k)Y» is incident with more than one
edge in I. A matching of maximum cardinality is

called a maximum matching. A matching is called a com-

~plete matching of X into Y if the cardinality

(size) of ‘I equals the number of vertices in X. @

" Definition 5.3.2 Let I be a matching. A vertex v

is free relative to I -if it is incident with no edge
in I . A path (without repeated vertices) P = (vl,vz)
(VZ,VB)...(VZk_l,Vzk) is called an augmenting path if
its end points} vy and vy are both free, and its

edges are alternately in E - I "and in I. B8

" Proposition 5.3.1 I is a maximum matching iff there is

no augmenting path relative to I . @

Note that when a matching I is augmented by an
augmenting path P the resulting matching I' is
(TYP) - (T UP) and is of cardinality 1 + cardinal-
ity (I) . Also note that the matching I' still
matches all vertices that were in the matching I (two

new vertices vy and Vog are however added on.)

76

Proposition 5.3.2 If G = ({xU Y}, E) is a bipartite

‘graph, |E| =e, |X] =n and |Y| =m, n >m then an
augmenting path relative to I starting at some free

vertex v can be found in time O(min{m?,e}). B

Keeping these facts about bipartite graphs and
matchings in mind, let us resume‘the description of the
preemptive OFT algorithm. Having constructed the bipar
tite graph G from the open shop problem as described

earlier, we obtain a complete matching of X ='{Jl, Jo

ceey Jn+m} into Y = {Ml, LD Mn+m} . Let this
matching be €11 €greeese . Let r = min '{w(ei)}.
1<i<n+m

The jobs incident to the edges €15 €9/.04,€ are

n+m
scheduled on their respective processors for a time
period of r and the weight of the edges €1s €yr...€
is decreased by r . This results in the deletion of
at least one edge (i.e. the weight of at least one edge
becomes zero). By scheduling a job on its respective
processor we mean that if (Ji,Mj) is one‘of the edges
in the match then job i is processed on processor j
for r wunits of time. If j > m then job i is not
processed in that interval. If i > n then processor
j 1is idle in that time interval. This process is re-

peated until all edges are deleted. Assuming that at

each iteration, a matching of size n+m can be found,

n-+m

77

all n+m processors are kept busy at all times (either

processing real or fictitious jobs). The total proces-
n-+m .
sing time needed is)X p(Mi) = (n+tm)o . Hence the
1 ,
finish time of the schedule is (n+m)a/(n+m) = a and

the schedule is optimal. Since each time a complete
matching is found, one edge is deleted, complete mat -
chings have to be found at most O(nm) times (note
that the number of edges in G is at most O(ﬁm)).
Hence the maximum number of preemptions pPer processor
is O{(nm). The first match can be found in time O (nm
(n+m) -3) [14]. Subsequent matches requife finding
augmenting paths, each of which can be determined in
time O(nm) (Propositions 5.3.2 with e = O(nm)).
Since a total of O(nm) such paths may be needed, the

total computing time for the process becomes 0(n?m?).

Example 5.3.2 Let us try out the informal computatio-

nal process described above on the bipartite graph of
example 5.3.1. The following complete matchings are

obtained (this is not a unique set of matchings) :

a) 1(IqaMy) , (T5,M), (T3,Mg) , (T4 M3) , (T5,My) , (T, M),
(T7,M)} , r = 10

b) {(Ty,M), (Tp,Mg), (T3,My) , (T4 M5), (T5,M,) , (Tg,Mg),
(J7,M7)} , r =10

C) {(J1,M3),(Iy,My), (T3, My), (Tyg,My), (T5,My) , (Jg,Ms5),

(3, M)}, r =10

78

This yields the following schedule:

10 . 10 10
M1 J2 J1l J2
‘M2 Jl J3 J3
M3 J4 J4 Jl
M4 J5 - J5 J5
M5 J6 J2 J6
M6 J3 J6 J7
M7 J7 J7 J4

Deleting the fictitious jobs and processors, the

following preemptive schedule is obtained:

10 10 10
M1 J2 J1 g2
M2 J1 J3 J3
M3 Ja4 J4 J1

The schedule requires only 1 preemption i.e. on Ml.
Since the edge set E3 was empty, there is no idle
time on any of the processors. In general, however,
this will not be the case and the deletion of the fic-
titious jobs will leave some idle time on the processors.
The success of the algorithm rests in the existenc?
of a complete matching at each iteration. The next 3

lemmas prove that a complete match always exists. The

vertices of the graph are divided into two disjoint

el

79

sets X = {Jy, Jy,ece, Tpupt and Y = {My, My,...,

Mpim} -

Lemma 5.3.1 At each iteration, the weight of every

vertex in the bipartite graph is equal.

" Proof By construction, this is certainly true for the

first iteration, i.e. p(Mi) =p(Jd;) =a, 1 <i<ntm
After a complete match is found, the weight of n+m
edges decreases by r . The 2(n+m) vertices of G

are each incident to exactly one edge in the matching.
Hence, the weight of each vertex decreases by r. Conse

quently, all vertices have the same weight at all

times.

" Lemma 5.3.2 In a bipartite graph a complete matching

of vertex set Y into vertex set X exists if and
only if |A| < |R(A)| for every subset A of Y,
where R(A) denotes the set of vertices in X that

are adjacent to the vertices in A .
" Proof See Liu [28], p. 282 Theorem 11.1 . @&

" Temma 5.3.3 The conditions of Lemma 5.3.2 are valid

for every bipartite graph with vertices of equal weight.

' Proof Let o be the weight of a vertex. Let A Dbe
any subset of Y . Then, the sum of the weights of

vertices in A is «a|A| . The corresponding sum for

80

R(A) is «|R(A)| . sSince this sum includes all edges
incident to A , we have oAl < a|R(A)| and so

lAl. _<._ ,R(A)l, as o > ‘0'

Our algorithm to obtain an optimal preemptive
schedule is based upon a refinement of the informal
computatiQnal procedure described above. rThe bipartite
~graph constructed éonsists of the two vertex sets X =
A3y, Jyeeve, 30} and ¥ = My, My,..., M_} . The
edge set is E; U E; (cf. eq(5.3.2) and (5.3.4)). I.e.
the fictitious processors of the earlier construction
are dispensed with. Now, we look for complete matchings
of ¥ into X. While before, any complete match of Y
into X was acceptable, now we have to be careful
about the matching that is chosen. To see this, note
that if initially the matching Ty, (T3,Mp) , (T4, Mq) }
is chosen for the job set of example 5.3.1 then there
is no complete matching at the next iteration and con-
sequently no schedule with finish time o can be ob-
tained following this choice of a matching. To assist
in proper choice of a complete matching we make use of
an additional vector S called the slack vector. For
every job 1 , its slack time is defined to be the
difference between the amount of time remaining in the
schedule and the amount of processing left for that

job. In the slack time for a job becomes zero then it

81

is essential that the job be processed continuously up
to the completion of the schedule at d as otherwise the
schedule lenght will bé' > o . When the slack time for
a job becomes zero, the jéb is said to have become cri-

" tical.

Example 5.3.3 Consider the 3 processor open shop

problem with 4 jobs and the following task times:

job
1 2 3 4 T
processo
1 10 8 5 3 26
2 6 7 9 9 | 31
3 7 8 3 3 21
L 23 23 17 15 a = max{T;,Ly}
i,j
= 31

Addition of the jobs Jg, Jé and J7 introduces

3 more columns iﬁto the above table 5 0 0
0 0 0
0 0 10

Initially, the slack times are o - L, and we have

s =(8, 8, 4, 6, 26, 31, 21). No job is critical. @
We first state the algorithm and then prove its

correctness. For convenience, the vector S in algo -

rithm P instead of representing slack times actually

represents the latest time a job may start so that

its processing may be complete by o . Thus

82

SLACK (i) = S; - current time. A job therefore becomes

critical when §S; = current time.

Algorithm P
// Obtain an optimal preemptive schedule for the

m processor open shop with n jobs and proces

sing time tj e 1 <i<mn, 1<3j<m //
: , S+t = > J
// compute lenght, a , of optimal schedule //
n
1 T. <« X ts :, 1 < j<m
3745 34 ~J =z
m
2 L; <« Z t; ;, 1< i<n
toog=1 7 -
3 o « max {T:,L;}
i,J

// create fictitious jobs and compute slack

vector //
4 €45 €@- T3, 1l<3<m
5 s +a-L;y, 1<i<n
6 Sn+j + Tj ’ 1<3j<m
7 n<n-+m
// compute initial complete matching of Y = {Mp,
My,eee, Myl into X = {Jy, Jys-vvy Tpyn?-
This match is obtained as a set, I, of edges
(j,i) matching Mj to Ji //
8 I « INITIAL MATCHING ; TIME « 0 //current
time //
9 " repeat

10 % «+ index of job not in matching having least

11

12

13

14

15

16

17

18

19

//

~if A > 0 then [print (A,I);

//

83

slack time
(p,q) + task and job in matching with least
remaining processing time. |
A « min{t o S, - TIME} // max time for
for which I can be

used //

schedule I for A time units //

tj,i < tj,i - A for (j,i)el
S; « 8; + A for all jobs ieI
TIME <« TIME + A‘
if TIME = o then stopl
delete from I all pairs (i,j) such that
tj,i=0 |
complete matching I including all critical

jobs //

if there is a critical job not in I then

[_delete from I all pairs . (j,1i)
such that 1 'is noncritical
repeat

let Jy be a critical job

not in I

augment I wusing an augmen
ting path starting at Jg

“until there is no critical job

not in I

84

20 reintroduce into I all pairs
(j,1) thet were deleted in
line 15 and such that Mj
is still free

// complete the match //

21 ‘while.size of I # m do

22 let Mj be a processor not in the matching
I
23 augment I wusing an augmenting path

starting at Mj

24 ‘end
25 forever
26 " end of algorithm p @

In order to pfove the correctness of algorithm P
we have to show the following:

(1) There exists an initial complete matching in
line 8. |

(ii) The matching I can be augmented so as to
include the critical job Jg in line 18

(iii) Augmenting to a complete match including all
critical jobs can always be carried out as required in
lines 21-24. |

The following three lemmas show that these three
requirements can always be met. o is as defined in

line 3 of the algorithm.

85

Lemma 5.3.4 There exists a complete matching of Y

into X in line 8.

Proof Let A be any subset of vertices in Y. The
weight of each vertex in A is o . The weight of any
vertex in X 1is < o by definition of o . Since the
weight of R(A) > weight of A, it follows that

a|a| < a|R(A)| and so |A| < |R(a)| . The result now

follows from Lemma 5.3.2 . -]

Lemma 5.3.5 In line 18 there exists an augmenting path

relative to I starting at Jg

" Proof Consider the bipartite graph, G' , formed by
the vertices X' and Y where X' consists of all
vertices representing jobs in the matchihg I and the
vertex Jy . All edges connecting X' and Y in the
original graph are included in G' . By the deletion
of line 15 it follows that all vertices in X' are
critical. Hence, their weight is o - t if t 1is the
value of TIME when the loop of lines 16-19 is being
executed. Since o - t is the total remaining time on
all the processors, the weight of vertices in Y in the
graph G' is < o - t . Using the same argument as in
Lemma 5.3.4, it follows that there is a complete match

of X' into Y . Hence I 1is not a maximum matching

in G' . Hence there is an augmenting path relative to

86
I beginning at Jg . &

Lemma 5.3.6 There is always an augmenting path rela -

tive to I beginning at Mj in line 23.

' Proof At any time t , the bipartite graph formed by
vertices X ='{Jl, J2""'Jn+m} .and Y'.='{MiIMi is
in the matching I}'{Mj} have the following properties:

(a) The weight of vertices in Y' is d -t
and (b) the weight of vertices in X is < o -t

(as no vertex can have a slack time < 0 ,
see lines 11-13).
Hence, the conditions of the proof of Lemma 5.3.4 hold
and there 1is a complete matching of Y' into X. By
proposition 5.3.1 there must be an augmenting path
relative to I beginning at the free vertex Mj .

Note that the complete matching obtained at the
end of the "while" loop 21-24 must contain'all the cri
tical jobs as the initial matching I contained all of
them and augmenting paths only add on vertices to an
existing matching.

Since all processors are kept busy at all times
and the total amount of processing is moa , the finish
time of the schedule generated by algorithm P is &
This schedule is therefore optimal. @

All that remains now is to analyze the complexity

of algorithm P. In carrying out this analysis we shall

87

need a bound on the number of jobs that can become cri-
tical. This bound is provided by the next lemma.

Lemma 5.3.8 itself analyzes the algorithm.

Lemma 5.3.7 The number of critical jobs at any time is

< m .

- Proof Since all processors are kept busy at all times,
it follows that at any time t the total amount of
processing remaining is m(d—t). If at time t there
are more than m critical jobs then the processing
remaining for all these critical jobs Z'(m+l)(a—t) >
m(d—t). A contradiction. Since, once a job becomes
critical, it stays critical till the end of the sched-
ule, the total number of jobs that can become critical

is also < n. @

Lemma 5.3.8 The asymptotic time complexity of algorithm

P is O(min{e,m?} (m+e) + em log n) where n is the
number of jobs, m the number of processors and e

the number of nonzero tasks. e is assumed > max{n,m}.

Proof Lines 1-7 take time Of(e) if the task times are
- maintained using linked lists (see Knuth [7]). Line 8
can be carried out in time Of(em+:2) (see Hopcroft and
Karp [5]). If the slack times are set up as a balanced
search tree (Knuth [7]) then each execution of line 10

takes time O(m log n). At each iteration of the 're-

88

peat forever' loop (line 9-25) either a critical job is
created or a task is completed (see lines 10-13).

Hence, by lemma 5.3.7, the maximum number of iterations
of this loop is e + m = 0O(e). The total contribution
of line 10 is therefofe O(em log n). The contribution
from lines 11-12 and 14 is O(em). In line 13 the
change in S; requires deletion and insertion of m va-
lues from the.balanced search tree. This requires a
time of O(m log n). The total contribution of line 13
is therefore O(em log n). Line 15 has the same con-
tribution. The total computing time for algorithm P is
therefore O(em log n + total from lines 16-24). Over
the entire algorithm the loop of lines 16-19 is iterated
at most m times. By proposition 5.3.2 an augmenting
path can be found in time O(mih{e,mz}). The total

time for this loop is therefore O(min{e,m?}m + m logn) .
The maximum number of augmenting paths needed in the
loop of lines 21-24 is m + e (as one path is needed
each time a critical job is found). The computing time

of algorithm P then becomes O(min{e,m?} (m+e) +em logn) .

5.4 Complexity of Nonpreemptive Scheduling for m > 2

Having presented a very efficient algorithm to ob-
tain a OFT schedule for m = 2 (pre and nonpreemptive)
and a reasonable efficient algorithm to obtain a OFT

preemptive schedule for all m > 2, the next question

89

that arises ig: Is there a similar efficient algorithm
for the case of nonpreemptive schedules when m > 2 .
We answer this question by showing that this problem is
NP-Complete [21] even when we restrict ourselves to the
case when the job set consists of only one job with 3
nonzero task times while all other jobs have only 1
nonzero task time. This, then, implies that obtaining
a polynomial time algorithm for m > 2 is as difficult
as doing the same for all the other NP-Complete prob -
lems. An even stronger result can be obtained when

m > 3. Since NP-Complete problems are normally stated
as language recognition problems, we restate the OFT

problem as such a problem.

LOFT: Given an open shop with m > 2 processors and a

set of n jobs with processing times tj,i' 1 <3j<m,

1 < i <n there is a nonpreemptive schedule with fin -

In proving LOFT NP-Complete, we shall make use of
the Partition problem defined in section 2.1 and shown

NP-Complete in [21].

Theorem 5.4.1 LOFT with m = 3, one job having 3

tasks with nonzero processing times and the remaining
jobs having only 1 task with nonzero processing time is

NP-Complete.

90

Proof It is easy to show that LOFT can be recognozed

in nondeterministic polynomiél time by a Turing machine.
The Turing machine just guesses the optimal permutation
on each of the processors and verifies that the finish
time is < 1 .

The remainder of the proof is presented in lerma 5.4.1.

" Lemma 5.4.1 If LOFT is polynomial solvable, then so

also is PARTITION.

Proof From the partition problem § = {al, Aoy eeny an}

construct the following open shop problem, 0S, with
3n+l jobs, m = 3 machines and all jobs with one non-

zero task except for one with 3 tasks

t1,i = a3 t2,i =t3,i = 0 for 1 <i<n

t2,i =aj s tl,i = t3,i 0 for n+l < i < 2n
t3,i=ai', tl,i=t2,i=0 for 2n+l < i < 3n

£1,3n+41 = t2,3n+1 = t3,3n+41 = T/2

where T = % a. and T = 3T/2

I °1i
We now show that the above 6pen shop problem has a
schedule with finish time < 31/2 iff S has a parti-
tion.
a) If S has a partition wu then there is a
schedule with finish time 3T/2.

One such schedule is shown in figure 5.4.1.

