The Pennsylvania State University

Computer Science Department
University Park, PA. 16802

Technical Report No. 213
December 1976

SCHEDULING INDEPENDENT TASKS WITH RELEASE
DATES AND DUE DATES ON PARALLEL MACHINES

John Bruno and Teofilo Gonzalez

Introduction

An instance I of the scheduling problem considered in this paper
is given by:
Two integers n>0 and m>0 and three sequences of numbers

T T ooy L
12 *n

Y‘],Y‘Z,a“,Y‘

and

d],dz,..,,d

such that T, >0, rs >0, di >0 and di 2r1-+11 for i=l,...50.

Informally, n is the number of tasks, m 1is the number of (identical)

machines, the Ti's are service times, the ri‘s are release dates and the

di's are due dates. The ith

task will be denoted by Ti‘ Task Ti re-
quires a total of T units of service. This service cannot begin

before time r. and may not extend beyond time di' This service need
not be obtained from a single machine, that is, preemptions are allowed.

A service assignment is a tuple <j,s,f> where j 1is a positive

integer less than or equal to m and s and f are nonnegative numbers
such that s<f.

A schedule o is a mapping from tasks into sets of service assignments.
For example, O(Ti) ={<j],s1,f1>, <j2,52,f2>} means that machine j] services
task Ti during the time interval [s],f]) and machine j2 services task

Ti during the time interval [sz,fz), The total service given to task Ti

is (f1—51) + (fz—sz).

We say a schedule o is feasible if it satisfies the following conditions:

1. No machine is assigned so as to be servicing more than one task at any
instant.

2. No task is receiving service from more than one machine at any instant.

3. No task is receiving service from any machine at some instant earlier
than its release date or later than its due date.

4, The total service given to each task is equal to its service time.
In the next section we shall give an efficient algorithm for deter-
mining a feasible schedule o (if one exists) given an instance I of

our scheduling problem.

An Algorithm

Let 1 be an instance of our scheduling problem. Let ay <8, faz< ...

a5, be the ordered collection of release dates and due dates. For
example, if n=3,
r1,r2,r3 =1,1,3,
and
d1,d2,d3 =2,7,b
then

a1,a2,a3,a4,a5,§6 = 1,1,2,3,5,7.

341 —aj for j=1,...52n-1. Some of the
intervals -Rj may be -empty (kj =0) and can be discarded. Renumber the

Let R, = [a.,a
J

; j+1) and kj =a

remaining intervals such that R1,...,Rp are all the nonempty intervals
(k. >0).
(k;>0)

We form a capacitated flow network N(I) with vertices So (source),

Si (sink), T .,Tn and R ,...,Rp. The arcs in N{I) and their

17 1

capacities are:

arc capacity
(So,Ti) T i=1,..0.,0
(Rj,Si) mkj J=lseeasp
(Ti’Rj) ks for all T, and Rj such that

Ti can be serviced in the

interval Rj

IN

Continuing the above example we find (after eliminating interval [1,1)

R, = [1,2) ky =1
R, = [2,3) ky =1
Ry = [3,5) ky = 2
Ry = 15,7) ky = 2

Flow Network

Let c(A,B) denote the capacity of arc (A,B) in N(I). Our ob-

jective is to determine a maximum flow from So to Si in N(I). A

flow pattern h s a mapping from arcs in N(I) 1into nonnegative numbers

such that h(A,B) <c(A,B) for every arc (A,B) in N(I),

n
F = Z:h(So,Ti) = f%h(Rj,Si), and the sum of the flow into vertex T1
i=] j=

(Rj) is equal to the flow leaving vertex Ti (Rj) for i=1,...,n (§=1,...,p).

The value of the flow pattern h is equal to F.

Algorithm A
Input: Instance I of scheduling problem
OQutput: Feasible schedule o if one exists.
Me thod:
1. Construct flow network N{I)
2. Find flow pattern h with maximum value F.

n
3. If F< Z:Ti then no feasible schedule exists; stop.
.i

=1
0

4, If F = ZjTi then use h to construct a feasible schedule
i=1

The construction of a feasible schedule in step 4 of Algorithm A is
most easily accomplished one interval Rj at a time. Let t1= h(Ti’Rj)
j) is
not in N(I). By the construction of N(I) we have that ti skj and

for each arc (Ti’Rj) (j 1is fixed) in N(I) and t. =0 if (Ti’R

.i%tjfzmkj. The above conditions are sufficient to enable us to determine
;;rvice assignments to tasks Ti with ti >0 1in the interval Rj' The
algorithm will not be étated formally here but can be found in [Mc]. An
example should suffice.

Let t,=1,t,=2, t =3, ty=4, t =5,t6=6,R]=[0£)and m=3.

1 2 3 5

111 2 3 4

2 4 5 6

s\ s i,
T2 3 4 5 6 7 8

We begin by making service assignments on machine 1 for t], tz and t3
time units. Next we see that t4 won't "fit" on machine 1. We use up

the remaining capacity of machine 1 by servicing task T4 for two units

and fhen use machine Z‘for the remaining service. ({Actually, the service from
machine 2 occurs chronologically before the service from machine 1.)
Since ty <8 we are guaranteed that this service assignment sabisties
condition 2 for feasibility.

In step 4 of Algorithm A we use h to construct o in each of the
intervals Rj for Jj=1,...,pP.

The correctness of Algorithm A rests on the following Temma.

Lemma 1 A feasible schedule exists for an instance I of our scheduling
problem if and only if the maximum value F of a flow pattern for N(I)

n
is equal to) ..
i=1

Complexity of the Algorithm

In this'section we argue that the worst-case time complexity of
Algorithm A is O(n3)
2

. It takes time Of(n 1092n) to construct the. Rj's,
- 0(n") to build N(I) and, from Edmonds and Karp [EK], 0(n3) to find F.

The last step in the construction of o s O(nz).

Uniform Machines

In this section we extend our results to the case of two uniform
machines. Let m, the number of machines, be equal to 2. Suppose machine
1 has speed 51 and machine 2 has speed S5 where S1255. Accordingly,
1t'takes machine j (j=1 or 2) Ti/Sj time units to service task Ti
where T is the service requirement of Ti' Suppose task T1 receiyes
an actual service time of éj on machine j for j=1,2. We require that

these total actual service times be such that é]s] +68,S =1&, the service

272
requirement of task Ti'

As we did earlier, we define a capacitated flow network N(I) with

vertices So (source), Si(sink), T1,.,.,Tn and R],e,.ngo The arcs in

N(I) and their capacities are:

arc capacity
(SOST.I) T]f 1:],..005“
(Rj,S1) (s] +52)kj j=1,...,n
(Ti’Rj) s]kj for all Ti and kj such that

Ti can be serviced in the

interval Rj“

We have the following Temma.

lemma 2 Let m=2 and s] >s,. A feasible schedule exists for and in-

2
stance I of our scheduling problem if and only if the maximum value F

n
of a flow pattern for N(I) fis equal to) Ty
, =1

Proof: Let o be a feasible schedule. Let R be some region and let k be
the length of R. Let 61j be the total actual service time of task Ti on

machine j 1in region R.

Clearly, §.

Define ti =s161] +526 i1 +612 <k and therefore

i2*

ti ss] k (we have used s] 252). Thus a flow of tj units in the arc
(Ti’R) does not exceed the capacity
n n
of this arc. MWe also have) 6. <k and § 6.,<k and therefore
i=1 i=1

_u'.[\/]:

n n
1.21% =3 1.;511 ts,) 8i,<(s;*s,) ko Accordingly, the total flow in

1 i2 =

(R, Si) does not exceed the capacity of this arc. Since o is feasible

the total flow leaving Ti is equal to Tye

n
Let h be a flow pattern with value F = Z:Ti. Our aim is to show
i=1

that within each region R we are able to schedule the tasks which, ac-

cording to h, are to obtain service in R, Let ti denote the
service (not the actual service time) to be obtained by task Ti in
region R, i.e., the flow in (Ti’ R). We have ti ss1k for i=1,...,N

(k is the length of R) and therefore (a) max t. ss1k. Moreover,
i

(b) E:ti ss1k-+52k. Conditions (a) and (b) are known to be necessary and
sufficient for the existence of a preemptive schedule of length k on

two machines with speeds $125, and tasks with service times tq,...,%

1°° n

[GS,HLS]. O

The worst-case time complexity of an algorithm based on Lemma 2 1is
3
)

O(n since there is a linear-time algorithm for the construction of the

schedule in each region R [GS].

References

[Mc] =~ McNaughton, R. "Scheduling with Deadlines and Loss Functions,"

Management Science, 12, 7 (1959) pp. 1-12.

[EK] Edmonds, J. and R. M. Karp, "Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems," JACM, V19, N2, April 1972,
pp. 248-264.

[GS] Gonzalez, T. and Sahni, S. "Preemptive Scheduling of Uniform
" Processor Systems," TR 76-5, Computer Science Dept., University of

Minnesota, May 1976.

[HLS] Horvath, E. C., Lam, S. and Sethi, R. "A Level Algorithm for Preemptive
Scheduling," Fifth Symposium on Operating System Principles, Austin,
Texas, Nov. 1975,

