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L Introduction

In a typical multi-phase VLSI layout system the layout problem is reduced to solving a collection of
rectangle routing problem ([R]). In the rectangle routing problem, we are given a rectangle R and a set of
signal nets, N = {n1, na, ..., im }, each net consists of a set of terminals located on the boundary of R. The
objective is to introduce wires inside R on k conducting layers in such a way that a set of design rules are
satisfied, all the terminals from the same net are connected, and no two terminals from different nets are
electrically common. The rectangle routing problem is also called the switch-box routing problem. A spe-
cial case of this problem is called the channel routing problem, in which all terminals are located along two
parallel lines. In this paper we study the rectangle routing problem under the Manhattan wiring model. In
the Manhattan wiring model, a uniform grid is used and any two wires that have a grid point in common
must cross each other. Two conducting layers are sufficient for Manhattan wiring model, one for running

horizontal wires and the other for vertical wires.

The Manhattan channel routing problem, in which the objective is finding a wiring with minimam
distance between the two shores (called channel width), is NP-complete ({Sz]). Considerable research
effort has concentrated on developing good heuristics for this problem. Most of these algorithms do not
guarantee provable good solutions (for more details about these algorithms the reader is referred to [BBL],
[BP], [D], [RF], and [YK]). However, when all terminals located along two parallel lines are compatible,
i.e., there is at most one terminal along any vertical line, the situation is different. This problem can be
transformed to a routing problem in which all terminal points appear along one horizontal line. For this
case, the O (nlogn )-time algorithm in [HS] generates an optimal wiring, where n is the number of termi-
nals. This algorithm is best possible with respect to the time complexity bound [GLL], i.e, it is not possible
to obtain a significantly faster algorithm if one restricts to the decision tree computation model. For the rec-
tangle routing problem with terminals located along the four sides of rectangle R, only a few heuristics

have been suggested (e.g. [Lu]). The combinatorial nature of this problem is still far from well understood.

Another well known wiring model is called the knock-knee model. As the Manhattan model, a uni-
form grid is used for running wires in the knock-knee model; the only difference is that two wire bends are
allowed to share a common grid point. The main advantage of the knock-knee model is that it allows wir-
ings that are more compact. For example, an optimal solution for the two-terminal-net channel routing
problem can be obtained in O (nlogn) time [PL]; and for the two-terminal-net rectangle routing problem a
solution can be obtained in O (nlogn) time, if it exists [K][MP]. Multiterminal-net channel routing problem
and multiterminal-net rectangle routing problem are NP-complete [Sa]. Several approximation algorithms
for these multiterminal-net routing problems have been designed [GZ][MP][MPS][GZ]. The main disad-
vantage of the knock-knee model is that even a simple routing solution may require more than two con-
ducting layers [Li]J[BB]. It is not known how to generalize the knock-knee mode routing algorithms to

obtain two-layer knock-knee free layouts with minimum area.
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In this paper we study the problem of Routing Compatible Nets Inside a Rectangle (RCNIR), We
present an algorithm that generates two-layer near-optimal wirings in O (nlogn) time if every net contains
two terminals, where n is the total number of terminals. Our algorithm implies a set of sufficient conditions
for the existence of wiring solutions. Using this algorithm, other rectangle routing problems may be solved
by paying a small penalty (with respect to the area), For example, the rectangle routing problem with
neighborless terminals (to each side of every terminal there is an empty space) can be transformed into one
with compatible nets by adding one additional track and one additional column. Furthermore, our algorithm
can be used as an approximation algorithm for constructing Manhattan wirings for any two-terminal-net
rectangle routing instance by inserting additional tracks and columns such that the routing area is no more
than four times of the original rectangle. We believe that our algorithm will also route signal nets in more

complex problems optimally or near-optimally.
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I1. Preliminaries

Let/ = (R, N) represent a problem instance, where R is a uniform rectangular grid formed by hor-
izontal grid lines (called tracks) with y -coordinate values 0, 1, ..., 4 and vertical grid lines (called columns)
with x -coordinate values 0, 1, ..., w. The horizontal grid lines with y -coordinate values 0 and 4, are called
the bottom and top boundary of R, respectively. The vertical lines with x -coordinate values 0 and w are
called the left and right boundary of R, respectively. The bottom, top, left and right boundaries of R are
labeled b, ¢, I and r, respectively, We use T (1), T (2), ..., T(h-1) to refer to the tracks with y-coordinate
values 1, ..., i—1, and we use C (1), C(2), ..., C (w=1) to refer to the columns with x-coordinate values 1, 2,
wow=1inR. Let N = {ny, ng, ..., n, ) be the collection of nets. Each net »n; consists of two terminals
located on the boundary grid points of R (excluding the corners of R). We assume that the collection of
nets is compatible, i.e., no two terminals are located along the same track or the same column. We say that
a track or column is empty if there is no terminal located on its boundary points. Figure 2.1 gives a prob-

lem instance with 2z =w = 11 and m = 10.
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Figure 2.1: Problem instance.

A net is defined by the coordinates of its two terminals, i.e., n; = {(x1, ¥1), (x2, ¥2)), where (x1, y1)
and (x, y,) represent the (boundary) grid points where the two terminals of the net are located. The set N
of net is partitioned into the following classes: Ny, Npy, Ny, Ny, Nip , Nip, Nyt , Ny , Ny, and Ny, , where Ny,
forx,y e {t,b,1,r}, represent the set of nets with one terminal located on side x and the other terminal
located on side y. Net i in figure 2.1 belongs to the ith class of nets defined above. Classes of nets fall
into one of the following groups depending on the location of their two terminals: local (terminals are
located on the same side of R, i.e., Ny, Nu», N, Ny ), neighboring (terminals are located on adjacent sides
of R, i.e., Ny, Ny, Ny, Nip), and global {terminals are located on opposite sides of R, i.e, N, Ny ). Let

Nueighpor =Nyt U Ny U Ny UNj,. Foranet n; € Npeigsor, X (1) is defined to be the x -coordinate value of
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its terminal located at the top or bottom boundary of R and Y (n;) is defined to be the y -coordinate value of

its terminal located at the left or right boundary of R .

Under the Manhattan wiring model, a wire layout W = {Wy, Wa ..., W, } is a set of edge-disjoint
subgraphs of the grid R (not including its boundary) such that W; connects the two terminals in net n;. We
say that a wire layout W has a wire conflict at grid point p if there exists W; and W;, i # j, such that they
share the grid point p without crossing each other. We say that a wire layout W is valid under the Manhat-
tan wiring model if there is no wire conflict among the wires in W. A valid wire layout W can be
transformed into a two-layer wiring by assigning horizontal wire segments in one layer and vertical wire
segments in the other layer, and introducing contact cuts ( vias ) whenever necessary. In the layout given in

figure 2.1, the dashed lines are assigned to one layer and the solid lines are assigned to another layer.

The density of column i, denoted 4;, is the number of nets {(x1, y1), (x2, y2)} such that x4 < i < x2,
and the track density for row j, denoted by wj;, is the number of nets {(x1, y1), (x2, y2)} such thaty; < j <
y2. Infigure 2.1, A3 =4, hs =6, wp =5, and wy = 5. Let D, (V) = max{h; | 1 <i < w-1} be the column
density and let D,, (N) = max{w; | 1 £ j < h-1} be the track density. In figure 2.1, Dy (N) = hs = 6 and
D,,(N) = wy =6. Clearly, for] =(R,N)if D, (N)>h-1o0rD,(N)>w-1itis impossible to wire the set of
nets N inside R, Therefore, the conditions D, (N) < & and D,,(N) < w are necessary conditions for a valid
wiring to exist inside R . Figure 2.2 shows a problem instance that does not have a valid Manhattan wiring
even though D, (N) £ h-1 and D,,(N) < w-1. Therefore, these conditions are not sufficient. These condi-

tions can be combined into one, as suggested by the following lemma.
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Figure 2.2: Problem without a wiring inside the given area.

Lemma 2.1 For problem instance / = (R ,N),

@) ifw2=hthenD,(N)<w;

(i) ifh 2w then D, (N) <h;and

(iii) if w = h thenD,,(N) <w and Dy (N) < h.

Proof: Since the proof of the three parts is similar, we only prove (i). The only nets that contribute to
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D,, (N) are the nets in Ny, Ny, Ny, Ny, Nis, Ny, Ny and N, . Each of these nets contributes at most one to
D, (N). Therefore,

Dyw(N) S INg |+ INyl + Ny |+ INp L+ Wil + INp L+ ING L+ NG L
Since these nets consist of two terminals located on the boundary of R and the set of nets is compatible, it
must be that

2N+ 2INy | + 2INpy |+ 2ING |+ 2N L+ 2INp L+ 2IN E+ 21N | S B+ w -2 < 2w,
Therefore, D, (N) <w.

a

We consider the problem of wiring I = (R, N) in a rectangle R containing R with a set N of termi-
nals on the boundaries of R, where N is obtained by projecting the terminals in N to the boundaries of R.
Let w and 4 be the width and height of R, and let w* = max{w ,D,,(N)+1) and A* = max{/,D;, (N)+1).
The values w* and #* are lower bounds for the width and height of R , i.e., w = w* and 4 2 h*. Rectangle
R is obtained by adding additional tracks and/or columns. In this paper we show that any problem instance

can be wired inside a rectangle R with dimensions w <w* +3and h <h* +4.

Our approach to the RCNIR problem consists of solving a sequence of increasingly more difficult
subproblems. In section III we present a trivial algorithm for solving the RCNIR problem when there are
only neighboring nets. Then we present an algorithm for the case when all the nets present are type N,
Ny, and Ny . We then combine these two subproblems into one, which we call the RRCNIR problem, and

present an algorithm for its solution. In section IV we use these algorithms to solve the RCNIR problem,

II1. Restricted RCNIR Problem

In this section we solve increasingly more difficult subproblems of the RCNIR problem. We begin
by discussing an algorithm to solve the RCNIR problem when there are only neighboring nets. Then we
present an algorithm for the case when all the nets present are type Ny, Npp and N, We then combine
these two subproblems into one and present an algorithm for its solution. In the next section we use the
algorithms developed in this section to solve the RCNIR problem. Throughout this section we assume that

w2w* and h 2 h*. In section IV we show how to deal with problems that do not satisfy this restriction.

The simpliest restricted RCNIR problem is one in which all nets are neighboring nets. This problem
is trivial since one can obtain a wiring simply by connecting the two terminal in each net with an "L"
shaped wire. Another special case is the one in which Nygguper U Ny U N, U Ny =, ie., all nets are
type Ny, Npp or Ny. This version of the RCNIR problem can be transformed into a problem in which a
wiring with the least number of tracks can be constructed in O (nlogr) time ({HS] and [GLL]), where n is
th total number of terminals. The following algorithm ROUTE 1 is similar to the ones given in [HS] and
[GLL]. Algorithm ROUTE 1 partitions N into m = D, (N) subsets N1, N2, ..., N™. Each set N* is com-
puted by procedure LR_RUN . Procedure LR_RUN constructs a subset N "< N by a left-to-right scan of the
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columns such that D, (N-N") = D, (N) - 1, D, (N") = 1, and N includes the net whose lefimost terminal is
the leftmost terminal of nets in N. Algorithm ROUTE 1 and procedure LR_RUN are formally defined

below.

algorithm ROUTE 1
procedure LR RUN(N)
begin
LetN' « @,N" ¢« N and j « 0;
while M« { {(x1,71), (x2,¥2)} | {(x1,¥1), (¥2,¥2)} € N" and min{x1,x2} 2 j} #@ do
begin
let n; be the net in M whose leftmost terminal is closest to column j;
N «NuU{m);
N"«N"-{m};
let j be the column for the rightmost terminal of net sy ;
end
return(N');
end
end of LR RUN;

begin
i« 0;
while N 2 J do
begin
P i+
N# « LR_RUN (N);
N « N -Ni;
end
Route each net in N¢ on the i th track;
end
end of ROUTE 1;

Similarly, we define procedure RL_RUN (N') which constructs a subset N’ < N by a right-to-left scan
of the columns such that D, (N-N") =D, (N) - 1, D, (N") = 1 and N" includes the net whose rightmost termi-
nal is the rightmost terminal of nets in N. Clearly, any sequence of executions of LR RUN(N) and

RL_RUN (N) guarantees a wiring with the same number of tracks.
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In the remaining part of this section we censider the RCNIR problem in which Ny UN,, UN), =&
and Nuighvor W Ny U Npp U Ny # ©. We call this RCNIR problem the restricted RCNIR problem
(RRCNIR). Procedure PART defined below partitions N into D, (V) mutually disjoint subsets. Later on
we show how to use this partition to solve the RRCNIR problem.

procedure PART (N);
begin
mo ¢~ my ¢ mp < 0;
while N # & do
begin
M < LR RUN(NY;
Let { be the number of neighboring nets in M; [*clearly, 0<i £2%/
m; «—m; +1;
S{,m) « M;
N«N-M;
end
end

end of procedure PART;

Lemma 3.1: The sets S(7,j), for 0 <i €2 and 1 <j < m;, constructed by procedure PART satisfy the fol-

lowing properties:

1 there are exactly i neighboring nets in §(,j);

(i) DaSGE, N=1and

(iii)  mz+ e 2 my, where ¢ is the number of empty tracks in R .

Proof: Since the proof for (i) and (ii) is straight forward, we only prove (iii). Clearly, A-1=2my+m;+e,
D, (N)Y=mg+mq+my,and k > D, (N). Substituting the first two equations in the last equation, we know

that mo + e = my. This completes the proof of the lemma.
O

This partition allows us to reduce the RRCNIR problem to a simpler one by routing a subset of nets

in N as follows.
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procedure ROUTE2(R N);
begin

invoke procedure PART (N) to obtain sets S (7.j);

for each S (1,) route the set of nets § (1,/) in track T' (Y (#,)), where n,, is the neighboring net in S (1,5);

[« min{mog.e };

for each § (0,)), mo-I+1 £ j < my, route the nets in § (0,7 ) in an empty track;

for each § (2,7), mo-I+1 < j < moy, route the nets in § (2,7) in the two tracks T (Y (n,)) and T (Y (n,)),

where n, and n, are the two neighboring netsin § (2,/);

/* if mo < e then all nets are routed, otherwise since mo = mo - ¢ (lemma 3.1 (iii)) the only remaining
unrouted nets are in sets $(0,j) and § (2,7) for 1 £j <mg - I. These sets will be referred to by
SODfor1<j<mgand §'2j)for1<j<my */

letI = (R’, N’y denote the new RRCNIR problem instance by deleting all used tracks and columns,
and all routed nets;

end

end of procedure ROUTE?2

Lemma 3.2: There are no wire conflicts in the wiring generated by procedure ROUTE 2.

Proof: Since the proof is straight forward, it is omitted.

O

If just before executing procedure ROUTE?2 it was the case that mg < ¢, then we have constructed a
wiring for the original problem / = (R, N). Otherwise we only need to solve the remaining RRCNIR prob-
lem/I'=(R',N"). LetSo = {i 1m € 8§(0,j)for 1<j <mg}.

Lemma 3.3: 1 mo> e, then Dy (N') = A"-1 =2mg = 2my and D, (Sg ) = mg = my, where A’ is the height of

k.

Proof: Since the proof is straight forward, it is omitted.

0

In what follows we give an algorithm that solves problem I = (R’, N') by a sequence of nz5 steps. In
each of these steps a set $'(2,j) and a subset of §¢ will be selected and routed. We introduce additional
notation to characterize the intermediate instance and to define the rules for the selection of the set §°(2,/)

and the subset of S at each step.
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Let ag and a, (ap and as, ) represent the x -coordinate value of the leftmost and the rightmost termi-
nals of the nets in S¢ located on the top (bottom) boundary of R” which are not yet connected. We use #,
bl, tr,and br toindicate conditions ay < apr, Gp < an, Gy > apr and ay > ay, respectively. We call these

conditions type I conditions. Let

Ay =max{Y{(n) | hasnot yet been connected, »; is neighboring net in set §'(2,j) and »; has a termi-

nal located at the left boundary of R},

A, =max{Y(n)|n hasnot yet been connected, »; is a neighboring net in set §'(2,j) and »; has a ter-

minal located at the right boundary of R},

Ay =min{Y (n) | n; has not yet been connected, »; is a neighboring net in set $°(2,j) and n; has a termi-

nal located at the left boundary of R’} and

Ay =min{Y (m) | n; has not yet been connected, #; is a neighboring net in set $°(2,j) and n; has a termi-

nal located at the right boundary of R'}.

We use the notation 7L, BL, TR and BR to indicate the condition Ay > Ay, Ap < Apy, Ay <Ay, and Ay >
Ay, respectively. We call these conditions fype II conditions. Hence, any intermediate instance can be
characterized by a condition pair, XY, where condition X is of type I and condition Y is of type II. For
example, :TL indicates that ay < ap; and Ay > A,. There are 16 possible such condition pairs. However,

only half of them are essential.

an Ay

apl Qbr

Figure 3.1: Notation.

Lemma 3.4: Problem instance I’ = (R”, N’) satisfies at least one of the condition pairs ¢/:TL, tr: TR , bl :BL,
br:BR,t:BL,tr:BR,bl:TL,and br:TR .

Proof: Suppose there is a problem instance that does not satisfy any of the eight condition pairs. Since
either ¢/ or bl holds, it cannot be that TL holds or BL holds (because it contradicts that either #/:TL , t/:BL ,
bl:TL, or bl:BL holds). Therefore, it must be that TR and BR hold. But then at leaét one of tr:TR , tr :BR ,
br:TR or br:BR holds since either ¢ or br holds. A contradiction.
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We partition the eight condition pairs in lemma 3.4 into two groups. We call condition pairs # 7L,
tr:TR, bl:BL and br:BR as type A condition pairs. The remaining four condition pairs (¢:BL, tr:BR,
bl:TL and br:TR) are called type B condition pairs. These two types of condition pairs satisfy the follow-
ing property.

Lemma 3.5: LetI’ = (R, N") be a problem instance that does not satisfy any type A condition pair. Then ei-
ther

) t:BL and br:TR hold, or
(i)  tr:BR and bl:TL hold.

Proof: From lemma 3.4 we know that at least one of the type B condition pairs holds. Assume it is condi-
tion pair #/:BL (the proof for the other three cases is similar), To prove the lemma it is only necessary to
show that br:TR holds. Since « holds, but #1:TL does not hold (it is type A4 ), it must be that TR holds.
Since TR holds, but tr:TR does not hold (it is type A ), it must be that br holds. Therefore, br:TR holds.

]

Our algorithm ROUTE 3 generates a wiring for the problem instance I = (R’, N) with at most three
additional tracks. Initially additional tracks will be added on the top side of R (tracks ¢) and on the bottom
side of R’ (track b and s). When the algorithm terminates, we delete any of the three tracks (s, ¢ and b)

that were unused. Algorithm ROUTE 3 maintains the following invariants for track ¢ (b ):

@) Track ¢ (b) is located above (below) track Y (n;), where #; is any not previously connected neigh-

boring net.

(i)  Track ¢ (b) may be used to route every netin Sy which has not yet been routed, i.e., it is empty in
the interval [min{ag,ap },;max{a, a5 }] (remember that the a’s are defined with respect to

unrouted nets in S ).

Track s satisfies either the invariant for ¢ or the invariant for &. Our algorithm ROUTE 3 iterates m, times.
In each iteration we route all the nets in a set $'(2,/) and a subset of the nets in S¢ that decreases the den-
sity of the nets in S¢ by one. The decision is based on which condition pair holds. In what follows we list

the actions performed in each possible case.
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case I: Condition pairs ¢1:TL or tr:TR hold (figure 3.2).

Let j be such that the neighboring net n, € S'(2,j) and Y (n,) = max{A4 A, }. Let n, be the other
neighboring net in $'(2,j) and let M" « LR RUN(S¢ ) (RL_RUN(S¢ )) if #1:TL (tr:TR ) holds. Route
the nets in M’ in track t, route the nets in S'(2,j) - {n,) in track T (¥ (n,)) and route net n, in track
T (Y (n,)) (and track T (Y (n,)) if necessary). Remove S'(2,j) and M " from further consideration. Since
track T'(Y (n,)) satisfies the invariant for ¢, let the new track ¢ be track T (Y (n,)).

newtqr— - - " T~ ~ - = newtq— 71—~ "~ T

Figure 3.2: Example for case ¢/ :TL (the figure for t7:TR is similar)

case 2: Condition pairs bl :BL or br :BR hold (figure 3.3).

Let j be such that neighboring net n, € S'(2,j) and Y (n,) = min{Ay As }. Let n,; be the other neigh-
boring net in $°(2,j) and let M" <~ LR_RUN(S¢ ) (RL_RUN(S¢ )) if bl:BL (br:BR) holds. Route the
nets in M in track b, route the nets in §(2,j) - {n,} in track T (Y (n,)) and route net n, in track
T(Y(n,)) (and track T (¥ (n,)) if necessary). Remove S'(2,j) and M" from further consideration. Since
track T'(Y (n,)) satisfies the invariant for b, let the new track b be track T'(Y (1, )).

W,

""""""" W, W,
I o Wo ] o

new b new b

b i L I b r—*

Figure 3.3: Example for case bl :BL (the figure for br:BR is similar).
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case 3: Condition pairs #/:BL and br:TR hold and s satisfies the invariant for ¢ (figure 3.4).

Let j be such that neighboring netn, € S'(2,j) and Y (n,) = An. Letn, be the other neighboring net in
8'(2,j) and let M" < LR_RUN(S¢ ). Route the nets in M in track s, route the nets in §'(2,j) - {1, } in
track T'(Y (ny)) and route net n, in track T'(Y (n,)) (and track T (Y (n,)) if necessary). Remove §'(2,/)
and M’ from further consideration. Since track T (Y (n,)) satisfies the invariant for b, let the new track
s be track T(Y (np)).

. TG

new § new s

Figure 3.4: Example for case #:BL and br:TR .

case 4: Condition pairs ¢/ :BL and br:TR hold, and s satisfies the invariant for & (figure 3.5).

Let j be such that the neighboring net n, € §'(2,j) and Y (n,) = A,.. Let n; be the other neighboring
net in $'(2,j) and let M" «— RL RUN(S¢ ). Route the nets in M in track s, route the nets in §°(2,;) -
{np} in track T'(Y (n,)) and route net n, in track 7'(Y (n,)) (and track T (Y (n,)) if necessary). Remove
§°(2,j) and M’ from further consideration. Since track 7 (¥ (n,)) satisfies the invariant for ¢, let the new
track s be track T (Y (np)).

newsy -~ 717" T T newsr-~-~r-—- - 7T ™-°
W, W, W, W,

Figure 3.5: Example for case ¢/ :BL, br:TR and s satisfies the invariant for b.
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case 5: Condition pairs ir :BR and bl:TL hold, and s satisfies the invariant for ¢ (figure 3.6).

Let j be such that neighboring netn, € S°(2,j) and Y (n,) = Asr. Let n, be the other neighboring net in
8'(2,j) and let M' <~ RL RUN(S¢ ). Route the nets in M’ in track s, route the nets in §°(2,5) - {1, } in
track T (Y (ng)) and route net n, in track T(Y (n,)) (and track T (Y (n,)) if necessary). Remove § 2.0)
and M’ from further consideration. Since track T (Y (n,)) satisfies the invariant for b, let the new track
s be track T(Y (n,)).

newsf-—-7-7-~ 77 newsfkr~- -1 -7 777"

Figure 3.6: Example for case #:BR , bl:TL, and s satisfies the invariant for ¢.

case 6: Condition pairs tr:BR and bl:TL hold, and s satisfies the invariant for » (figure 3.7).

Let j be such that the neighboring net n, € S'(2,j) and Y (n,) = Ay. Let n, be the other neighboring
net in $°(2,7) and let M" <~ LR_RUN (S ). Route the nets in M’ in track s, route the nets in S'(2,/) -
{n,} in track T'(Y (n,)) and route net n, in track T'(Y (n,)) (and track T (Y (n,)) if necessary). Remove
8°(2,j) and M’ from further consideration. Since track T (Y (n,)) satisfies the invariant for ¢, let the new
track s be track T (Y (n,)).

new s ‘—‘ ————————— new s V{’p_ ““““““
W, W, W,

Figure 3.7: Example for case :BR , bl:TL , and s satisfies the invariant for b.

Figure 3.8 gives an example in which all nets are routed using the rules in procedure ROUTE 3. Ini-
tially s satisfied the invariant for . The condition pairs satisfied at each step are: (¢/:TL), (bl:TL, s isin
the bottom), and (¢1:TL).
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Figure 3.8: Example for ROUTE 3.

Lemma 3.6: Algorithm ROUTE 3 generates a wiring with at most three additional tracks for any problem
instance I' = (R, N) generated by procedures ROUTE 2.

Proof: By lemma 3.3, we know that D, (N") = "1 = 2m3 = 2mq = 2D, (S¢ ). In each iteration all the nets
in one set S'(2,j) and a subset of So are connected. This selection is made depending on which of the con-
dition pairs holds. By lemma 3.4 we know that for every problem instance at least one of eight condition
pairs holds. After each iteration Dj(S¢ ) decreases by one. Hence, algorithm ROUTE3 terminates after
my iterations and ail nets in N are connected. To show that there are no wire conflicts among the wires
generated by ROUTE 3 one needs to show that one of case 1-6 (above) holds (lemma 3.4 and 3.5) and that
the routing performed in each of these cases introduces no conflicts. For brevity, we omit the proof of the

latter fact.

Theorem 3.1: For any RRCNIR instance I = (R, N) a wiring can be found in a rectangle R * with height 4"
<h +3and width w" =w in O (nlogn) time, where n is the number of nets in N.

Proof: By lemmas 3.2, 3.3 and 3.6, we know that the combination of ROUTE?2 and ROUTE 3 solves the
RRCNIR problem. These lemmas also show that for any RRCNIR instance [ = (R, N) algorithms
ROUTE?2 and ROUTE 3 constructs a wiring in a rectangle R with height 2" < h + 3 and widthw" = w.

Since the proof for the time complexity bound is simple, it will be omitted.

Theorem 3.2: For any RRCNIR instance I = (R, N), the total number of vias in the wiring generated by our
algorithm is no more than 1.5v*, where v* is the least number of vias in any wiring of /.
Proof: Since any wire connecting a neighboring net needs at least one via and any wire connecting a non-

neighboring net needs at least two vias, v* = Nueighpor| + 2IN - Nicignsor | is a lower bound of the total
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number of vias in any wiring for /. All wires introduced by procedure ROUTE?2 have the minimum
number of vias. We only need to consider the wires generated by the procedure ROUTE 3. All the wires
connecting non-neighboring nets generated by procedure ROUTE 3 have a minimum number of vias. From
procedure ROUTE 3 we know that no more than half of the the wires connecting neighboring nets gen-
erated by the procedure ROUTE 3 contain three vias and no less than half of the the wires connecting
neighboring nets generated by the procedure ROUTE 3 contain one via. For a problem instance I” = (R’,
N, let v denote the total number of vias in the wiring generated by the procedure ROUTE 3, and let v
denote the minimum number of vias in any wiring of /. Clearly,

2IN"-Nyeightor) + Wieighpor| SV < v < 2IN"-Nypgighpor| + 2N eignpor!.
By lemma 3.3 we know that Dy (N -Nyeighvor) 2 Nneighsor /2, which implies that IV “Noeighpor | 2 Weighvor /2.
Therefore,

v [V < 2IN"~Nyeighvor! + 2WNpeighvor ) 1 2IN"Npeighvor! + Wieighpor)

= 1+ WNpeignvor! / 2IN'-Nyeighsor | + Wieighpor)) < 1.5.

This completes the proof of the theorem.

1V. The General RCNIR Problem.

Our procedure, ROUTE 0, constructs a routing solation for the RCNIR problem consists of the fol-
lowing steps: normalization (NORM ), neighboring net initial routing (NN_INIT ROUTE), pre-routing
(PRE_ROUTE), knock-knee elimination (KK_ELIM ), remaining problem definition (RP_DEF'), trivial net
elimination (IN_ELIM ), and routing the RRCNIR problem. Before formally defining these procedures, we

briefly describe them below.

Basic Steps

Our problem instance is defined by / = (R N). Let w and & be the width and height of R .
Let w* and A" be the lower bounds defined in section II. If # < A* (w < w™) then add enough
columns and tracks until 2 = A* (w =w™). As we have shown before (figure 2.2) h = 2* and w =
w* are not sufficient conditions for a wiring to exist. Because of this, enough tracks and/or
columns must be added to ensure wirability. We say that an instance / = (R, N) is normal if h <
w,h 2h*, w=w", and at least one of tracks T (1) or T'(h-1) and at least one of columns C (1) or
C (w~1) is empty, i.e., does not contain any terminal. In the normalization step (NORM ), problem
instance I is made a normal instance by adding tracks and columns. At the end of this step 2 > A"

+landw =2w* +1.

In the neighboring net initial routing step (NN _INIT _ROUTE) we construct a problem
instance I” = (R’,N") for I by ignoring all the neighboring nets. These nets are actually routed by
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"L" shaped wires. Thus, by eliminating the neighboring nets we mean deleting all tracks and
columns in which there is a terminal from some neighboring net. Note that since every track and
column has at most one terminal in it and every neighboring net contains a terminal in a track and in
a column, it must be that the height (4" of R is less than or equal to the width (w") of R" (remember
that after normalization step 4 is less than or equal to w). We use Ny, to denote the set of nets with

one terminal located on boundary x of R” and the other located on boundary y of R".

In the pre-routing step (PRE_ROUTE ), we route a subset of nets that includes all nets in Ny
U N, w Njr. The wiring may include some conflicts. These conflicts are called knock-knees, i.e.,
two wires that bend at a grid point (see figure 4.8). In the knock-knee elimination step (KK_ELIM ),
we obtain a valid routing by modifying the previously constructed routing in such a way that all
knock-knees are eliminated. In this step, at most two additional columns are introduced. After this
step we have a valid routing, H, for a subset of nets. If all nets have been routed, the algorithm

stops.

In the RP_DEF step we define the remaining problem, I” = (R" ,N"), that needs to be solved.
Some of the neighboring nets in I will be re-routed. We begin this process by defining a rectangular
window, R"”, in R” and the terminals in R are projected to R " (whenever possible). All nets with at
least one terminal not located on the boundary of the window are routed on the outside of the win-
dow in the same tracks and columns they were routed in /7, or if the net is a neighboring nets in I it
is routed outside the window in the obvious way. As a result of this operation, we have a restricted
version of the RCNIR problem studied in the previous section, with the possible exception that
there could be some trivial global nets in set Ny, (a trivial net is a net whose two terminals occupy
the same track). These nets can be eliminated by routing them in the obvious way and deleting the
track where they are located. Note that each time we delete one of these nets, we decrease £ and
Dy, by one. Problem instance /" is routed by algorithms ROUTE 2 and ROUTE 3 given in the previ-
ous section. The final wiring inside the window is obtained by ROUTE2 and ROUTE 3, and the
one outside the window is obtained from the previous wirings outside R”. Remember that
ROUTE?3 adds three tracks. Therefore, our procedure ROUTE 0O routes all nets inside a rectangle

with area A* +4 and w"* + 3.
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Figure 4.1: Problem instance I = (R ,N).

Now we explain in detail each of the steps in algorithm ROUTEQ when invoked with problem
instance I = (R ,N). To clarify our presentation we will use the problem instance given in figure 4.1 as an
example. Procedure NORM begins by rotating the rectangle 90 degrees if w < 2. Then it adds at most one
column to the left of R and at most max{1,4-h*+1} tracks to the top of R. Clearly A < h" + 1and w <

w” + 1. Figure 4.2 shows our example after procedure NORM introduces an empty track and column.

1 51112 9 7 1
6
9
4
3
7
8
10
4
6
3
1110 2 8 52 12

Figure 4.2; Problem instance after procedure NORM .

In the neighboring net initial routing step, procedure NN _INIT _ROUTE consiructs a problem
instance I’ = (R'N") from I by ignoring the neighboring nets. These nets are routed by an "L" shaped wire.
Thus, we may delete all tracks and columns in which there is a terminal from some neighboring net. Note
that since every track and column has at most one terminal in it and every neighboring net contains a termi-
nal in a track and in a column, it must be that the height (4" of R is less than or equal to the width (w”) of
R’. We use Ny, to denote the set of nets with one terminal located on boundary x of R” and the other

located on boundary y of R, Figure 4.3 shows I" = (R",N") generated for our example.
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1 51112 1
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Figure 4.3: Problem instance I = (R'.N").
The wires are introduced in phase one of procedure PRE ROUTE

In the pre-routing step carried out by procedure PRE_ROUTE , we route a set of nets that includes all
nets in Ny U Ny, U Nj.. Remember that I” has been normalized. Procedure PRE_ROUTE consists of two
phases. In the first phase the algorithm iterates until either all nets in Ny U N, U Ny, or all nets in Ny U
Ny U Ny, have been routed. In the second phase the algorithm routes all the remaining nets (if any) in Ny
U N, U Nj,.. Let us now formally define each phase. In the first phase, we define a window G of R’
whose size decreases at each iteration. Initially G is R’. Since I” is normal, then either the leftmost or
rightmost column and, either the bottommost or topmost track must be empty. Let left (right) represent the
x -coordinate value of the left (right) boundary of G and let top (bottom) represent the y -coordinate value
of the top (bottom) boundary of G. Each column and track in G will be labeled either available or unavail-
able depending on whether we allow any further routing inside of G on it or not. Initially all tracks and
columns are labeled available. Each available track or column has at most one terminal in it. If there are
none, we say the track or column is empty. Note that initially all empty tracks and columns are labeled
available. We use ca (ta) to represent the number of available columns (tracks) in G. From the initial con-
ditions we know that ra = #'-1 € w'-1 = ca. At each iteration the algorithm decreases ta and ca by
exactly two. Remember that the algorithm stops when either all nets in Ny U N, U Ny, or all nets in N;u
N, U N, have been routed. Initially all terminals from the nets in Njj U Ny U Niy U Ny U Ny U N
belong to available tracks or columns. Procedure PRE_ROUTE maintains the following invariant at each

iteration.

1 Either the topmost or bottommost column, and either the leftmost or rightmost column is empty.

(ii) All nets with at least one terminal located on the left or right side of R between tracks 0 and bot-
tom, and top and h’; and all nets with at least one terminal located on the top or bottom side of R’
between columns 0 and left, and right and w’, have been routed in R* - G (i.e., the area in R” outside

window G).

(iii)  All terminals from the nets which have not yet been routed in Ny U Ny, U Ny U Ny U Ny U Nip

belong to available tracks or columns, and have been projected to the boundary of G.
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During each iteration in phase one of procedure PRE_ROUTE we route exactly two nets. Then we
decrease G by one track and one column. The terminals from all unrouted nets in /” are projected to the
new boundary of G. At the end of an iteration, we reduce G by eliminating all unavailable tracks
(columns) adjacent to either the top (left) or bottom (right) boundary of G. Again, the terminals from all
unrouted mets in I~ are projected to the new boundary of G. Obviously, G decreases in size when this
operation is performed. In what follows we explain what operations are performed at the beginning of

each iteration in phase one.

Assume without loss of generality that the topmost track and the leftmost column in G are empty.
(If this is not the case, G can be rotated 90, 180 or 270 degrees). Letx (y) be the rightmost (bottommost)
column (track) in G where a terminal is located. It is important to note that a track at this point could be a
track or a column in the original problem instance because it could have been rotated. There are four cases

that need to be considered depending on the location of the terminals in column x and track y.

case 1: The terminal in column (track) x (y) is located on the bottom (right) side of G .

Figure 4.4 shows the actions performed in this case. Our shorthand notation is defined as follows. A
dotted line indicates that the corresponding track or column is marked unavailable at this step; the
dashed lines indicate an empty track or column; a solid line indicates a net routed at this step; and the
shaded region indicates the area deleted at the end of this step. Note that in this case a knock-knee
may be introduced. Also, we are not showing in the figure the complete wire introduced for the two

nets (the missing part of the wire will only occupy part of the dashed track or column).

JR 2
%

L

Figure 4.4: Case 1.
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case 2: The terminal in column (track) x (y) is located on the bottom (left) side of G .

Figure 4.5 shows the actions performed in this case.

\ s

Figure 4.5: Case 2.

case 3: The terminal in column (track) x (y) is located on the top (right) side of G .

Figure 4.6 shows the actions performed in this case.

........ K

Figure 4.6: Case 3.

case 4: The terminal in column (track) x (y) is located on the top (left) side of G .

Figure 4.7 shows the actions performed in this case.

RN

Figure 4.7: Case 4.

Since at each step one net in Nj U N,» U Nj, and one net in Ny U Ny, U Ny, are routed, the first
phase of PRE_ROUTE terminates when either all nets in Ny U N,, U Ny, or all nets in Ny U Ny U Ny, are
routed. It is simple to verify that there may be wire conflicts (knock-knees). Figure 4.3 shows the type of

wires introduced by phase one of procedure PRE ROUTE .

In the second phase of procedure PRE_ROUTE we route all the remaining nets in Njy U Ny, U Ny,
This phase will do nothing if all of these nets have been routed. Otherwise, we know from phase one that
all nets in Ny U Ny U Ny, have been routed. Since at each step ta and ca are decreased by two, we know
that at the beginning of phase two ta < ca. Since each terminal is located on a separate track the number

of unrouted nets in Nj U N, U Ny, is at most ta/2. Therefore we route each remaining net in its own track
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and in one available column (remember that fa < ca). The rectangle G is redefined as a single grid point

inside the previous G . Phase two of procedure PRE_ROUTE will not affect the wiring in figure 4.3.

It is easy to verify that there may be wire conflicts. However, all of these conflicts are introduced in
phase one of PRE_ROUTE and are of the following form. A bend of a wire connecting a net from Ny U
Ny, U Ny, shares a grid point with a bend of a wire connecting a net from Nj U N, U Ny.. A wire conflict
of this form is called a knock-knee. The two different types, type-I and type-2, of knock-knees are shown

in figure 4.8.

- s

type-1 type-2

Figure 4.8: Knock-knees.
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Lemma 4.1: For any normal instance I = (R, N'), procedure PRE_ROUTE terminates with a partial wiring
in R such that

) all nets in Ny U N,, U N, are routed,;
(i)  the wire conflicts, if any, among the wires introduced are knock-knees;

(iiiy  for any two wires forming a knock-knee, one is connecting a net in Nip U N, U Ny, and the other is

connecting a net in Ny U Npp U Ny,; and

(iv)  If there is a type-1 knock-knee at grid point p = (x,, ¥,), X, < left (x, 2 right), then all the vertical
wires located in column x,, x, < x, < left (right < x4 < x,), with their top (bottom) end point in
track y, <y, (Vg 2 ¥,) [see figure 4.9a]. If there is a type-2 knock-knee at grid pointp = (x5, ¥p ),
x, < left (x, = right), then all the vertical wires located in column x,, x, <x; < left (right < x4 <

x, ), with their bottom (top) end point in track y, 2y, (g <y,) [see figure 4.9b].

Proof: Since the proof is straight forward, it will be omitted.

¥ N
G ‘ ‘ G
K/v&p Fa
(a) (b)

Figure 4.9: Problem instance ] = (R ,N).

Procedure KK ELIM adds at most two additional columns, one to the left of R and the other to the
right of R’, to resolve all wire conflicts among the wires generated by procedure PRE_ROUTE . The opera-
tions performed are as follows. Shift all vertical wires connecting nets in Ny U Ny, in column C (i), to
column C (i—1), for 1 <i < left, and shift all vertical wires connecting nets in N, U N;» in column C (i), to
column C (i+1), for right <i <w-1. By lemma 4.1, we know that the resulting routing has no conflicts.

In figure 4.10 we show our example after procedure KK_ELIM .
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1 51112 1
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1 2 52 12

Figure 4.10: Our example after procedure KK ELIM

The remaining problem, I” = (R",N"), is now defined by procedure RP_DEF . The window, R", in
R includes all tracks in R and only the columns from point left in G to point right in G. All nets with at
least one terminal located outside the window R are routed on the outside of the window in the same
tracks and columns they were routed just after procedure KK_ELIM or if the net is a neighboring nets in 7,
it is routed outside the window in the obvious way. The remaining terminals are projected to the boundary
of R". Figure 4.11 shows I" for our example. As aresult of this operation, we have a restricted version of
the RCNIR problem studied in the previous section, with the possible exception that there could some be
trivial global nets in set Ny, (a trivial net is a net whose two terminals occupy the same track). These nets
can be eliminated by routing them in the obvious way and deleting the track where they are located. Figure
4.12 shows our example after deleting trivial nets. Note that each time we delete one of these nets, 2" and
Dy decrease by one. Problem I” is routed by algorithms ROUTE 2 and ROUTE 3 given in the previous sec-
tion. Figure 4.11 shows the wiring for I” in our example. The final routing is the wiring obtained by
ROUTE?2 and ROUTE?3 plus all the previous routings outside R". Figure 4.13 shows the final wiring.

Remember that procedure ROUTE 3 adds at most three tracks. Our main theorem is given below.

51112 9 7

1 1 51112 9 7

6 6 ]

9 9
7 7
8 8

11 11
12 12

2 8 52 2 8 52
Figure 4.11: Problem instance I". Figure 4.12: Problem instance /" after deleting trivial nets.

The wiring was generated by procedures ROUTE2 and ROUTE3.
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Theorem 4.1: Procedure ROUTE 0 constructs for any RCNIR instance I = (R, N) a wiring of no more than
1.5v* vias, where v* is the minimum number of vias in any wiring of 7. The wiring has height 2* + 4 and
width w* + 3. The worst case time complexity for procedure ROUTE 0 is O (n log n) time, where n is the
number of netsin V.

Proof: The only procedure that introduces additional vias is ROUTE 2. By theorem 3.2, we know that the

total namber of vias in no more than 1.5 times the optimal number of vias.

1 51112 97 1

i l
6
9
i 4
3
7
8
10
L1 4
6
3—J I

1110 2 8 52 12

Figure 4.13: Final wiring for our example.

V. Discussion

We presented an algorithm for routing inside a rectangle compatible nets near-optimally. In a multi-
phase VLSI layout system, the layout problem can be reduced to a collection of RCNIR problems and then
a layout for each of these RCNIR problem can be constructed by our algorithm. The compatibility of the
nets can be enforced by the global routing algorithm. Our algorithm can also be used as an approximation
algorithm for routing arbitrary two-terminal-net Manhattan instances. Consider the problem instance shown
in figure 5.1(a). In this instance, nets are not compatible. By introducing a row (column) between every two
adjacent rows (columns) of R, and shift terminals on the top (left) boundary side of the resulting rectangle
R’ one unit distance to the left (dlownward), we can construct an RCNIR instance shown in figure 5.1(b). If
Dy(N) < h and Dy, <w, where 7 and w are the height and width of R, respectively, then D, (N') < i’ and
D, <w', where k' and w’ are the height and width of R”, respectively, and N’ is the set of nets obtained
from N by transformation described above. Applying our algorithm, we can construct a near-optimal
Manhattan wiring for the newly constructed instance. Since 4” < 2k and w’ < 2w, the area of the R’ is

about four times of the area of R.
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(a) A non-RCNIR routing instance. (b) An RCNIR instance,

Figure 5.1: Transforming a non-RCNIR instance into an RCNIR instance.

As mention in section I, the Manhattan routing problem is more difficult than the knock-knee mode
routing problem. The difficulty is caused by knock-knee free requirement. The two-terminal-net channel
routing problem and rectangle routing problem under the knock-knee model can be formalized as multi-
commodity flow problems which can be solved efficiently [F][PL][MP]. In contrast, these problems under
the Manhattan model are NP-complete. The combinatorial nature of Manhattan routing problems is still far
from well understood. Our algorithm, although dealing with a rather restricted version of the general
Manhattan routing problems, is one step further towards better understanding of the general routing prob-
lems. We would like to point out two aspects of Manhattan rectangle routing problem. First, a non-trivial
routable problem instance I = (R ,N) tend to be sparse, i.e. if there exists a wire layout for / then the termi-
nals of N tend to be not so densely located along the boundary of R . Second, the Manhattan wire layouts
tend to be not as compact as the knock-knee mode layouts, i.e in a Manhattan wire layout there are always
many grid line segments not utilized unless the problem is trivial. These two aspects of non-trivial
Manhattan routing problems result from the knock-knee free requirement. In spite of these weaknesses,
Manhattan wiring model does have the advantage that it requires only two conducting layers. To improve
the performance of our algorithm, one may consider to add an additional compaction phase which
"squeezes” the layout constructed by our algorithm to obtain a more compact layout which satisfies the
knock-knee free requirement. Also, one may consider to decompose a given routing problem into several

relatively simpler subproblems, and use our algorithm to solve some of these subproblems.

To our knowledge, our algorithm is the first provably good algorithm for the Manhattan rectangle
routing problem. Our algorithm implies a set of sufficient conditions for the existence of wiring layouts for
the RCNIR problem. An interesting open problem is finding a set of necessary and sufficient conditions for
the existence of wirings for the RCNIR problem. If nets consist of more than two terminals, the
compatible-net rectangle routing problem becomes much more complex. There is no known efficient algo-
rithm to solve this more general problem. The two-shore compatible net routing problem has many appli-
cations in solving a wide variety of routing problems, iﬁcluding our problem. We believe that many rout-
ing problems with sparse terminals can be transformed into compatible-terminal routing problem after pay-

ing a small penalty in terms of the number of additional tracks or columns.
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