
SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1104-0003 $01.00/0

EVALUATION OF ARITHMETIC EXPRESSIONS WITH
ALGEBRAIC IDENTITIES*

TEOFILO GONZALEZf AND JOSEPH JA’JA’*

Abstract. We consider the problem of evaluating arithmetic expressions under a set of algebraic laws
including the distributive law. An arithmetic expression can be represented by a dag and our problem is
to find an equivalent dag with the fewest number of interior nodes. We attack the case when it is possible
to eliminate common subexpressions and transform the dag into a tree; efficient algorithms to handle
different cases of this problem are developed. These algorithms are based on the following strategy: we
first transform the dag into a tree, assuming that such a transformation is possible, and we later check to
see whether the tree and the given dag are indeed equivalent.

Key words, evaluation of arithmetic expressions, code generation, algorithms, dags

1. Introduction. Several interesting results concerning the problem of code gen-
eration for arithmetic expressions have been established by several authors. Extending
the work of Anderson [A], Nakata IN], and Redziejowski [R], Sethi and Ullman [SU]
have presented an efficient algorithm to generate minimal length codes for a special
type of arithmetic expressions, namely those expressions with no common sub-
expressions. Aho and Johnson [AJ] have found a more general algorithm which allows
general addressing features such as indirect addressing, but again restricting themselves
to the same type of expressions. The case of arbitrary expressions has been proven
to be difficult in a precise sense, i.e., it is NP-complete, even for the class of one-register
machines with no algebraic identities allowed (Bruno and Sethi [BSe]). Aho et al.
[AJU] have shown that the problem remains NP-complete for dags whose shared
nodes are leaves or nodes at level one and have developed heuristic algorithms to
generate good codes.

The effect of algebraic laws on code generation has received little attention in
the literature. Sethi and Ullman [SU] have discussed the case where some of the
operators of an expression tree are associative and commutative, and Breuer [B] used
the distributive law to factor polynomials in a manner similar to that of Homer’s
algorithm. When certain algebraic transformations apply for an arithmetic expression
A, we are not required to generate codes for A, but we may generate codes for any
equivalent expression A’ obtained by successive applications of the algebraic laws.
Since the number of arithmetic operations may then vary, the optimality criterion of
generated codes should depend on the number of arithmetic operations as well as on
the code length. In this paper, we assume that the distributive law holds and consider
the problem of minimizing the number of arithmetic operations for single arithmetic
expressions which involve only addition and multiplication. We also assume that
addition is commutative and associative and that multiplication is associative. This
problem has been shown to be NP-hard [GJ1], [GJ2] even for expressions of degree
2 (degree of the arithmetic expression when viewed as a polynomial) and whose

* Received bythe editors November 15, 1978, and in final revised form December 15, 1981. Preliminary
versions of this paper appear as Technical Reports CS-80-4 and CS-78-13 at Pennsylvania State University.

t Programs in Mathematical Sciences, The University of Texas, Dallas, Texas 75080. The work of this
author was supported in part by the National Science Foundation under grant MCS 77-21092., Computer Science Department, Pennsylvania State University, University Park, Pennsylvania 16802.
The work of this author was supported in part by the National Science Foundation under grants MCS
78-06118 and MCS 78-27600.

633

634 TEOFILO GONZALEZ AND JOSEPH JA’JA’

corresponding graphs are leaf dags. However, in the case when common subexpressions
can be eliminated, and the dag can thus be transformed into a tree, we develop efficient
algorithms for the following types of dags:

a) the dag is a leaf dag (Theorem 5.15),
b) no term in the expression is repeated (Theorem 5.10),
c) the degree of the expression is bounded by some fixed constant (Theorem 5.16),
d) the level of sharing in the dag is bounded by some fixed constant (comment

after Theorem 5.16).

2. Basic definitions. An arithmetic expression can be conveniently represented
by a directed acyclic graph, referred to as a dag, in the same way basic blocks in code
optimization are represented (Aho and Ullman [AU]). A dag has an interior node
for each operation whose operands are the children of the node; the leaves of the
dag represent initial values (variable names). For example, the arithmetic expression
A (a b + a c) + (d b + d c) can be represented by the dag:

FIG. 2.1

The order of the children of an interior node is important; the leftmost child represents
the first operand and the rightmost child represents the last operand.

We will restrict our attention to the following class of objects. Let E be a countable
set of variable names and let 0 {+, ,} be the set of binary operators on E such that
the following laws hold:

(i) + and are associative, i.e.,

(a+b)+c=a+(b+c),

(a ,b),c=a ,(b ,c), foralla, b, csE;

(t) (ii) + is commutative, i.e.,

a+b=b+a, for all a, b E;

(iii) is distributive with respect to +, i.e.,

a ,(b+c)=a ,b+a ,c,

(b+c),a=b ,a+c ,a, for all a, b, c E.

EVALUATION OF ARITHMETIC EXPRESSIONS 635

Strictly speaking, the above laws do not necessarily hold "," actual expressions
because of round-off errors in finite precision arithmetic. However, there is a general
feeling [JMMW] that, for a given computation, the fewer the ar,:hmetic operations,
the less the worst-case round-off errors are, in spite of the fact that there are special
situations where the opposite is true.

Another remark is concerned with the fact that we have not assumed that is
commutative; the main reason is that the same techniques can be applied to a matrix
expression to reduce the number of arithmetic operations. As an example, the
expression AB+AC+DB+DC, where A, B, C and D are nn matrices, is
equivalent to (A +D) (B + C) whose computation requires considerably fewer arith-
metic operations than the original expression. This might also have some applications
to code generation for parallel computers in which most of the operations are written
in matrix form.

As a final remark, we note that identities such as x + x 2x, x x x 2 or xy + x
x (y + 1) do not exist.

We now define precisely the class of dags we are interested in. A tr-dag is a dag
with a single root (i.e., a node without parents), whose interior nodes are either + or
from 0 and whose leaves are from E. Note that no two leaves will represent the

same element in .E. If D is such a dag and v is a node from D, then the expression
corresponding to v, denoted by exp (v), is defined as follows’

1) if v is a leaf, then exp (v) v,
2) else v corresponds to a c0; let Vl and v2 be the left and right children

respectively, then exp (v)= exp (vl)a exp (v2).
The expression corresponding to the dagD is just exp (r), where r is the root of

D. Define two tr-dags D1 and D2 to be equivalent (D1 --D2) if there exists a sequence
of transformations from () which will transform D1 into D2. Given a tr-dag D, let
C[D] be the class of tr-dags equivalent to D; we are going to investigate the problem
of finding a tr-dag D’ C[D] such that D’ has the smallest possible number of interior
nodes. If we define a tree to be a cr-dag such that none of its nodes has more than
one parent, then we will attempt to design an algorithm which finds a tree T C[D],
whenever such a tree exists. In this case, we call the expression corresponding to T
an expression tree, and we say that D is tree-transformable. If we consider, once again,
the dag of Fig. 2.1, then it is easy to see that this dag is equivalent to the following tree:

whose evaluation requires 2 additions and one multiplication compared to 3 additions
and 4 multiplications necessary to compute the dag of Fig. 2.1.

It is clear that if a tree T belongs to C[D], for a tr-dag D, then T has the minimal
number of interior nodes. Moreover, we can now use the algorithms already available
in literature to generate corresponding minimal length codes.

636 TEOFILO GONZALEZ AND JOSEPH JA’JA’

Before closing this section, we make two more definitions and a comment. A
shared node in a dag is a node with more than one parent; a leaf dag is a dag in
which every shared node is a leaf (Aho et al. [AJU]). Let D be an arbitrary o--dag
with n total nodes, e edges, ni interior nodes and v leaves (from E). It is easy to check
that we always have the following relations"

n >-2v-l, ni >_-v-l,

e 2ni 2(n -v), i.e., e O(n).

3. Motivation of the algorithm. We study, in this section, several properties of
expression trees and examine some problems which are encountered in trying to
develop an algorithm to transform a dag into a tree, whenever this is possible. We
also develop some terminology which will be used in the subsequent sections.

Let A be an arithmetic expression with corresponding dagD; L(A) or L(D) will
denote the set of leaves of D. N(D) and E(D) will represent the sets of nodes and
edges in D respectively. Note that A can be written as A P1 +" + Pk, where each
P is a leaf or can be expressed as a product of arithmetic expressions. We call the
Ps, the product terms of A or D. An arithmetic expression is in normal form (NF) if
it is not possible to expand it using the distributive law. The expression A1
(a, b +a, c)+(d, b +d, c) is in normal form and has a, b as a product term,
while A2 a (b + c) + d (b + c) is not in normal form and has a (b + c) as a product
term. The product terms of an arithmetic expression in normal form are called normal
terms. Nt(D) will denote the set of normal terms in the r-dag D. Transforming a
o--dag into a normal form might correspond to an exponential growth in the
number of nodes of the dag. For example, the expression A
(X1 -"X2) * (X.6 --X4) $" $ (X2n-1 -t-X2n) (up to a fixed order) has a normal form whose
dag has more than 2 edges. We now define two more important terms.

DEFINITION 3.1. Given a r-dag D, the left factors of D consist of the leaves
which are the leftmost children of the normal terms of D.

DEFINITION 3.2. Given a r-dag D with left factors {X}/k= 1, a set of right products
of D consists of a set of dags {p}k= such that D is equivalent to the dag

D’ =x *PI+x2*P2+" "+Xk *Pk.

The expression A (a b + a c) + (d b + d c) has the left factors {a, d] with
coresponding right products {(b + c), (b + c)}.

One could solve our problem by using the following divide-and-conquer approach:
(1) Find all the left factors and the corresponding right products of the given

dag D.
(2) Recursively transform each right product into a tree.
(3) Combine the common right factors.
It may now seem that once we have efficient algorithms to implement steps (1)

and (3), then we have an efficient algorithm to solve our problem. This is not the case
since several of the right products could share several subexpressions, each of which
will be processed several times. It is not hard to exhibit an example where the above
strategy takes exponential time, given that each of steps (1) and (3) could be done in
linear time.

It follows that we should avoid processing any subexpression more than once.
What makes the problem harder is that two right products might be precisely the
same and appear at different stages of the algorithm. On the other hand, it is not

EVALUATION OF ARITHMETIC EXPRESSIONS 637

posssible to transform a shared subexpression into a tree because there are subex-
pressions which are not tree-transformable and yet the expression to which they belong
is tree-transformable. However, if a dag is tree-transformable, then we have the
following characterization.

THEOREM 3.1. Let {Xii=l be the set of left factors of a tr-dagD and let {Pi}I=I be
the corresponding right products. IfD is tree-transformable, then, for each i2, either

(1) L(Pil) f’IL(Pi2) f or
(2) there exist DI, D_ and R such that

Pi =-D R, P:=-D, R, L(Di,) L(D,2) .
Note that we can distinguish between (1) and (2) above quite easily by checking
whether L(Pi)f’)L(P:)= or not.

Let {Pik}--1 be a set of product terms which, we know, should overlap each other.
The above characterization suggests that we solve the problem for just one Pk, say
PI, and use its right subtree to eliminate the overlap with all the other Ps. For example
in the case where we only have two right productsP and Pi, we transform (recursively)
P into a tree and write it as a product, say

P--(... (O Q,_) ,... O), m >_- 1.

Now if L(Q1) f’)L(P2) f (which should be true in this case), we somehow factor
Q1, and write Pi2 as P--R. Q. We continue in this way until we have no more
overlap; then we apply the procedure recursively to the nonoverlapping parts. We
would like to emphasize one more point about this procedure" We assume that Q
will be a factor, and find R. This assumption is justfied if the dag is tree-transformable.
Otherwise the procedure will construct an inequivalent tree; we will use the equivalent
algorithm in 5 to check whether a given o--dag and a given tree are equivalent.

Let us summarize the general strategy of the algorithm. It consists of two parts"
(i) The transformation algorithm which proceeds and transforms the given r-dag

into a tree assuming the dag is tree-transformable;
(ii) The equivalence algorithm which, for a given tr-dag and a given tree, checks

if they are indeed equivalent.

4. The transformation algorithm. The different parts of the transformation
algorithm will be described in this section, together with the proofs of its correctness
and its complexity. We start by discussing the algorithms to find the left factors and
the corresponding right products of a general tr-dag D. IN(D)I will denote the number
of nodes in D.

The procedure to find the left factors is fairly straightforward. It is just a bottom-up
labeling of the dag based on the following observation. Let LF (y) denote the set of
left factors of the subdag rooted at y Then

{y} if y is a leaf,

LF (y)=LF (s)[_J LF (sa) if y is a + node with children s and sa,

LF (s) if y is a node and s is its left child.

In order to have a linear time algorithm, we must avoid visiting nodes more
than once. In order to guarantee this, we mark the nodes visited. We use a function
tc (.) for this purpose; this function will serve another purpose in the next procedure
when initialized properly by the procedure to find the left factors.

638 TEOFILO GONZALEZ AND JOSEPH JA’JA’

Let r be the root of a dag D. Let tc (z)= 0, for every z N(D), and let L .
When LEFT-FACTORS (r) terminates, L will denote the set of left factors of D and
tc (z) will be equal to the size of {wl there is a call to LEFT-FACTORS (w) and (w
is a + node with z as one of its children or w is a node with z as its left child)}.
LC (r) and RC (r) denote respectively the left and right children of r. This notation
will be used consistently throughout the paper.

procedure LEFT-FACTORS (r)
begin
global (tc [.], L)

1. If tc (r) # 0 then [tc (r) tc (r) + 1;
return];

3. case
4. :r is a leaf: [L L [_J {r}];
5. :r is a node: [call LEFT-FACTORS (LC (r))];
6. :r is a + node: [call LEFT-FACTORS (LC (r));
7. call LEFT-FACTORS (RC (r))];
8. endcase
9. tc (r)# 1;

10. return
11. end LEFT-FACTOR

Let r be the root of a o--dag D. The set of left factors of the o--dag with root
y N(D) is denoted by Ly. Consider now any call to LEFT-FACTORS (y); let L’ L
just before the call and let L" L after the procedure LEFT-FACTORS (y) terminates,
where L is the set of left factors computed by the algorithm.

LEMMA 4.1. Let r, y, L’, L" and Ly be as defined above.
a) If tc (y)-> 1 before the call to LEFT-FACTORS (y), then L _L’.
b) If tc (y)= 0 before the call to LEFT-FACTORS (y), then when the procedure

terminates tc (y)= 1 and

L" L’ t3 (Lr -L’).

Proof. The proof for part a) follows from part b) and the one for part b) is by
induction on the height of the tr-dag with root y. 71

LEMMA 4.2. LEFT-FACTORS (r) correctly finds the left factors ofD, i.e., L Lr.
Proof. The proof follows from Lemma 4.1 together with the initial condition

L and tc (y) 0, for every y N(D). 71
The algorithm to find a set of right products of a given tr-dag D is discussed now.

It is easy to design a bottom-up algorithm to do the job, but for efficiency reasons,
our algorithm will process the dag top-down. Before presenting the algorithm, we
introduce some notation, pt (y) will denote a pointer from a node y of D to a dag
written as a right-hand side of an assignment statement; e.g., pt (y) should be
interpreted as a pointer from y to the empty dag. Another convention is that the
assignment

pt (No) pt (Na) 0 pt (N2),

where 0 {+, .}, is understood to mean the assignment of Fig. 4.1. If one of pt (N1)
or pt (N2) happened to be , then the above statement is interpreted as pt (N0)
pt (N2) or pt (No) pt (N1), respectively.

EVALUATION OF ARITHMETIC EXPRESSIONS 639

FIG. 4.1

We are now ready for the procedure. The main idea of the algorithm is a top-down
traversal of the dag which makes nodes point to subdags in such a way that the left
factor nodes will point to the corresponding right products. If we are visiting node y
with sl and s2 as its left and right children, then the following changes are made:

a) y is a + node,

pt (s x) - pt (y) q pt (s x)

pt (s2) pt (y) [pt (s2).

b) y is a node,

pt (s) - pt (s) (s2, pt (y)).

We cannot proceed and visit any of the children unless all of its parents have
been visited. That is why we use the function tc in our procedure below. In order
to make inductive assertions about the algorithm, we use a function w :N(D) <- {0, 1},
which is initialized by w (x)= 0, for all x N(D) unless x is the root r in which case
w (r)= 1. This function serves no other purpose.

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

procedure RIGHT-PRDS (r)
begin
global (tc [.], pt [.], w[.]);

tc (r)<-- tc (r)- 1
If tc (r) # 0 then [return];
case

r is a leaf: [return];
:r is a node"

[w (r) <-- 0; w(LC (r)) <-- w(RC (r)) 1;
pt (LC (r))<-- pt (LC (r)) pt (r);
pt (RC (r))<-- pt (RC (r)) pt (r);
call RIGHT-PRDS (LC (r));
call RIGHT-PRDS (RC (r));
return];

:r is a @ node’
[w(r) -O; w(LC (r)) - 1;
pt (LC (r)) pt (LC (r)) (RC (r)] pt (r));

640 TEOFILO GONZALEZ AND JOSEPH JA’JA’

15. call RIGHT-PRDS (LC (r));
16. return];
17. endcase
18. end o| procedure RIGHT-PRDS (r)

To clearly illustrate the usefulness of tc [.], we introduce an example.
Example 4.1. Consider the dag of Fig. 4.2. At the end of LEFT-FACTORS (No),

we have

tc (No) tc (N1) tc (N2) tc (N4) tc (a) 1,

te(N3)=2 and L={a}.

FIG. 4.2

Let us now apply RP (No).

Recursive call Result

RP (No) RP (N1), RP (N2)
RP (N1) pt (N3) e, RP (N3)
RP (N3) tc (N3)<- 1
RP (N2) pt (N3) e + f, RP (N3)
RP (N3) pt (N4)<- N5 * (e + f), RP (N4)
RP (N4) pt (a) b * (N5 (e + f)), RP (a)
RP (a)

Note that the original expression (a b) (c d) e + (a b) * (c d) f is indeed
equivalent to a pt (a) a (b ((c d) (e +f))). We now proceed to prove the
correctness of the above algorithm.

Let D be a tree-transformable o--dag with root r. Just before a call to RIGHT-
PRDS (y), let R ={zlz EN(D) and w(z)= 1} and D ==R Z *pt (Z). After the pro-
cedure RIGHT-PRDS (y) terminates, let R’={zlz EN(D) and w(z)= 1} and D’=
]R’ z * pt (z).

LEMMA 4.3. Let R, R’, D and D’ be as defined above. Assume y R. If there is
a call to RIGHT-PRDS (y), then after the procedure terminates, D =-D’.

Proof. There are two cases depending on the value of tc (y) at the time of the call.
Case 1. tc (y) 1. It is simple to verify that in the procedure none of the values

of w(z) or pt (z), for z N(D), is modified. Hence R’=R and D’=D.

EVALUATION OF ARITHMETIC EXPRESSIONS 641

Case 2. tc (y)= 1. The proof is by induction on the height h >-0 of y. If h 0,
then y must be a leaf. It is simple to verify that in the procedure none of the values
w(z) or pt (z), for z N(D), is modified. Hence R’=R and D’=-D. Suppose now
that the height of y is h +1> 1. As h +1>1, it must be that y is a (R) or a node.
By assumption tc (y)= 1, so step 3 is executed and as y R then

D= Y z,pt(z)+y*pt(y).
zR-{y}

There are two subcases.

Subcase a. r is a (R) node.
a.1. w(LC(y))= 1 before line 3. At this point D can be written as

D E z pt (z) + y pt (y) + LC (y) pt (LC (y)).
R--{y,LC(y)}

By definition, y LC (y) RC (y). Applying the distributive law, we obtain

D Y z pt (z) + LC (y) (pt (LC (y)) + RC (y) pt (y)).
R-{y,LC(y)}

After line 14, D=Yzl_yz ,pt (z). In line 13, w(y) is set to zero. Let R"=
{z Iz N(D) and w (z)= 1} at this point. Clearly R"= R-{y} so D"--D, where D" is
defined using R". Since the height of the tr-dag with root LC (r) is _<-h and LC (r) R",
it then follows by induction that after line 15,

D=-D"=-D’= , z,pt(z).
zR’

The procedure terminates (line 16) with

D=D’= E z,pt(z).
zR’

a.2. w (LC (y))= 0 before line 3. The proof is similar to that for a.1.
Subcase b. r is a node. The proof is similar to that for subcase a and will be

omitted. [3
We collect all the above facts about the procedures LEFT-FACTORS and

RIGHT-PRDS in the following theorems.
THEOREM 4.4. Let D be a tree-transformable cr-dag with root r. Then LEFT-

FACTORS (r) and RIGHT-PRDS (r) will generate an equivalent cr-dag D" of the form

D=-D"= E x*pt(x),
xLr

where L is the set of left factors ofD.
Proof. Using the initial conditions w(y)=0 for every y N(D), w(r)= 1 and

D r together with Lemma 4.3, it then follows that after procedure RIGHT-PRDS (r)
terminates, D’= Y,zR’ Z * pt (Z). Furthermore, D’=-D r. So, D’=-D". To complete
the proof it is required to show that R’= Lr. Both LEFT-FACTORS (r) and RIGHT-
PRDS (r) will make the same recursive calls. So, it must be that for each y N(D),
if there were calls to RIGHT-PRDS (y), then there must have been calls to
LEFT-FACTORS (y). As tc (y) is the total number of calls to LEFT-FACTORS (y)
after LEFT-FACTORS (r) terminates, then tc (y) 0 for all y N(D) after RIGHT-
PRDS (r) terminates. So, after RIGHT-PRDS (r) terminates, all internal nodes y of
D will have w(y)= 0 (see lines 6 and 13) and all leaves visited will have w(.)= 1.
Hence, y R’ if and only if y is a leaf visited from RIGHT-PRDS (r). From Lemma

642 TEOFILO GONZALEZ AND JOSEPH JA’JA’

4.2 we have that L =Lr when LEFT-FACTORS (r) terminates. By inspection of
procedure LEFT-FACTORS, y eL if and only if y is a leaf visited from LEFT-
FACTORS (r). As the same leaves are visited by both procedures, then R’= Lr.

This completes the proof of the theorem. [-1

THEOREM 4.5. The time complexity of LEFT-FACTORS (r) and RIGHT-
PRDS (r) is O(IN(D)[).

Proof. The proof follows from the observations that no edge in D is traversed
more than once.

We will now establish a relationship between the number of nodes in the dag
constructed by LEFT-FACTORS and RIGHT-PRDS and the number of nodes in
the original graph (Theorem 4.7). This result is used in the proof of Theorem 4.9.
Beforehand, we need the following lemma.

LEMMA 4.6. Let p (y) be the number of parents of a node y, y N(D). If, after the
execution of LEFT-FACTORS (r), there exists z N(D) such that 0<tc (z)<p(z),
then D is not tree-trans[ormable.

Proof. Note that since tc (z)<p(z), z must be a right descendant of a (R) node.
On the other hand, tc (z)> 0 implies that the left factors of z are also left factors of
the dag D. These two observations imply that D is not tree transformable.

Our procedure does not compute p (z); however, it is trivial to design a procedure
which computes p (z). Another procedure could also be constructed to verify that, for
each node z N(D), either tc (z) p (z) or tc (z) 0. Both procedures would run in
time O(IN(D)I). In what follows, we assume that these two procedures are actually
executed in between LEFT-FACTORS (r) and RIGHT-PRDS (r) and therefore the
situation of Lemma 4.6 cannot arise.

Let D be a r-dag with root r and let n be the number of nodes in the g product
terms of D. Clearly, IN(D)[na + g- 1. LEFT-FACTORS (r) and RIGHT-PRDS (r)
generate an equivalent o--dag of the form D’ =a xg pt (xg), where the summation
is in some fixed order.

THEOREM 4.7. Let D, n, g, D’ and k be as defined above. Then

IN(D’)I <- IN(D)I + k g.

Proof. Let m’ and p’ be the numbers of @ and nodes respectively whose
tc (.) 0 after procedure LEFT-FACTORS (r) terminates. Clearly k is the number
of leaves with tc (.) 0 (i.e., the left factors). We try now to account for all the new
nodes we create in D’. Each) node with tc (.) 0 may generate two plus nodes in
lines 7 and 8 of the procedure RIGHT-PRDS (r) except in the case where the pointer
of the node is . It is easy to see that the (R) nodes could generate at most 2(p’- (g 1))
new nodes. On the other hand, each (R) node with tc (.) 0 creates at most one
node and one (R) node in line 14 of RIGHT-PRDS (r). However, as before, whenever
the pointer of the (R) node is , no new (R) node will be generated; therefore, the m’
(R) nodes can generate at most 2m’-g new nodes. Since pt (y) is initialized to ,, for
each y N(D), the first time lines 7, 8 and 14 are executed, the corresponding
nodes are not introduced. Therefore, the total number of new nodes in D’ is

2(p’- (g 1)) + 2m’- g ((p’- (g 1)) + (m’- g) + k

=p’+m’-g-k+l.

Constructing the expression x * pt (x 1) +" + xk * pt (xk) requires the introduction of
at most 2k- 1 new nodes. It follows that the total number of new nodes is at most
(p’ + m’-g-k + l)+(2k -1) =p’ + m’ + k -g.

EVALUATION OF ARITHMETIC EXPRESSIONS 643

On the other hand, all interior nodes with tc (.) 0, after procedure LEFT-
FACTORS (r) terminates, will not appear in D’. Therefore

[N(O’)l<=lN(D)l-(m’+p’)+(p’+m’+k-g), i.e.,

I(O’)l IN(D) + k g. I-I

COROLLARY. Let D, n x, D’ and k be as defined above. Then [N(D’)I -<- n + k 1.
Before giving the precise overall transformation algorithm, we outline its general

strategy. Let D be a given cr-dag.

(1) Identify the left factors and the set of right products {Pi}ti=x of D using the
procedures described above.

(2) Split the right products into nonoverlapping sets of dags {Si}/_-x.
(3) Suppose the set Si consists of {ix, i2,’’ ’, it}. Recursively, transform Pil into

atree, say T/; Ti canbewrittenas Ti ((’’" (Qi, , Oi,m-1) *’" ") * (i,1), m 1,
where each Oi,. is a leaf or a tree with a 09 root. Figure out the overlap
between Ti and xi, * Pit, > 1, and the missing factor in xi, * P. Transform the
missing factor in x, P, into a tree.

(4) Combine the subtrees.

Step (2) is very easy to do’ just find the connected components of the graph
induced by the set of right products {Pi}l--x. Step (4) is also quite straightforward. Step
(3) is a bit harder and can be done as follows. For each 1 <-s <-m, obtain a normal
term f, of Oi,s. For each z, let r be the maximum integer such that Oi,1, Oi,2, Oi,r
appear in xi, * Piz, i.e.,

Xiz * Piz Riz * ((’" ((Qi,rz * Oi,r-l) ," ",’) , Oi,2) * Qi,1),

where Ri f’) Qi,j , for all j > rz (such an rz _-> 1 exists by virtue of Theorem 3.1). Let
Nt(Qia) be the set of normal terms of Qia. Then

O,,= E q=f,.+
qNt(Oi,j)

Therefore,

where

qeNt(Oid)

N(F) E
q-Nt(Oi,r Oi,1),
qfr .z... */2 *fl

Assume without loss of generality that yo and y E, i.e., no leaf in the tr-dag contains
the symbols yo or yx. Now, let us substitute in the tr-dag for xiz * Piz, the symbol y
for all the leaves in L(fi ,... *f2*fx) and the symbol yo for all the leaves in
L(Oi,rz *’’" * Oi,2 * Oi.x)-L(fiz *’’" * fx).

The reader should associate the symbol y0 with the value zero and yx with the
value one. The cr-dag obtained by partially evaluating a tr-dag with root y, pe (y); is
defined in terms of the normal terms it contains:

Yl

N(pe (y))

if :lc s Nt(y)such thatL(c)L(yt) and Vc s Nt(y)
either L(c)L(yl) or y0 L(c),
Vc Nt(y), yoL(c),
::ic Nt(y) such that yoeL(c) and L(c) fq ,

644 TEOFILO GONZALEZ AND JOSEPH JA’JA’

where w={hlcNt(y),yoL(c),L(c)71X# and h is c after deleting all the yls}.
From the definition of pe (y) it should be clear that pe (x 15 [E Pi) is Ri.

The computation of pe (y) for all y N(xg [E Piz) is carried out bottom-up in the
obvious way after initializing the leaves in Q,r,"’, Qi,1, as mentioned above. We
actually compute all the pe (y) for all the xi [E Pi simultaneously by first constructing
the dag for rr xi2 [E P2 [-4-] x3 [-+q P3 q xi qP then initializing the leaves in
Q,,,’",Q,I and Zq,..’,zl, where zq[E...zl is one normal term in
Qi,,, * * Q.I; then computing pe (y) for all y N(rr) as outlined above and finally
extracting pe (y)= Riz, where y is the root of xiz [E Pg, for all z.

The formal algorithm is given below. If r is the root of D, TRANSFORM (r) will
generate the tree. D (y) will denote the subdag rooted at y.

procedure TRANSFORM (r)
begin

1. Letxl P1, x2 * Pz,’" ", Xh * Ph be the set ofleft factors and right products ofD(r);
2. Let A (ilP } and B (ilP };

/It will be the root of the tree constructed//
3. <--

//the sum of the left factors with empty right products is constructed//
4. for each A do x endfor;

//Partition the set B in such a way that a and / belong to the same set ill
L (P, CI L(Po # .[[

5. Let R be the equivalence relation defined over the elements of set B in such a
way that aR/3 iff L(P,)CIL(Pt)# . Partition B into the sets of equivalence
classes 81, Sz, , S, under R.

//Clearly Eia xi -+- EiB xi *’Pi
//for each Si, find an equivalent tree (t’)[[

6. for i=l to k do
7. Let Si (il, f2,’ ", im}’
8. no -TRANSFORM (PJl);//construct a tree equivalent to PjI[[

case

10.
11.

12.

13.

14.

:m 1: [t’- xi, no; #lsil- 1//];
:m > 1: [rr ,--x (R)Px[EP qx.. [EP..;
Let Ow, Ow-1,’", 01 be the factors in no, i.e., no
((" (Ow [-+q O,-l) ") [E O) [-+q 01, where each Oo is a leaf or a subtree
with a root.

Compute label (y) for each y N(rr);
//if the root of xg. * eia is labeled s then xi. * Pg. can be written as

Ri, * Os * * 01 and Ri,, does not overlap with Ow, "’, Os+lff
//take a normal term from Qw Qw-1

(zq zo-1 z 1) - NORMAL-TERM (Qw
//Transform each x Pia into R. * Q *" * Q1 where s is the label of the

root of x. P.. This operation is performed by partially evaluating x. Pg.
(actually we partially evaluate all the xg. Pi. s at the same time by partially
evaluating rr)[[
or each y N(rr) do
compute pe (y) after initializing the leaves in
L(z,...zl) to y and the leaves in L(Qw’"Q1)-
L(z 1-+-1’’" [E z l) to Yo.

EVALUATION OF ARITHMETIC EXPRESSIONS 645

endfor
15. RS - for 1, 2, , w;
16. for 2 to m do
17. Let y be the root of xi,] Pi;
18. RSlabel (y) <- RSlabel (y) [’ pe (y);
19. endfor
20. t’ <-- ((. ((TRANSFORM (RSw) fiq xjl) Ow fiq

TRANSFORM (RS-I)) O-1 I-+--I. TRANSFORM (RS2)) q 02
TRANSFORM (RS1)) q O1];

endcase
21. t<--tt’;
22. endfor
23. return (t);

end of procedure TRANSFORM

We now describe the procedure NORMAL-TERM (.) which was used in the
body of the above procedure.

procedure NORMAL-TERM (no)
begin

case
:no is a leaf: [return (no)];
:no is a : [return (NORMAL-TERM (RC (no))];
:else: [return (NORMAL-TERM (LC (no))

NORMAL-TERM (RC (no)))];
endcase

end of procedure NORMAL-TERM

Note that procedure NORMAL-TERM (no) does not mark the nodes of no.
However, when no is the root of a tree, the procedure takes linear time with respect
to the number of nodes in the tree. If the dag we wish to transform is tree-transformable,
then all calls made from procedure TRANSFORM to procedure NORMAL-TERM
will involve trees.

We now consider an example. Let A=((a+b,c),f+b,(c,e+d,f))+
(a + b d), e. In this case, it is easy to see that the left factors are given by x a
and x2 b with corresponding right products pt (a) (f+ e) P1 and pt (b)
[c (f + e) + d (f + e)] P2. Thus P1 and P2 are in the same connected component.
At step 8, we will have no<--if+e) which has one factor Q1 =if+e). At step 12, the
root of b P2 will be labeled 1 at step 13 NORMAL-TERM (Q1) will return e. The
partial evaluation of rr will produce the expression b (c + d). In lines 15-19 RS1 is
set to be b (c + d). Finally, at step 20, we get (TRANSFORM (b (c + d))+ a) (f +
e), i.e., (b (c + d)+ a) (f + e), which is indeed an equivalent tree.

We are now ready to prove the main theorem of this section.
THEOREM 4.8. Let D be a tree-transformable o--dag with root r. Then TRANS-

FORM (r) generates an equivalent tree T with root t.
Before giving the proof, we make the following definition.
DEFINITION 4.3. The degree d of a dag D (or of the corresponding expression)

is the maximum number of variables in any normal term of D.
Proof of Theorem 4.8. The proof is by induction on the degree d of D.
Assume d 1. In line 1 the set of left factors and corresponding right products

of D is obtained using LEFT-FACTORS (r) and RIGHT-PRDS (r). From Theorem

646 TEOFILO GONZALEZ AND JOSEPH JA’JA’

4.4, it follows that D m Yi"--a xi P. Since d 1, D consists of simple variables, i.e.,
Pi , for 1 -< -< h. Therefore A {1, 2,. ., h } and B in line 2; executing line
4 produces a tree t-=-D. All the other parts of the algorithm will be skipped because
B and k =0.

Suppose now d > 1. As before, the execution of line 1 produces an equivalent
h

dagD mYi--a x * Pg. In line 2, the set {1, 2,..., h} is partitioned into two sets A and
B such that D =-AX +YB Xi * Pi. Line 4 sets to EiA xi. Line 5 partitions B
into disjoint sets in such a way that if and/" belong to the same set, then L(P) f3 L(Pj). It follows that D + Y__ U, where U Yjs, xi P, 1 =< -< k. This partition is
justified by Theorem 3.1.

Loop 6-22 transforms each U into a tree t’ which is added to in line 21. To
complete the proof, it is only required to show that, after the execution of lines 7-20,
t’ =-- Ui.

CLAIM. For each 1 <= <-k, the tree t’ generated by lines 7-20 is equivalent to Ui.
Proof of the claim. Since S consists of the elements {/’a,]2,’" ’,],n}, Ui is the

dag xil * Pil +’" + xj,, Pj,, (for some fixed order). It is clear that since the degree of

P is -<_d- 1, it follows by the induction hypothesis that no is a tree equivalent to Pil.
Thus U x no + z’n_-2 Xiz * Pj, after line 8. Note that if m 1, then we are done.
Therefore, let’s assume that m>l. After lines 10 and 11, we obtain Ui
xi ((. (Qw * Qw-1) *" ") * Q2) * Qa + rr, where each Qi is a leaf or a tree with a

root.
Label(y) is computed for each y N(rr) (line 12) in such a way that if the root

of xa * Pia is labeled b then xi * P can be written asR Qb * * Q1 and L(Ria)
L(Qw * * Qb/a) . Inline 13 weextractanormaltermfrom Qw Qw-1 * * Q1.
pe (y) is computed in line 14 in such a way that if y is the root of xa. Pia then
pe (y)=R as defined above. After the execution of lines 15-19 we have:

ui=-x , e + E xo , eo
a=2

=- ((.. ((RSw [-4] x) [-+l Ow q RSw-a) Ow-a [-+q RS2) 02 RSa)

Procedure TRANSFORM is used in step 20 to obtain equivalent trees for
RS,..., RSa. Since the degree of each RSt is <d, it then follows by induction that
t’, as constructed by line 20, is equivalent to Ui. This completes the proof of the claim
and the theorem.

Let D be a tree-transformable o,-dag with root r and of degree d. Let n be the
number of nodes in the g product terms and let v be the number of leaves in D. Let
T(n, d) be the time complexity of procedure TRANSFORM (r).

THEOREM 4.9. Let d, n, v, r, g and D be as defined above. Then T(n, d) <= Cadn,
where Ca is some fixed constant.

Proof. First of all, let us determine the time complexity of steps 1-5. Line 1 takes
<=C(n + g) time since D has exactly n + g 1 nodes and procedures LEFT-FACTORS
and RIGHT-PRDS take time O(IN(D)I) (see Theorem 4.5). Lines 2-4 take time
<=C2h. Line 5 can be implemented by finding the connected components of a graph
for Pi,/" B, (of course, we ignore the direction of the edges) which can be easily
carried out in <-_C2m steps, where m is the number of nodes in the graph for Pj,/" B.
Since the number of nodes in =a x P is =<n / h 1 (see Theorem 4.7), then line
5 takes time <-C2(n + h). Clearly g =< n and h =< n. Hence, lines 1-5 take time <=5C2n.

In what follows, we prove by induction on the degree d _-> 1 of the cr-dag with
root r, that T(n, d)<-Cadn, where Ca 12C2.

EVALUATION OF ARITHMETIC EXPRESSIONS 647

For d 1, we know that B must be empty. Therefore, loop 6-22 is not executed.
By assumption C1 > 5 Ca. Hence, T(n, 1) <- Cn <= Cdn.

Suppose now the degree of D is d > 1. In this case loop 6-22 has to be considered.
Let Ui be the r-dag corresponding to $i (see Theorem 4.8). Let g be the total number
of product terms in U and let n be the number of nodes in the descendants of the
product terms of Ui. Let vi be the number of leaves in Ui and let d be the degree of
Ue. Clearly, d <-d. Since N(U)fqN(U.)= li f (see Theorem 4.8) and since the
number of nodes in -h= xiPi is -<n + h 1 (see Theorem 4.7), it follows that Y n =< n.
Let T"(ni, d) be the time required by loop 6-22 when processing U. Then the overall
time complexity for TRANSFORM (r) is <=5Cn +., T"(ni, d). We now claim the
following"

CLAIM.

5C2n + T"(n, d) <= C(di)ng.

Once we prove this claim it will follow that T(n, d)<= Cldn, which will complete
the proof of the theorem.

Proof of claim. We treat the following two cases separately.
Case 1. m 1. Lines 7 and 9 take constant time, and by the induction hypothesis,

line 8 takes time <=C(d- 1)n. Hence, T"(n, di) <- C(d- 1)n + 2C2. In this case, the
proof of the claim follows from the assumption that 7C2 < C.

Case 2. m > 1. Line 7 takes <=C2g time and by induction, line 8 takes time
" d" "<-C(d")(ni), where is the degree of PJl, ni, v are the number of nodes and leaves

in Pjl respectively. The execution time of lines 10 and 11 can be easily shown to be
C2g and C2v I’, respectively. Hence, the time taken by steps 7-11 is

<=C(d")ng + 2C2(gi-[-Vi).

<C(d")n + 4C2ni < C(di 1)n + 4C2ni.

Lines 12-19 can be easily shown to take time <=C2n. Let g be the number of product
terms in e,.l with n descendants and v leaves. Step 20 can be easily shown to take
time <=C2ni +Y.__ Cx(d- 1)n, since the degree of each RS is <d. Line 21 takes time
<_-C2. Collecting all the above facts we obtain:

T"(n, d) <= C(d 1)n ’ + 4C2n-- c2n+ C:n Y Ca(d, 1)n
l=l

+ C2
Since C1 12Cz, we have that

(lines 7-11)

(lines 12-19)

(line 20)

(line 21).

T"(n,d)+5C2n <=C(di-1)n +Cn+ ., C(di-1)n.
/=1

A straightforward implementation of line 14 can be used to show that n +l= n _-< ni.
Hence, T"(ni, d) + 5C2n <- C(d- 1)n +Cn <- Cdng.

This completes the proof of the claim and the theorem.

648 TEOFILO GONZALEZ AND JOSEPH JA’JA’

Let us finally remark that the above transformation algorithm could output a tree
which is not equivalent to the input dag, as the following example shows.

Example 4.2. Suppose we are given the expression

E (((x *b)*c+(a *b)*c)+x ,(e+d))+a ,(b ,c+d),

whose dag is drawn in Fig. 4.3. In this case, the left factors are the variables x and
a with corresponding right products P1 b c + (e + d) and P2 b c + (b c + d).
Therefore we have one connected component consisting of {P1, P2}. At step 8 of the
procedure TRANSFORM, we have no b c + (e + d) in which case no has one factor
Q. Now NORMAL-TERM (Q1) d and rr a (b c + (b c + d)). The label assig-
ned in line 12 to a P2 is 1 and the partial evaluation of rr produces rr a. Therefore,
the output will be (a + x) (b c + (e + d)), which is not equivalent to E.

FIG. 4.3

5. The equivalence algorithm. As we have seen in the previous section, the
transformation algorithm might generate a tree from a o--dag which is not tree-
transformable. Algorithms to check whether a given tree T and a given r-dagD are
equivalent are developed for several cases in this section. One way to solve this
problem would be to find the normal terms of T and D and compare them; this is
not efficient since the number of normal terms could be an exponential function of
the number of nodes in D. The approach we take here is based upon the following
characterization.

THEOREM 5.1. A cr-dag D is equivalent to a tree T if and only if the following
conditions are satisfied:

(i) Every normal term ofD is a normal term of T.
(ii) The number of normal terms ofD is equal to the number of normal terms of T.

(iii) No two normal terms ofD are equal.
In the rest of this section, we will examine the problem of designing efficient

algorithms to check each of the above properties separately.
To handle (i), we will associate a graph with T, denoted by G(T) in which a

normal term induces a path and every path corresponds to a normal term. Before

EVALUATION OF ARITHMETIC EXPRESSIONS 649

doing so, we label the nodes of the tree by the following procedure. Initially, no
represents the root of T, mark (no) (0, 1), left 0, right 1 and next -2.

procedure LABEL-TREE (no, left, right)
begin
global (next, mark [.]);

case
"o is a leaf return];
no is a (R): [m next;

next - next + 1;
mark (LC (no)) (left, m);
call LABEL-TREE (LC (no), left, m);
mark (RC (no)) (m, right);
call LABEL-TREE (RC (no), m, right);
return];

:no is a (: [mark (LC (no)) - mark (RC (no)) - (left, right);
call LABEL-TREE (LC (no), left, right);
call LABEL-TREE (RC (no), left, right);
return];

endcase
end o| procedure LABEL-TREE

To illustrate the ideas, we consider the expression A
((a+b ,c),.f+b ,(c ,e+d ,f))+(a+b ,d),e.

The tree generated by algorithm TRANSFORM is given in Fig. 5.1. The labels
are as assigned by the above algorithm. With the labels given in Fig. 5.1, we can
associate the following graph"

(0, 1)

(0,

2)2) ((2, I){ (2, I){
f,e

FIG. 5.1

Note that each normal term of the tree can be viewed as representing a path from 0
to 1 and vice versa.

In general, we can construct the graph G(T) associated with a tree T as follows:
suppose all of the leaves of T have been marked by the procedure LABEL-TREE.
Create two nodes 0 and 1. If a leaf v is labeled (a,/), create nodes a and/ (if

650 TEOFILO GONZALEZ AND JOSEPH JA’JA’

necessary) and draw a directed edge from a to/3 with label v; if such an edge already
exists, simply attach the label v to it.

The above graph could be thought of as the transition graph of a finite automaton
with 0 as the initial state and 1 as the accepting state; the alphabet consists of the set
of leaves of T. A word is accepted by this automaton if and only if it represents a
normal term of the tree T.

We are ready to prove the following lemma.
LEMMA 5.2. Let y be a node of the tree T whose descendants form a subtree T1

and such that mark (y)= (or,). Then, every normal term of TI is represented by a path
from a to in G(TI) and, conversely, every path form a to in G(T1) represents a
normal term of T.

Proof. By induction on the height h of T.
If h 0, y is a leaf and the result is obvious from the definition of G(T1).
Suppose now h _-> 1. Two cases might arise"
(1) y is a node with children generating subtrees C and C2, as shown in

Fig. 5.2. Note that every normal term of T1 is a normal term of either C1 or C2.
Moreover, it is easy to see (from the definition of G(T)) that each edge in G(T) is
an edge in either G(C1) or G(C2), and conversely. Furthermore, no two edges of
G(C) and G(Cz) are the same; therefore every path from a to/ i.n G(T1) is a path
in either G(Ca) or G(C.), and conversely. The proof follows now by induction for
this case.

FIG. 5.2

(2) y is a (R) node with subtrees C1 and C (Fig 5.3(a)). Note that G(T1)=
G(C)UG(C) as shown in Fig. 5.3(b) and where the edges of G(C1) are distinct
from those of G(C). Let Nt(T) designate the set of normal terms of a tree T. Assume

N,(C)={pli 1,..., ka} and

Then

N,(C2) {qlf 1,..., k2}.

]Wt(T1) {pi * q]l 1 kl, 1 f /2}.

Note that we are actually constructing a series-parallel graph G(T) from T. Every (causes a parallel
connection and every (R) causes a series connection.

As a sequence of edges.

EVALUATION OF ARITHMETIC EXPRESSIONS 651

G(C G(C 2)

(b)

(a, B)

FIG. 5.3

Therefore each normal term of T1 is of the form pi * qj; by induction, pi is represented
by a path from a to 8 in G(CI) and qj is represented by a path from 8 to/3 in G(C2).
It follows that pi * qi can be represented by a path from a to B in G(Tx).

Conversely, every path from a to/3 in G(T) consists of two paths P1 and P2,
where P is a path from a to in G(C1) and P is a path from 8 to B in G(C2). The
proof follows now by induction. I-1

COROLLARY 5.2.1. Let G(T) be the graph associated with a tree T. Every normal
term of T is represented by a path from 0 to 1 in G(T), and conversely, every such path
represents a normal term of T.

Suppose now we use the label of the leaves of T and assign them to the
corresponding leaves of the dag D. If a node y of D has two children labeled, say,
(a,/) and (a’, B’), this means that the induced paths in G(T) should match so that
each normal term of y will be a consistent part of a normal term in T. It follows that
if y is a 0) node, we must have a a’ and/3 =/3’; else, we must have/3 a’. Moreover,
if every normal term of D is a normal term of T, then the root of the dag should get
the label (0, 1). Formal proofs of these facts will be given after we present the procedure
which implements the above policy.

procedure LABEL-DAG (no)
begin
global mark ([.]);

If no has been labeled then [return];
If no is a leaf then [stop];
call LABEL-DAG (LC (no));
call LABEL-DAG (RC (no));
(LX, L Y) <-- mark (no));
(RX, R Y) <- mark (RC (no));
case

:no is a node: [If RX LX and LY RY
then mark (no) (LX, L Y);
else stop;

return];
:no is a (R) node; [If RX LY then mark (no) - (LX, R Y);

else stop;
return];

endcase
end of procedure LABEL-DAG

652 TEOFILO GONZALEZ AND JOSEPH JA’JA’

LEMMA 5.3. Let G(T) be the graph o] a tree T. Suppose the leaves of a dagD are
initialized with the same labels as those of T. If the dag could be labeled consistently
up to a node p, with mark (p)= (c,/), then each normal term of p corresponds to a
path from a to fl in G(T).

Proof. By induction on the height h of the subdag induced by p. The case h 1
is trivial. Suppose h > 1. We consider again two cases depending on whether p is a
(node or a (R) node. The proof follows the same line as that of Lemma 5.2. FI

COROLLARY 5.3.1. If D could be labeled such that mark (r)= (0, 1), where r is
the root ofD, then each normal term ofD is a normal term of T.

LEMMA 5.4. Suppose that each normal term of D is a normal term of T, then
LABEL-DAG (r) will terminate with mark (r)= (0, 1), where r is the root olD.

Proof. We will only prove that each product term of D will be labeled (0, 1). Let
P be a product term in D. Suppose that w xl * x2 * * Xk (up to a fixed order) is
a normal term in P, x E E, 1 -<_ -< k. It follows that w is a normal term in T and hence
there exists a path from 0 to 1 in G(T) which represents w. Suppose this path is given
by

i.e., mark (Xi)---(Oli--1, (Xi) 1 <i <k, and mark (x)=(O, al), mark (Xk) (ak_, 1).
Since w is a normal term in P, P must be of the following form" P=

(x+D1)*(XE+DE)*’’’*(Xk+Dk) up to a fixed order, where the Ds could be
arbitrary subdags of D. We assume that the order of multiplications is as shown in
Fig. 5.4; the same argument will hold for any other ordering. Now since x is labeled

"(0, l)

..’ .(Ctk_ I)

m2. "" (Ctk_ 1,._1)."
(0, ct2) .

O0, 1)

FIG. 5.4

EVALUATION OF ARITHMETIC EXPRESSIONS 653

(0, a 1), the root of D must have the same label (0, a 1) and thus a will have the label
(0, a 1). Similarly, ai will have the label (ai-1, ai), 1 < < k, where a is the root of the
dagxi +D; ak gets the label (ak-1, 1). Now ml is a multiplication node with children
al and a2; thus it gets the label (0, a2).
Using the argument k- 1 times, we get that ink-1 has the label (0, 1) and thus P has
the label (0, 1). This completes the proof of the lemma. [’1

We now collect the above facts in the following theorem.
THEOREM 5.5. Given a tree T and a tr-dag D, it is possible to check whether each

normal term of D is a normal term of T in 0 (n time, where n is the number of nodes
in D.

We now consider property (ii) of Theorem 5.1, namely checking whether the
number of normal terms of T is the same as that of D. This is fairly easy(?) and the
counting of normal terms in a dag D could be done by the procedure COUNT (r),
where r is the root of D. Initially, all the nodes are not marked.

procedure COUNT (no)
begin
global (C [.]);

If no is marked then [return (C(no))];
else mark no;

case
:no is a leaf: [C(no) 1];
:no is a (R): [C(no) COUNT (LC (no)) * COUNT (RC (no))];
:no is a : [C(no) COUNT (LC (no)) + COUNT (RC (no))];

end case
return (C(o));

end of procedure COUNT

It is easy to prove the following lemma.
LEMMA 5.6. Let D be any r-dag with root r. Then COUNT (r) correctly computes

the number of normal terms in D.
As for the complexity, we have O(n) steps, where n is the number of nodes in

D. However, some steps might involve the multiplication of two large numbers, each
of which might take considerably more than one "unit time." Before finding the
number of bit operations required by the above algorithm, we establish an upper
bound on the magnitude of the numbers used in COUNT.

LEMMA 5.7. Let Tbe a tree with root r and such that3 IL(T)I v. Then C(x)<-_2v/2,
for all nodes x in T.

Proof. By induction on the height h of T. I-1
COROLLARY 5.7.1. Each C(x) requires at most v/2 bits.
Note that if we are considering the dag D and if at any one point we need more

than v/2 bits to store any number, then we halt and declare that the numbers of
normal terms are not equal. Therefore, the above upper bound holds true for D.

We are now ready to establish the complexity of the procedure COUNT.
THEOREM 5.8. Let D be a tr-dag with root r. Then COUNT (r) takes O(nv log-

v log log v) bit operations, where n and v are respectively the numbers of nodes and
leaves in D.

Recall that L(T) represent the set of leaves in T.

654 TEOFILO GONZALEZ AND JOSEPH JA’JA’

Proof. The largest number in COUNT (r) require at most v/2 bits; adding such
numbers could be done in O(v) bit operations. Multiplying two such numbers could
be done in O(v log v log log v) bit operations by using the Sch6nhage-Strassen integer-
multiplication algorithm [SS]. Therefore COUNT (r) requires at most O(nv log v log
log v) bit operations. [-1

Strangely enough, the above (rough) bound cannot be improved (under the
assumption that multiplying two k k bit numbers takes k log k log log k bit oper-
ations), i.e., there exist tree-transformable dags which will require f(nv log v log log v)
bit operations, as the following example shows.

Let

P1 (Zl + Z).) (Z3 + Z4) *’’" * (Z2p-1 -b- Z2p),

P (Y1 + Y2) * (Y3 + Y4) *’’ * (Y2t-i + Y2p), Zi, Yg E.

Construct now the following dag D (Fig. 5.5).

FIG. 5.5

In this case IN(D)] O(p),]L(D)[5p. However, COUNT (r) will have p multiplica-
tions, each of which occurs between two p-bit numbers. Therefore COUNT (r) requires
at least f(nv log v log log v) bit operations in this case.

One might be tempted to say that it is possible to design another algorithm which
does not multiply the same pair of numbers more than once and which will solve our
problem in O(n) time; however we can give another example where the multiplica-
tions involved are all between different numbers and yet the algorithm requires
II(nv log v log log v) bit operations. Let’s remark that the execution time of this
procedure dominates all the other parts of the equivalence algorithm.

EVALUATION OF ARITHMETIC EXPRESSIONS 655

We now consider the performance of COUNT on a special class of dags which
will be considered later in more detail, namely that of leaf dags. COUNT is faster for
this class even if we use the naive integer-multiplication algorithm as the following
theorem shows.

THEOREM 5.9. Let D be a leaf dag with root r. Then the execution time of
COUNT (r) is of O(n2), where n is the number of nodes in D.

Pro@ Let e be the number of edges in D. Since e O(n), it follows that it is
enough to prove that COUNT (r) takes O(e 2) time. The proof is by induction on e,
being trivial for e 1.

Suppose e > 1. Let x and x2 be the left and right children, respectively, of r. x
and x2 generate two dags D and D2 whose edges don’t overlap. Let el and e2 be the
numbers of edges in Dx and D2, respectively. Then e -el +e2 + 2. Thus the execution
time T(e) of the algorithm satisfies

T(e)<= T(e)+ T(e)+O(ee2),

if we use the naive algorithm to multiply the number of normal times in x by the
ones in x2. It follows that T(e)= O(e2).

To terminate the equivalence algorithm, the problem of whether a given tr-dag
has two identical normal terms will be investigated now. This is the hardest part of
the equivalence algorithm and its complexity seems to depend crucially on two
parameters: the degree of the expression and the type of sharing in the dag. If we
restrict either one of these parameters, the problem becomes relatively easy and
corresponding efficient algorithms can be developed. However, in the general case,
the problem looks difficult and we feel that the general problem might be NP-complete.
Therefore, we will attack this problem for two special cases: (i) the degree of the
corresponding expression is bounded by a constant d and (ii) the given tr-dag is a leaf
dag.

Before proceeding, we state the main result which has been obtained so far.
THEOREM 5.10. LetD be an arbitrary tr-dag with no identical normal terms. Then

checking whether D is tree transformable and obtaining an equivalent tree, whenever
possible, could be done in O(nv log v log log v) time, where n and v are respectively the
number of nodes and leaves in D.

Proof. Immediate from Theorems 4.8, 4.9, 5.5 and 5.8.
We now discuss the problem of identifying identical normal terms for leaf dags.

We first transform the dagD into an equivalent dagD’ which is left-justified, i.e.,
every (R) node of D’ has a leaf as its left child. Figure 5.6 shows an example of a dagD
with an equivalent dag D’ which is left-justified.

656 TEOFILO GONZALEZ AND JOSEPH JA’JA’

FIG. 5.6

We remark that in the above transformation no node will be modified unless
it is a left child of a @ node. That is why the above transformation will increase the
number of edges by, at most, a factor of 2, as we will later prove. The procedure to
implement the above transformation is given below; pt has the same meaning as
in 4 and it is initialized to the empty dag, for all nodes of D. OP (.) denotes the
operator of a node. The assignment no GETNODE means that a new node no is
created and PUTNODE (no) means that the node no has been destroyed.

procedure LEFT-JUST (r)
begin//Left justify the leaf dag with root r which is multiplied by the left justified
dag pointed at by pt (r)[[

If r leaf then [return]
loop
n2-LC (r);
n3-RC (r);

case
r is a: [If n2 leaf then [If pt (r) then [no - GETNODE;OP (no) -’*’"

LC (no) - n2;

RC (no) pt (r);
LC (r) no]]

else [pt (n2) pt (r);
call LEFT-JUST (n2)]

I[n3 leaf then [If pt (r) then [no - GETNODE;OP (no) - ’*’;
LC (no) n3;

RC (no) pt (r);
RC (r) no;
return]

else return]]

EVALUATION OF ARITHMETIC EXPRESSIONS 657

else [pt (rt3) pt (r);
call LEFT-JUST (n 3);
return]

];
:r is a (R): [I| (n2 and n3 are leaves) then

[If pt (r) then [return];
no GETNODE;
OP (no) ’*’;
LC (no) - n3;

RC (no) - pt (r);
RC (r)no;
return]

I| (n is a leaf) then
[pt (/,/3)<---pt (r);
call LEFT-JUST (n 3);
return]

If (n 3 is a leaf) then
[OP (r) OP (n2);
LC (r)- LC (n2);
RC (r)- RC (n2);
If pt (r)= then

[PUTNODE (n2);
pt (r) n3]

else
[OP (n2)-’*’;
LC n2) - n3;

RC (n2)- pt (r);
RC (n2) pt (r);
pt (r) n2]

else
[pt (n 3) pt (r);
call LEFT-JUST (n3);
OP (r) OP (n2);
LC (r)- LC (n2);
RC (r)- RC (n2);
pt (r),-- n3;
PUTNODE (n2)]];

endcase
forever

end of procedure LEFT-JUST

The next lemma essentially establishes the correctness of the above procedure.

LEMMA 5.11. Let D be a leaf dag and let y be any node ofD such that pt (y) a
is left-justified. Then LEFT-JUST (y) will return a left-fustified dag equivalent to the
dag whose root is a (R) node with y and a as the left and right children, respectively.

658 TEOFILO GONZALEZ AND JOSEPH JA’JA’

Proof. By induction on the depth of the recursive call. The proof involves eight
different cases; we will only consider two typical cases, since all the others are similar
to one or the other of the two.

1) y is a 03 node such that none of its children is a leaf. Two subcases have to
be discussed separately.
1.a) a , then LEFT-JUST (y) returns by calling LEFT-JUST (n2) and

LEFT-JUST (n3). By induction, the dags induced by n2 and n3 will be
transformed into equivalent left-justified dags. It is easy to see that the
dag with root y will then be left-justified.

1.b) a , then LEFT-JUST (y) makes the assignments pt (n2)-pt (//3) <-" O

and calls LEFT-JUST (rt2) and LEFT-JUST (n3). By the induction
hypothesis, we will have two left-justified dags equivalent to (n. (R) a)
and (rt3 ()a). Using the distributive law, it is easy to see that LEFT-
JUST (y) will return a left-justified dag equivalent to (y (R) a).

2) y is a (R) node such that none of its children is a leaf. Again, we will discuss
two subcases separately. Note that the dag which is being transformed into
an equivalent left-justified dag is given by (n 2 (R) n 3) (R) a.
2.a) a , similar to 1.a) and 2.b).
2.b) c , LEFT-JUST (y) will first make the assignment pt (n3)ce and

call LEFT-JUST (n3). By the induction hypothesis, LEFT-JUST (n3)
returns a left-justified dag which is equivalent to (n3 ()ce). LEFT-
JUST (y) will then make n2 as the new node y with pt (y) n3 and the
infinite loop behaves as if it were really a recursive call to n2 with
pt (n2) n3 (the "new" n3 after it was modified by LEFT-JUST (n3)). By
the induction hypothesis, this should return a left-justified dag equivalent
to/’2 () //3.

COROLLARY. Let D be a leaf dag with root r such that pt (r) is initialized to the
empty dag. Then LEFT-JUST (r) returns a left-fustified dagD’ which is equivalent
toD.

The following theorem establishes the possible growth in the number of edges
as well as the complexity of the procedure LEFT-JUST.

EVALUATION OF ARITHMETIC EXPRESSIONS 659

THEOREM 5.12. Let D be a leaf dag with root r such that pt (r) is initialized to
the empty dag. Then LEFT-JUST (r) returns a left-fustified dag D’ such that IE(D’)I <-
21E(D)I. Moreover, the execution time of this procedure is linear in the number of nodes
in D.

Proof. The proof is straightforward and will be left to the reader.
Once we transform the given dag into an equivalent left-justified dag, the problem

of checking the existence of two identical normal terms becomes easy. The main
procedure, REPEATED-TERM, which, at each node, calls another procedure
EQUAL to check whether this node has two identical normal terms, is given below.

procedure REPEATED-TERM (no)
begin
global (rmark [.])

case
:no has been rmarked: [return (rmark (no))];
:no is a leaf: [rmark (no) -false];
:else: [rmark (no)- REPEATED-TERM (LC (no))

or REPEATED-TERM (RC (no));
I rmark (no) false and no is a

then rmark (no) - EQUAL (LC (no), RC (no))];
endcase
return (rmark (no));

end of procedure REPEATED-TERM

This procedure is fairly straightforward; it rmarks false all the leaves and proceeds
from the bottom up, marking all nodes false until it meets a node. It then calls the
procedure EQUAL to check whether this 0) node has two identical normal terms in
which case rmark (no) will be set true and this truth assignment will propagate to the
root of the dag. Otherwise, everything will be set false and REPEATED-TERM
returns false. We describe precisely the procedure EQUAL below.

procedure EQUAL (x, y)
begin
global (equal [.,.]);

If x y then [return (true)]
If (x, y)has been previously checked

then [return (equal (x, y))]
case

:x and y are leaves: [equal (x, y) false];
:x is a @ or y is a 0)"

[Let w be one of the nodes and let z the other node;
equal (x, y)- EQUAL (LC (w), z) or EQUAL (RC (w), z)];

:x and y are (R):
[If LC (x) LC (y) then equal (x, y) - false;

else equal (x, y)- EQUAL (RC (x), RC (y))];
:else: [equal (x, y)-false];

endcase
return (equal (x, y));

end of procedure EQUAL

Before proving the correctness of the above procedure, we discuss the example
mentioned at the end of 4. The original expression E=(((x ,b),c+

660 TEOFILO GONZALEZ AND JOSEPH JA’JA’

(a b) c) +x (e + d)) + a (b c + d) has been transformed into the tree T
(a + x) (b c + (e + d)). Moreover, E could be transformed into an equivalent dag E’
which is left-justified (Fig. 5.7). Note that no and n are the nodes created by the
procedure LEFT-JUST.

FIG. 5.7

Let us apply the algorithm EQUAL to the nodes u and v indicated in Fig. 5.7.
Note that EQUAL (u, v) will be called at some point when REPEATED-TERM is
applied to the above dag.

Recursive call Result

EQUAL (u, v) EQUAL (n), vx)
EQUAL (n, vl) EQUAL (n, Vz) OR EQUAL (n), d)
EQUAL (n),/)2) EQUAL (c, c)
EQUAL (c, c) true

equal (n’o, vl)- true
equal (u, v true

Therefore, EQUAL (u, v) returns true and REPEATED-TERM will also return
true. Indeed, E does contain two duplicates of the normal term a b c.

The correctness of the above procedures is established in the next theorem.
THEOREM 5.13. Let r be the root of the left-justified tr-dag D. Then REPEATED-

TERM (r) returns true if, and only if, D has two identical normal terms.

Proof. Suppose REPEATED-TERM (r) returns true, then it is easy to see by
inspection that there exist two (R) nodes x and y such that EQUAL (X, Y) is true and

EVALUATION OF ARITHMETIC EXPRESSIONS 661

mark (X) mark (Y).4 The proof is now by induction on hx + hy, where hx and hy are
the heights of x and y, respectively.

If h, + hy 2, the proof follows easily.
Suppose h, + hy > 2. Then x and y must have the same left child, say a, and,

moreover, EQUAL (x’, y’) must be true, where x’ and y’ are the right children of x
and y, respectively. It is easy to check (since EQUAL (x, y) is true) that either the
descendants of both x’ and y’ contain a (R) node or none of the descendants of x’ or
y’ is a (R) node. In the latter case, it is easy to check that the algorithm is correct.
Thus, suppose the descendants of x’ and y’ contain (R) nodes, there exist two (R) nodes
u and v such that EQUAL (u, v) is true and hu and hv are maximal among the (R)
nodes which are descendants of x’ and y’, respectively. The rest of the proof follows
by the induction hypothesis.

Suppose now that D has two identical normal terms. The proof is similar to that
of Lemma 5.4, taking into consideration the fact that D is left-justified. 13

THEOREM 5.14. If D is a lefi-fustified dag with root r such that n is the total
number of nodes in D, then the execution time of REPEATED-TERM (r) is of O(n2).

Proof. Note that if x and y are two nodes of D such that x has n descendants
and y has n2 descendants, then EQUAL (x, y) takes at most O(nln2) time. Moreover,
for each pair of nodes x and y, EQUAL (x, y) is called at most once. The proof of
the theorem follows from these observations.

We collect all the facts we have established about leaf dags in the following
theorem.

THEOREM 5.15. Let D be a leaf dag with n nodes. Then it is possible to checx
whetherD is tree-transformable or not, and to find an equivalent tree, whenever possible,
in O(n) time.

This settles the case of leaf dags. Consider the case where the degree of the dag
is bounded by a constant d. Then there are at most v d normal term, where v IL(D)I.
Thus checking whether D has two identical normal terms could be done in O(v d)
time. Note that, in this case, all the previous procedures run in linear time. Therefore,
we have the following.

THEOREM 5.16. LetD be an arbitrary cr-dag whose degree is bounded by a constant
d. Then transforming D into an equivalent tree, whenever possible, could be done in
O(max (IN(D)I, IV(D)Ia)) time.

Let us remark that if the level of sharing is a fixed constant then it is possible to
transform the dag into a leaf dag in polynomial time. Therefore the corresponding
problem can be solved efficiently in this case too.

Acknowledgment. We would like to thank the referees for their careful reading
of the manuscript and for their constructive comments.

4 REPEATED-TERM (r) returns also true if a node has a leaf v as its left and right child. This
case will be ruled out by the preceding algorithms.

Including x’ and y’.

662 TEOFILO GONZALEZ AND JOSEPH JA’JA’

[AHU]

[AJ]

[AJU]

[AU]

[A]
[a]

[BSe]

[DS]

[GJ1]

[GJ2]

[JMMW]

[K]

EN]

[R]
[SS]

[SU]

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

A. V. AnD AND S. C. JOHNSON, Optimal code generation of expression trees, J. Assoc.
Comput. Mach., 23 (1976), pp. 488-501.

A. V. AHO, S. C. JOHNSON AND J. D. ULLMAN, Code generation for expressions with
common subexpressions, J. Asssoc. Comput. Mach., 24 (1977), pp. 146-160.

A. V. AHO AND J. D. ULLMAN, The Theory of Parsing, Translation and Compiling. Vol.
II: Compiling, Prentice-Hall, Englewood Cliffs, NJ, 1973.

J. P. ANDERSON,A note on somecompilingalgorithms, Comm. ACM, 7 (1964), pp. 149-150.
M. A. BREUER, Generation of optimal codes for expression via factorization, Comm. ACM,

12 (1969), pp. 333-340.
J. L. BRUNO AND R. SETHI, Code generation for a one-register machine, J. Assoc. Comput.

Mach., 23 (1976), pp. 502-510.
P. J. DOWNEYAND R. SETHI, Variations on the common subexpression problem, unpublished

manuscript, 1977.
T. GONZALEZ AND J. JA’JA’, On the complexity of computing bilinear forms with {0, 1}

constants, J. Comput. Systems Sci., 20 (1980), pp. 77-95.
Computing arithmetic expressions with algebraic identities is hard, in Proc. 1979

Conference on Information Sciences and Systems, March 1979, pp. 167-173.
D. B. JOHNSON, W. MILLER, B. MINNIHAN AND C. WRATHALL, Reducibility among

floating-point graphs, J. Assoc. Comput. Mach., 26 (1979), pp. 739-760.
R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer

Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972,
pp. 85-104.

I. NAKATA, On compiling algorithms for arithmetic expressions, Comm. ACM, 10 (1967),
492--494.

R. R. REDZIEJOWSKI, On arithmetic expressions andpress, Comm.ACM, 12 (1969), 81-84.
m. SCHONHAGE AND V. STRASSEN, $chnelle Multiplikation grosser Tiihlen, Computing,

7 (1971), pp. 281-292.
T. SETHI AND J. D. ULLMAN, The generation of optimal code for ,arithmetic expressions, J.

Assoc. Comput. Mach., 17 (1970), pp. 715-728.

