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A 1.6 APPROXIMATION ALGORITHM FOR
ROUTING MULTITERMINAL NETS*

TEOFILO F. GONZALEZf AND SING-LING LEEt

Abstract. The problem of connecting a set of n terminals belonging to m (signal) nets that lie on the
sides of a rectangle to minimize the total area is discussed. We present an O(n(m + log n)) approximation
algorithm to solve this problem. Our algorithm generates a solution with area _-<1.6, OPT, where OPT is
the area of an optimal solution. The nets are routed according to the following greedy strategy: the wire
connecting all points from a net is one whose path crosses the least number of corners of the rectangle. For
some nets there are several routes that cross the least number of corners. A subset of these nets is connected
by wires whose paths blend with the paths for other nets. The remaining nets are routed using several
strategies and 2 layouts are obtained. The best of these layouts is the solution generated by our algorithm.
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1. Introduction. Let G be a rectangle and S be a set of n points (terminals) that
lie on the sides of G. Let N1, N2," ", Nm be any partition of set S. Each subset N
is called a net. All the points in each net have to be made electrically common by
inter:connecting them with wires. The wires follow a path consisting of a finite number
of horizontal and vertical line segments. These line segments are assigned to two
different layers. All the horizontal line segments are assigned to one layer and all the
vertical ones are assigned to the other layer. Line segments on different layers can be
connected directly at any given point z by a wire perpendicular to the layers if both
line segments cross point z in their respective layers. Every pair of distinct and parallel
line segments must be at least A > 0 units apart and every line segment must be at least
A units from each side of G, except in the region where the path joins a point in S it
connects. Also, no path is allowed inside of G on any of the layers.

Problem R1M (routing around one module) consists of specifying the paths for
all the wires in such a way that the total area is minimized, that is, placing G together
with all the wires (that must satisfy the restrictions imposed above) inside a rectangle
(with the same orientation as G) of least possible area. This problem has applications
in the layout of integrated circuits ([L] and JR]) and conforms to a set of design rules
for VLSI systems [MC].

The 2-R1M is defined similarly, except that all nets are restricted to be of size
two. Hashimoto and Stevens present an O(n log n) algorithm to solve the R1M problem
for the case when all the points in S lie on one side of G. An II(n log n) lower bound
on the worst case time complexity for this problem was established in [GLL]. Algorithms
to solve the 2-R1M problem appear in [La] and [GL2]. The one in [GL2] is optimal
with respect to the time complexity bound. If more than two layers are allowed and
wire overlap is permitted, the problem becomes an NP-hard problem [SBR]. Other
generalizations of the 2-R1M problem have been shown to be NP-hard [La]. Gonzalez
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and Lee [GL3] present an O(n(m+log n)) approximation algorithm for the RIM
problem that generates a solution with area <_-1.69 OPT. In this paper we present an
approximation algorithm with a worst case approximation bound of 1.6. This new
algorithm is more complex than the previous one and the proof for the 1.6 bound is
much more elaborate than the one for the 1.69 bound that appears in [GL3]. The
introduction and definitions in this paper are similar to the ones in [GL3].

The first few steps of our procedure follow the initial steps of the algorithms in
[La] and [GL2]. These steps reduce our problem to the one of selecting the starting
point for the path connecting each global net (a net is called a global net if at least
two of its terminals are located on opposite sides of G). The algorithm routes all nets
by a path that crosses the least number of corners of G. For some nets there are several
paths that cross the least number of corners. A subset of these nets is connected by
paths that blend with the paths connecting other nets. The paths connecting the
remaining nets are selected using several strategies and 26 layouts are obtained. The
best of these layouts is the solution generated by our algorithm.

For 2, 3, 4, let RIM-i denote an RIM problem in which all global nets contain
terminals on exactly sides of G. In 2 we introduce our notation and present some
basic results. In order to simplify the exposition of our results, we begin by presenting
approximation algorithms for restricted versions ofthe RIM problem. In 3 we present
an approximation algorithm for the RIM-3 problem. An approximation algorithm for
the R1M-4 problem is presented in 4 and in 5 we present an approximation algorithm
for the R1M-2 problem. In 6 we combine the results obtained in 3-5 to obtain
our 1.6 approximation algorithm for the RIM problem.

The algorithm for the RIM-3 problem is identical to the one in [GL3]. The analysis
of this algorithm is a little bit more complex in this paper because one needs to prove
the 1.6 bound. The analysis in [GL3] only proves the bound of 1.66. The algorithm
for the RIM-2 is a generalization of the one in [GL3]. The main difference is that
instead of constructing 23 layouts, one has to consider 26 layouts. In the former case
we can only claim solutions within 69% of optimal, whereas in the latter case the
approximation bound is 1.60. In both cases the analysis of the approximation bound
is tight, i.e., it cannot be improved. The analysis in this paper for the 26 layouts
algorithm is much more elaborate than the one in [GL3] for the 2 layouts algorithm.
The algorithm for the R1M-4 problem is much more complex than the one in [GL3].
For brevity we did not include the postprocessing procedure for the RIM-2 problem
in [GL3]. This procedure as well as its formal justification are included in this paper.
A significant improvement over the 1.6 approximation bound seems impossible if one
is restricted to our techniques. Perhaps a better approximation bound can be obtained
by routing all nets concurrently; however, we doubt that the analysis could be simplified.

2. Basic results. We begin by defining the R1M problem and introducing notation
similar to the one in [GL1]. Let G be a rectangular component of size h by w (height
by width). There are n terminals (T1, T2," ", Tn) on the sides of G. These terminals
are partitioned into m subsets denoted by N1, N2," ’’, Nm. Each subset Ni is called
a net and it is assumed that INil > 1 for all i. The problem depicted in Fig. 2.1 consists
of five nets: N1- { T2, T4, T7}, N2- { T1, T3, Tlo, T14}, N3- { Ts, T2}, N4 { T6, Ts, T9}
and N5- { Tll, T13, T15}. It is assumed that every pair of terminals is at least A > 0
units apart and every terminal is located at least A units from each of the corners of
G. All the terminals in each net must be made electrically common by connecting them
with wires. The path followed by these wires can be partitioned into a finite number
of straight line segments. Each of these line segments must lie on the same plane as
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FIG. 2.1

T12

G, be on the outside of G and be parallel to a side of G. Perpendicular line segments
can intersect at any point, but parallel line segments must be at least A units apart.
Also, all line segments must be at least A units away from every side of rectangle G
except in the vicinity where a line segment connects a terminal. The R1M problem
consists of specifying paths for all the interconnections subject to the rules mentioned
above in such a way that the total area is minimized, i.e., place the component together
with all the wires inside a rectangle (with the same orientation as G) of least possible
area.

Label the sides of the component (in the obvious way) left, top, right and bottom.
Starting in the bottom left-hand corner of G, traverse the sides ofthe rectangle clockwise.
The ith corner to be visited is labeled Si-1. Assume that the ith terminal visited is
terminal T. The close interval Ix, y], where x and y are the corners of G or the terminals
T, consists of all the points on the sides of G that are visited while traversing the
sides of G in the clockwise direction starting at point x and ending at point y. Note
that the interval [x, x] consists of a single point. Parentheses are used instead of square
brackets for open intervals. We use [So, S1], [S1, $2], [$2, $3] and [$3, So]; 0, 1, 2 and
3; L, T, R and B; and L’, T’, R’ and B’ to represent the left, top, right and bottom
sides of G, respectively. Terminal T is said to belong to side l, S(i) l, if T is located
in [S, S(+)moO (4)]"

The function I(j) indicates the index of the net to which terminal T belongs. The
function L(j) is defined in such a way that the interval T, Tt)] is the smallest interval
that includes all the terminals from net N). Set D= {dl, d:,..., din} is said to be
an assignment if D contains exactly one index of a terminal from each net. Any subset
of an assignment is said to be a partial assignment. An assignment D indicates the
starting point for the path connecting all the points in each net. If E D then the path
connecting all the terninals in net Ni(i) starts at terminal Ti moving perpendicular to
side S(i) and then it continues in the clockwise direction with respect to G until it
reaches TL<i). Each terminal, Tk, in net NI<i) is joined to this path by a line segment
perpendicular to side S(Tk). The starting point for the paths connecting some nets
might not be defined in a partial assignment. The assignment for the layout given by
Fig. 2.1 is {2, 3, 5, 6, 11}. For any D, we say that the path connecting net N<l) given
by D crosses point z if z s T, TL(I)]. If D, we say that the path connecting net N()
begins at point T and ends at point TL().

For any assignment (or partial assignment) D we define the height function Ho
for x, y { T, T2," ", T,} t3 {So, S1, $2, $3} as follows:

Ho(x, y) max {number of paths given by D that cross point z lz Ix, y]}.
For example, Ho(So, S) is 1, Ho(Ts, Ts) is 3 and Ho(S2, $3) is 3 for the assignment,
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D, whose layout appears in Fig. 2.1. We shall refer to Ho(x, y) as the height of
assignment D for the interval [x, y] of G. The height of assignment D for side X(X
{ top, right, bottom, left}) refers to the value of Ho(x, y), where Ix, y] is the interval that
represents side X. The vertical (horizontal) height ofassignment D is the height on the
top (left) plus the height on the bottom (right) side of G. The total height ofassignment
D is equal to the vertical plus the horizontal height of assignment D.

The next two lemmas establish that the RIM problem reduces to the problem of
finding an assignment D with least

(h+(HD(S1, S2)+ Ho(S3, So))* A) * (w+(HD(SO, S1)+ HD(S2, $3)) * A)

and then in O(n log n) time one can construct a layout of area hQ by wQ for it.
LEMMA 2.1. For every assignment D, there is a rectangle Q ofsize ho by wo, where

ho-- h+(Ho(S1, $2)+ Ho(S3, So)) * A,

w0 w+(Ho(So, S1)+ Ho(S2, $3)) * X

with the property that rectangle G together with the interconnecting paths defined by D
can be made to fit inside Q.

Proof. The proof is a direct generalization of the proof for the 2-R1M problem
that appears in [La]. [3

LEMMA 2.2. For any assignment D a layout with the area given by Lemma 2.1 can
be obtained in O(n log n) time.

Proof. The proof of this lemma is a straightforward generalization of the proof
for the 2-R1M problem that appears in [La]. The algorithm that constructs the final
layout uses as a subalgorithm the procedure given in [GLL] and [HS]. [3

Net Ni is said to be a global net if at least two of its terminals are located on
opposite sides of G. Net N is said to be local otherwise, i.e., if all its terminals are
located on the same side of G or on two adjacent sides of G. Nets N2 { T1, T3, T10, T14}
and N3- { Ts, T12} are the only global nets in the problem depicted in Fig. 2.1. For
assignment D we define the function A(D) as

(h + (HD(S, $2)+ Ho(S3, So)) * A) * (w+ (Ho(So, S1)+ Ho(S2, $3)) * A),

i.e., the total area required for a layout of G and all the interconnections given by D.
DEFINITION 2.1. Let D’ be the partial assignment in which all the local nets are

connected by paths crossing the least number of corners of G.
LEMMA 2.3. Every assignment D can be transformed to an assignment M such that

D’
_
M and A(M) <= A(D).
Proof. The proof follows the same line as the one for the 2-R1M problem that

appears in [La]. [3

Lemma 2.3 shows that for any instance ofthe R1M problem there exists an optimal
solution in which all local nets are connected by paths crossing at most one corner of
G. The RIM problem has been reduced to the problem of finding the starting point
(by default the direction is clockwise) for the paths connecting all the global nets in
the presence of the partial assignment D’. At this point our algorithm abandons the
procedures given in [La] and [GL2]. The main difficulty that we encounter in extending
the results for the 2-RIM problem to this problem is that the divide-and-conquer step
seems not applicable. The reason for this is that there seems to be no rule to separate
the nets with terminals located in three or four sides of G into groups that can be
optimally routed, independently of each other.

It should be clear that it is only required to specify the paths connecting all the
global nets since we know that local nets can be routed optimally by routing them as
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indicated in assignment D’. Also, once we have an assignment the proof of Lemma
2.2 (a constructive proof) can be used to find a layout of optimal area for it. In the
next three sections we present approximation algorithms for the R1M-i problem,
2 =< -< 4. In 6 we indicate how to combine these results to obtain our 1.6 approximation
algorithm.

3. Approximation algorithm for the RIM-3 problem. In this section we present an
approximation algorithm for the R1M-3 problem. Let M3 be the set of global nets with
terminals located on exactly three sides of G. Clearly, all global nets belong to set M3.
For the set of nets M we construct assignment D3 as follows"

D- {all nets in M are connected by paths that cross the least number
of corners of G}.

Let Mf(M) be the set of all nets in M3 without terminals located on either
the lft or right (top or bottom) side of G. Let m3

r and ma represent the number of
elements in Mf and M3, respectively. In Fig. 3.1(a) we give a layout for the
assignment constructed by our algorithm for a net in M3. Suppose that this net is
routed as in Fig. 3.1(b) in an optimal assignment D. Let M be D except for the path
connecting the net that appears in Fig. 3.1(b) which is connected as indicated in Fig.
3.1(a). It is simple to show that

(s,, s)+ H.(S, So)<_- H(Sl, S)+ Ho(S, So)+ ,
U(So, S,)+ .(S, S)<-- U(So, S)+(S, S).

A straightforward generalization of the above observation is given by Lemma 3.1.
LEMMA 3.1. Let D be an optimal assignment such that D’

_
D. Let M be D except

that all nets in M [.J Mg which are assigned as in our algorithm. Then

H4(Sl, S2)+ HM(S3, So)<= HD(S, S2)+ Ho(S3, So)+ x[,
HM(So, S1) + nM(S2, S3) nD So, S1 + nD S2 S3) --xR

where x (xR) is the number of nets in X[ (X), and X (X) is a set of all
nets in M[ (M) that are connected differently in D and M.

Proof For brevity the proof is not included. 1
Before proving our main result on this section, we establish a lower bound on the

area required by any optimal solution. Our lower bound is given in Table 3.1.

(a) (b)

FIG. 3.1

TABLE 3.1
Lower bounds for the R1M-3 problem.

Set
Contribution to our lower bound for
h/(A + no(s,, $2) + Ho(S3, So)

Contribution to our lower bound for
w/(A )+ Ho(So, S)+ Ho(S2, $3)
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LEMMA 3.2. Let D be an optimal assignment such that D’c_ D. Assignment D and
rectangle G satisfy the lower bounds given in Table 3.1.

Proof. We only prove the lower bounds in the first column of Table 3.1 since the
proof for the bounds in the second column is similar. The proof for these bounds can
be obtained by adding the lower bounds given in Table 3.2. Therefore, we only need
to prove the lower bounds given in Table 3.2.

Each net in M has at least one terminal located on the left or right side of G
and each net in MR has at least one terminal located on the left and on the right
sides of G. Therefore, either on the left or the right side of G there are at least
0.SmT3B+mR terminals. Since every pair of these terminals is at least A unit apart,
we know that h >_-(0.Sm + mR)A. This lower bound is given by the first column of
Table 3.2.

TABLE 3.2

Set
Contribution to our lower bound for

h/(A)
Contribution to our lower bound for

H(S,, S)+ H(S, So)

Let us now establish a lower bound on the number of paths crossing the corners
of G. Since in D every path connecting a net in X t.JXR crosses at least three
corners of G and every path connecting a net in (M( -X) U (MR-XR) crosses
at least two corners of G, we know that

3

.Y Ho(S,, Si)>=2(mR--xR + mfB--xR)+ 3(xR + xB).
i=0

Since the height on the top (bottom) side of G is at least as large as the average height
of the two top (bottom) corners of G, we know that

Ho(S1, $2)+ Ho(S3, So)>= 0.5 * (Ho(S1, S1)+ Ho(S2, $2))

+0.5 (no(s3, $3)+ no(So, So)).
The lower bound for the second column ofTable 3.2 follows from the above inequalities.
The proof for the lower bounds for the first column of Table 3.1 is obtained by adding
the bounds given by Table 3.2. This completes the proof of the lemma, l-1

THEOREM 3.1. For the R1M-3 problem, let D be an optimal assignment such that
D’ D and let M be the assignment generated by our algorithm. Then, A(M)<=
1.6 A(D).

Proof. From Lemma 3.1 and 3.2 we know that

A(M)<_ 1+ 1+
A(D)

where

a x,
b 1.5m( + 0.5x3rn + 2m#R + 0.5x#R,
C XR,
d 2m3rn + 0.5x(n + 1.5mR + 0.5x}g.

Note that a, b, c and d are nonnegative. If b or d is zero, the a, b, c and d will be zero and our
assignment is optimal.
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Since m( => xn and rnR >- xR, we only need to prove that

(1 + x/(2x + 2.5y)) * (1 +y/(2.5x + 2y)) <_- 1.5

where x and y are positive integers. A straightforward manipulation of this inequality
results in the following inequality:

(7.5x2 + 15.25xy + 7.5y2)/(5x2+ 10.25xy + 5y2) -< 1.5.

Since the remaining part of the proof is simple, it will be omitted. This completes the
proof for Theorem 3.1.

4. Approximation algorithm for the RIM-4 problem. In this section we present an
approximation algorithm for the R1M-4 problem. Let M4 be the set of all global nets
with terminals located on the four sides of G and let m4 represent the number of nets
in it. Clearly, all global nets belong to set M4. In what follows we partition the set of
nets M4 into sets that will be routed independently of each other. There are several
reasons for taking this approach. The main reason is that there are basically two types
of nets: the ones with a large number of terminals and the ones with few terminals.
For the first set of nets it is difficult to find routings with small area, but for the second
type of nets such routing can be easily obtained. In our algorithm we do not route
tightly the first type of nets. This routing does not increase our approximation bound
significantly since these nets contribute large values to our lower bound function. The
other type of nets have to be routed tightly, since their contribution to our lower bound
function is small.

Nets N and N (both in set M4) are said to be agreeable if on at least one side
of G no terminal from net Ni is between any two terminals from net N and no terminal
from net/V is between any two terminals from net Ni. Procedure PARTITION, defined
below, partitions the set M4 into the sets M, M4, M4r’, M4R’, M4’, M’, M4, M4R
and M. Since some of these sets consist of 1-tuples, 2-tuples and 4-tuples, by partition
we mean that every element in set M4 is in one and only one of the tuples in these
sets. After the algorithm terminates, let m4

x represent the number of tuples in Mx, for
X {A, N, T’, R’, B’, L’, T, R, B}. It is very important to keep in mind that sets M4A,
Mar’, MaR’, M4’ and M4’ consist of 1-tuples, setMv has only 4-tuples and the remaining
sets contain only 2-tuples. When algorithm PARTITION terminates, the sets our
procedure generates satisfy the following properties. Every net in set MA has exactly
four terminals (one on each side of (3). Because of this, every pair of such nets is
agreeable on each of the four sides of G. Every net in a 4-tuple of set M has at least
two terminals on each side of G and the four nets in each 4-tuple are totally nonagreeable
nets, i.e., every pair of these nets is not agreeable (on each of the four sides of G).
Each net in set Mx, X { T’, R’, B’, L’}, has at least two terminals located on side X
and exactly one terminal located on each of the remaining sides of (3. Every pair of
nets in M4x, X { T’, R’, B’, L’}, is agreeable on all sides of (3, except possibly on side
X. Each 2-tuple in sets M, for X { T, R, B}, contains a pair of nets that are agreeable
on at least one side of G. Every net in set M4x, X e {T, R, B} satisfies one of the
following conditions"

(i) it contains at least two terminals on at least two sides of G, or
(ii) it contains at least two terminals on side X and either exactly one terminal

on the opposite side of X or at least two terminals on the opposite side of X when
the two nets in the tuple are agreeable on an adjacent side of X (one net might violate
this condition, i.e., it has only one terminal on the opposite side of X).
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PROCEDURE PARTITION
//’Partition all nets with exactly one terminal located on each side of G.//
M{NINiM4 and IN,I-4;
W- M4- M4A;
//Partition all nets with at least two terminals located on each side of G.//
Z -{Ni I/V W has at least two terminals located on each side of G};
W W-Z;
M4 - f; M-;M ; M4 ;
while Izl-> 4 do

let Ni, 1V, Nk and N be any four nets in Z;
if any two of these four nets are agreeable

then delete from Z two agreeable nets (two out of the four) and add them
as a pair to M4 if these two nets are agreeable on the left or right side
of G, otherwise add these two nets as a pair to M4R

else delete all four nets from Z
MN (- MN U ((N,, N, Nk, N,)}

endif
endwhile;
//Later on we explain what to do when Z . Note that IZI 3.//
//Partition all nets with at least two terminals located on some side of G and
exactly one terminal located on the remaining sides of G.//

while there is a net in W with at least two terminals located on side X and exactly
one terminal located on the remaining sides of G do.
Let y be one of such nets and let X { T’, R’, B’, L’} be the side on which
it has more than one terminal;
W W-{y};
Mx4 MX4 U {y};

endwhile;
//Partition the remaining nets, i.e., all nets with at least two terminals located on
two sides of G and exactly one terminal located on another side of G.//
Z {NIN W has at least two terminals located on the top side of G};
W- W-Z;
while there are two nets in Z with exactly one

terminal located on the bottom side of G do
delete two of such nets from Z and add them as a pair to M4;

endwhile;
while there are two nets in Z with exactly one

terminal located on the same side of G do
delete two of such nets from Z and add them as a pair to M4

endwhile;
//Later on we explain what to do when Z . Note that IZ[ <-3.//
Z {N[N W has at least two terminals located on the right side of G};
W W-Z;
while there are two nets in Z with exactly one

terminal located on the left side of G do
delete two of such nets from Z and add them as a pair to M4;

endwhile;
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while Izl- 2 do
delete any two nets from Z and add them as a pair to M4

endwhile;
//Later on we explain what to do when Z . Note that IZI-<_ 1//
Z -{N Ni W has at least two terminals located on the bottom side of G};
W- W-Z;
while IZI >- 2 do
remove any two nets from Z and add them to M4 as a pair;

endwhile;
//Later on we explain what to do when Z . Note IZI _-< 1//
end ofprocedure
For some problem instances the algorithm fails to assign some nets to any of the

sets M4x, X {A, N, T’, R’, B’, L’, T, R, B}. Let us assume that this is not the case, i.e.,
Z is always empty whenever we reach each of the "//later on. //" comments in our
procedure. In 6 we explain what to do when this is not the case. From procedure
PARTITION it is simple to verify that no more than eight nets will be left out.

(a) Construction of the assignment D,. In what follows we explain how the
assignment D for all the nets in set M4A is constructed. Figure 4.1 gives a layout for
the assignment D constructed by our procedure for a set M4A with four nets. For any
permutation, or, ofthe nets in set M4A and an integer (0 _-< _-< 3) we define an assignment
(denoted ASG (r, i)) as follows: the first net in r is connected by a path that begins
on side and ends on side (i+3)mod (4); and the path connecting the kth net
(1 < k =< m4A) in r begins on side j and ends on side (j + 3) mod (4), where j is the side
on which the path connecting the (k-1)st net in r ends. We claim that for every
integer (0_-< i-<3) there is a permutation, r (that depends on i) of the nets in set M4A
such that there is a layout for assignment ASG(Tr, i) with the property that for any k
(1 < k _-< m4A) the path connecting the (k-1)st net in r and the path connecting the
kth net in 7r can share the same track on the side where the path connecting the
(k- 1)st net ends. In this case we say that 7r is a valid permutation with respect to i.

FIG. 4.1. Assignment D, for the case when m 4.

CLAIM. For every integer i, 0_--< i_--<3, there is a valid permutation for the set of
nets in M.

Proof The proof of this claim is by induction on the number of nets in M4A.
Clearly, the claim is true when set M4A has only one net. Assume that the claim holds
when there are. k->_ 1 nets. We now show the claim holds when there are k / 1 nets in

M4A. Let N M4A be the net with the topmost terminal on the left side of G. By the
induction hypothesis we know that there is a valid permutation r’ with respect to
some for the remaining k elements in M4A such that the path connecting the last net
in the permutation ends on the left side of G. Since N was selected to be the net with
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the topmost terminal located on the left side of G, we know permutation r (r’, N)
is a valid permutation for some value of i. To show the existence of the three other
permutations (for the other values of i) we repeat the above procedure three times.
The first time we let N be the net with the rightmost terminal located on the top side
of G, the second time/V is the net with the bottommost terminal located on the right
side of G, and the last time N is the net with the leftmost terminal located on the
bottom side of G. This completes the proof of the claim.

A valid permutation, 7r, for 1 can be constructed by a simple recursive pro-
cedure. Once r is obtained, the assignment D ASG(r, i) can be easily constructed.
Figure 4.1 gives a layout for the assignment D constructed by our procedure for set

M with four nets. Note that the contribution to the total height of the assignment is
at most 3 * m4

a+ 1.
(b) Construction of the assignment D’[v. The assignment D is constructed by

applying the following rule to each 4-tuple in M4. Let (Ni, N, Nk, N) be any tuple
in set M. Let us assume that these nets have been ordered in such a way that Ni is
the net (amongst these four nets) whose bottommost terminal located on the left side
of G is closest to the top side of G; net N is the net (amongst N, Nk and N) whose
rightmost terminal located on the bottom side of G is closest to the left side of G;
and net N is the net (amongst Nk and Nt) whose leftmost terminal located on the
top side of G is closest to the right side of G. A layout for the assignment constructed
for these nets is given in Fig. 4.2.

FIG. 4.2. Assignment for a tuple in M.

(c) Construction ofassignment D’forX { T’, R’, B’, L’}. Since all the assignments
D, X s { T’, R’, B’, L’}, are constructed by similar procedures, we only explain the
one for assignment D,. Assignment D, for Mar’ is constructed by applying a rule
similar to the one used in part (a). The main difference is that we are only interested
in valid permutations with respect to 1 and in a valid permutation it is not required
for the (k-1)st net in r and the kth net in 7r to share the same track on the side
where the path connecting the (k-1)st net ends (for k 5, 9, 13....). Once a valid
permutation is obtained the assignment D,= ASG (r, 1) can be easily constructed.
Note that the total height of the assignment is at most 3mr4’+[m’/4].

(d) Construction of assignment D: for X{T, R,B}. Assignment D.., X
{ T, R, B}, for the set M4x is constructed by applying the following rule to each 2-tuple
in M4x. Let (N, N) be any 2-tuple in set M:. From algorithm PARTITION we know
that both of these nets are agreeable on at least one side of G because either both of
these nets have exactly one pin located on some side of G, or both of the nets have
at least two terminals on each side of G and are agreeable on a side adjacent to X.
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The pairs that have exactly one terminal on some side of G are assigned in such a
way that there is a layout in which these nets share the same track on side Z of G
and both nets have exactly one terminal located on side Z. Side Z is selected using
the following priorities" the opposite side ofX has the highest priority; and the adjacent
sides of G have the lowest priorities. Note that side Z cannot be the same as side X.
Figure 4.3 shows a layout for the assignment for a pair of nets in M with Z being
the top side of G. The remaining pairs are assigned in such a way that they share the
same track on a side adjacent to X.

FIG. 4.3. Layout for a 2-tuple in M with Z being the top side of G.

e Final assignment and proof of approximation bound. Let D4=
D (3D (3 D, (3 D, (.J D, U D, (.J D LI D (3 D. The output of our approximation
algorithm is D4 (-J D’. Before showing that our algorithm generates a solution within
60% of the optimal solution value, we need to establish upper bounds for the area of
the layouts obtained from assignment D4 and prove lower bounds for the area of an
optimal solution.

In what follows we assume that m4 is a multiple of four. In 6 we indicate what
to do when this is not the case.

LEMMA 4.1. Let D be an optimal assignment such that D’
_

D. Let M be D except
that all the nets in M are routed as in our approximation algorithm. Then

HM(S,, Sa)+ HM(S3, So)<= HD(S,, Sa)+ Ho(S3, So)+0.5m4a + 1,

H4(So, S,)+ HM(Sa, $3) <- HD(So, S,)+ HD(Sa, $3)+ 0.5m4a.
Proof. From the construction rule for assignment D (a), we know that the

contribution of the nets in M4a to the total height of any assignment that includes D
is at most 3ma+ 1. Also, for any assignment that includesD the maximum contribution
to the vertical height by the paths connecting the nets in M4a is at most 1.5m4a + 1 and
the maximum contribution by these nets to the horizontal height is at most 1.5m4a. In
an optimal assignment each path connecting a net in M4 must contribute to the vertical
and horizontal height at least one. Therefore, when transforming D to M the total
increase in vertical and horizontal height is given by the inequalities in the statement
of the lemma. This completes the proof of the lemma.

In what follows we assume that max, X e { T’, R’, B’, L’}, is a multiple of four. In
6 we indicate what to do when this is not the case.
LEMMA 4.2. Let D be an optimal assignment such that D’

_
D. Let M be D except

for all the nets in M, X e { T’, R’, B’, L’}, are routed as in our approximation algorithm.
Then

HM(S1, S2) "- HM(S3, So) no(S1, S2) --- no(S3, So)+ x * m,
H(So, $1)+ H(Sa, $3) -< HD(SO, $1)+ HD(Sa, $3)+y * m4

x
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where

{0.75 ifX { T’, B’}, {0.5 ifX { T’, B’},
x=

0.5 otherwise, Y= 0.75 otherwise.

Proof. Since the proof of all cases is similar, we only prove the case for X T’.
From the construction rule for assignment D, (c), we know that the contribution from
the nets in set M’ to the total vertical height of an assignment that include D, is at
most (1.75) m4’ and with respect to the total horizontal height is at most (1.5) m4’.
On any optimal assignment, D, the contribution to the vertical and horizontal height
by these nets is at least m4’. Hence, when transforming D to our assignment, the
difference in heights is given by the inequalities in the statement of the lemma. This
completes the proof of the lemma.

For X { T, R, B} let pax be the faaction of pairs in Max that are connected in Dc
by paths that do not overlap on the top or bottom side of G, and q4

x 1-pax. Since
all pairs of nets in M4 are agreeable on the top side of G, we know from our routing
algorithm that q 0.

LEMMA 4.3. Let D be an optimal assignment such that D’ D. Let M be D except
that all nets in M, X { T, R, B}, are routed as in our approximation algorithm. Then

Hlvt(S, $2) -- HM(S3, So) <= HD(S1, $2) "- HD(S3, So) +p * mX4 +2q mX4
HM(S2, $3)+ HM(So, S) <- Ho(S2, $3)+ Ho(So, S1)+ 2p4x * m4

x + q4
x

* m4x.
Proof Since the proof of all three cases is similar we only prove the case for

X T. In assignment D each net with terminals located on the four sides of G
contributes to the vertical height and to the horizontal height at least one unit. Therefore,
the contribution to the vertical and horizontal heights of D for a pair of nets in M4
is at least two. For any assignment a pair of nets routed in such a way that they can
share the same track on the top or bottom side of G contributes to the vertical height
at most three and their contribution to the horizontal height is at most four. For the
nets routed following this sharing rule, we know that transforming D to M increases
the vertical and horizontal height as indicated by the inequalities in the statement of
the lemma. A similar result can be obtained for pairs of nets that are routed in such
a way that they share a track on the left or right side of G. This completes the proof
of the lemma, l-1

LEMMA 4.4. Let D be an optimal assignment such that D’ D. Let M be D except
that all nets in M4 are routed as in our approximation algorithm. Then

H(S,, $2)+ H(S3, So)<= HD(S,, $2)+ HD(S3, So) +7x * m,
Hz(So, S)+ HI(S2, $3) -< HD(So, $1)+ HD(S2, $3)+ 7y m,

where x, y are nonnegative reals such that x + y 1.

Proofi One can easily show that we only need to prove that when assigment D is
transformed to assignment M the total height increases by at most seven for each tuple
in M. Let us now prove that this statement holds for any tuple, H, in M4. There
are two cases.

Case 1. At least one of the paths connecting a net in H begins and ends on the
same side of G in D.

For this case we know that the contribution to the total height in D is at least
three for the nets connected in D by paths that begin and end on the same side of G.
The remaining connecting paths contribute at least two units to the total height.
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Therefore the contribution to the total height of D by these nets is at least nine. On
assignment, D the contribution to the total height for the same set of nets is at most
sixteen. Hence, the total height increases by at most seven after the transformation.

Case 2. In assignment D, no path connecting a net in H begins and ends on the
same side of G.

There are four subcases depending on how the nets in H are connected.
Subcase 2.1. In assignment D, two of the paths connecting nets in H begin on

adjacent sides of G.
The paths connecting these two nets are depicted in Fig. 4.4.

It is simple to see that the contribution to the total height of assign-
ment D by these two nets is at least five. The contribution to the
total height of D by the remaining nets is at least four. The proof
now follows similar steps to the ones in Case 1.

Subcase 2.2. In assignment D all the paths connecting nets in H begin on the
same side of G.

Since the paths connecting all the nets in H begin on the same
side of G, we know that only three nets from H are connected
differently in D and D. Each time the path connecting one of these
nets is changed, the maximum increase of the total height is at most
two. Hence, the total height increases by at most six.

Subcase 2.3. In assignment D the paths connecting all the nets in H begin on
the left or the right side of G and at least one of these paths begins
on each of these two sides.

Assume that no net in H is connected identically in D and
D, as otherwise the proof of Subcase 2.2 can be used to complete
the proof for this case. The total height increases every time a path
is interchanged by at most two, except a path that begins on the left
side of G in D. This is because x is always greater than y (see x
and y in Fig. 4.5). Remember that such a net was selected to be the
one whose bottommost element on the left side of G is closest to
the top side. Hence the total height increases by at most seven units.

FiG. 4.4

FIG. 4.5

M
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Subcase 2.4. In assignment D the paths connecting all nets in H begin on the
top or bottom side of G and at least one of these paths begins on
each of these two sides.

Assume that no net in H is connected identically in D and
D, as otherwise the proof of Subcase 2.2 can be used to complete
the proof for this case. The remaining part of the proof uses similar
arguments to the ones used in the proof for Subcase 2.3 because
either at least two of these paths begin on the bottom side of G or
at least three of these paths begin on the top side of G. Since the
connecting path that begins on the bottom side of G in our solution
is the second "best" and the one that begins on the top side of G
in our solution is the third "best," similar arguments to the ones
used in Subcase 2.3 can be used to complete the prooffor this subcase.

This completes the proof for Case 2 and the lemma. 71
Before proving our main result in this section we establish a lower bound on the

area required by any optimal solution. The lower bound is given in Table 4.1.

TABLE 4.1
Lower bounds for the R1M-4 problem.

Set
Contribution to our lower bound for
h/(A) + Up(S,, $2)+ HD(S3, So)

2.5m’+ 2.5m’
3maR’+3m4t-’

p* m4+5m4+6m4
paR m4

R + 6m4

Contribution to our lower bound for
w/(A) + HD(So, S1)a HD(S2, S3)

3m47"+3m4’
2.5maR’+ 2.5m

q4* mff+6m4+6m
q4
R

m4
R + 5m4R

LEMMA 4.5. Let D be an optimal assignment such that D’ D. Assignment D and
rectangle G satisfy the lower bounds given in Table 4.1.

Proof We only prove the lower bounds in the first column of Table 4.1 since the
proof for the bounds in the second column is similar. Before establishing this bound,
we prove some intermediate lower bounds. It is simple to prove the following lower
bounds:

(a) Each net in M4A has exactly one terminal on the left and right sides of G.
(b) The four nets in each tuple in M4N have at least eight terminals (two per net)

on the left and right sides of G.
(c) Each net in M4x, X { T’, B’}, has exactly one terminal on the left and right

side of G. Each net in Max, X {R’, L’} has at least two terminals on side X and
exactly one terminal on the opposite side of X.

(d) Each net in each pair of nets in M4 routed in D by sharing a track on the
bottom side of T has at least one terminal on the left and right sides of G and at least
two terminals on either the left or the right side of G. Each remaining pair in M47" has
at least two terminals (one per net) on the left and right sides of T. Each pair of nets
in M4 has at least two terminals on the right side (one per net) and at least four
terminals on the left side (two per net). Each pair of nets in M routed in D by
sharing a track on the left side of T has at least two terminals (one per net) on the
left side of G and at least four terminals (two per net) on the right side of T. The nets
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in the remaining pairs in MaR have at least four terminals (two per net) on the left and
right sides of G.

Using the above observations we obtain the bounds given by the first column of
Table 4.2.

Let us now establish a lower bound on the number of paths crossing the corners
of G. Since the path connecting every net in M4a U Mar’ U MaR’U M4’ U M4’ crosses at
least three corners of G; the paths connecting every pair of nets Max, X { T, B, L}
cross at least six corners (each path crosses three corners) of G and the paths connecting
each four nets in a tuple of MaN cross at least twelve corners (each path crosses at
least three corners) of G, we know that

Ho(Si S,)>3mA4+12m4+3m ’’ .4 +3m4R +3m +3m4’+6m 7"
4 + 6m4R + 6m

i=0

It is simple to show that

Ho(S1, $2)+ no(S3, So) >- 0.5 (no(S1, S,) + Ho(S2, S2))

+0.5 (Ho(S3, S3)+ Ho(So, So)).

The lower bound for the second column ofTable 4.2 follows from the above inequalities.
The proof for the lower bounds for the first column of Table 4.1 can be obtained by
adding the bounds given by Table 4.2. This completes the proof of the lemma. [3

THEOREM 4.1. For the R1M-4 problem, let D be an optimal assignment such that
D’_ D and let M be the assignment generated by our algorithm. Then, A(M)<-_
1.6 A(D).

Proof Using the Lemmas 4.1 to 4.5, we know that

A(M) ( , /6 ) ( , / )-< 1+ a = b 1+ c d 2

A(D)- i=1 ,=1 i=1

where a, b, ci and di are defined in Table 4.3 and x, y are positive integers such that
x+y=l.

The proof of the theorem can be obtained by multiplying all terms after replacing
1 by mA4/4 (remember that m4

a >-4) and obtaining an expression of the form (ax + by+
..)/(a’x+b’y+...), where a, b,..., a’, b’,.., are constants and x, y,... are prod-

ucts of variables. The final step consists of showing that a/a’ <= 1.6, b/b’ <= 1.6, .
This completes the proof of the theorem, l-1

TABLE 4.2

Set
Contribution to our lower bound for

h/(A)

m4

m’+m’
1.5m4R’+ 1.5m4t-’

par * mar + 2m47" + 3rn
p4 * m4 +3m

Contribution to our lower bound for
Ho(St, $2)+ Ho(S3, So)

6m
1.5m’+l.5m’
1.5m’+l.5m’
3mff+3m
3m

Note that at, b, c and d are nonnegative. If b or d is zero, then at, b, c and d and these elements
may be deleted from the summation.
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TABLE 4.3(a)

0.5maa +
7x * m

0.75m4r’+0.75m4a’
0.5m’+ 0.5m4L’
q , mT + m4 + m

q4 * m+ m4

2.5m4’+ 2.5m4a’
3m4’+3m4’

paT* m4T+5m+6m4a
p4 m4 + 6m4R

TABLE 4.3(b)

7y * m
0.5m4T’+ 0.5m4a’
0.75m’+ 0.75m’

p4
r

* mar+ m"+2m
paR * m+ m4R

3m4T’+3m4a’
2.5m4R’+ 2.5m4’

qr4 * m+6m+6m
q4 * m+ 5mR4

5. Approximation algorithm for the RIM-2 problem. In this section we present an
approximation algorithm for the R1M-2 problem. Clearly, all global nets contain

TB LRterminals located on only two opposite sides of G. Let ME (ME) represent the set
of global nets with terminals located only on the top and bottom (left and right) sides
of G. Let mE

re and mR represent the number of nets in MEre and ML2R, respectively.
Assume that mE

re and mR are multiples of 6. In 6 we indicate the modifications that
need to be made to the algorithm when this is not the case. First, let us explain
(informally) how the nets in these sets are routed. We will explain only the procedure
for M2rn, since the one for M2R is similar. The set MEre is partitioned into six equally
sized groups. Later on we explain precisely how this partition is obtained. A group is
said to be routed by a path type L(R) if all the nets in this group are routed by a path
that does not cross the right (left) side of G. We will construct 26 assignments. Each
of these assignments corresponds to a string of six elements from the alphabet {L, R}.
The ith element in a string specifies the type of path used to connect all nets in the
ith group. Let us now define formally this construction process. For each net N in

M (MR), let p(j) be the index of the leftmost (bottommost) terminal of N located
on the top (left) side of G. Let prn= {p(j)[ N M2r}, and pLR= {p(j)[/V MR}.
Each of these sets is partitioned into the sets Nf and NR for 1 =<i-<6 as follows

Ta r TB ,]TB J J,] TB

22 3456 678 9 13 9 6 921011 12 12101112

& in Pr (nets)
not in Pr

FIG. 5.0
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(see Fig. 5.0). (Recall that function I(j) was defined as the index of the net to which
terminal T belongs.)

Nr {I(J)IJ is the kth smallest value in the set pr and
((i-1)/6) * ]Pr]<k<-(i/6)* ]Pr I} and

N.L,R= {I(j)lj is the kth smallest value in the set p.R and
((i-1)/6 * [pLRI < k<= (i/6)* [pLRI}.

We define the following sets for 0_-< _-< 63"

Dr {if in the binary representation of the lth least significant bit is one then
the path connecting each net in set NTM does not cross corner $2,
otherwise the path connecting such nets does not cross corner
Sill -<_ I-<_ 6}, and

DR= {if in the binary representation of the/th least significant bit is one then
the path connecting each net in set NR does not cross corner St,
otherwise the path connecting such nets does not cross corner
Sol 1_-</_-<6}.

For 0_-< i, j_-<63, define assignment Did as follows"

Did D’I.J DTn t_J Dp,
and let P be one of the Did’s of least area.

For simplicity, let us assume that in all optimal assignments the nets inM 0 M#R
are routed by paths that cross exactly two corners of G. In general this is not true;
however our results also apply to these problem instances. Just before Lemma 5.4 we
will indicate how to handle these problem instances.

Before proving our last upper bound we need to introduce additional notation.
First of all let us concentrate on the set of nets in M2TM. Remember that in our algorithm
we partitioned this set of nets into six groups and 26 assignments were obtained by
routing all nets in each of these sets by paths that either do not cross the left or right
side of G. Let us refer to each of these groups by G, for 1 -< _-< 6 (these sets correspond
to the sets NT, for 1 _-< i_-<6, defined above). Let D be an optimal assignment such
that D’_ D. Assignment D will be transformed into a nonemtpy set of assignments
by an /-string. An /-string consists of a sequence of six elements from the alphabet
{"r...., ]", "* }. If the number of"*" symbols in the/-string is j, 2 assignments
are generated. The kth element in an/-string indicates how the paths connecting the
nets Gk in D are changed. Let us now explain how these changes are performed. When
the kth element in an/-string is "/", the paths connecting all the nets in Gk that cross
the left side of G in assignment D are changed. These nets will be connected by paths
that do not cross the left side of G. If the kth element is "r", the paths connecting all
the nets in Gk that cross the right side of G in assignment D are changed. These nets
will be connected by paths that do not cross the right side of G. When the kth symbol
is "]", it means "/" if the number of paths connecting the nets in Gk that cross the
left side of G in D is less than or equal to (1/2). IGkl; and it means "r" otherwise.
When the element is a period "." it means that none of the paths connecting the nets
in Gk are changed. The interpretation of "*" is more complex. An /-string with one
or more "*" symbols denotes the set of all /-strings obtainable from it by replacing
each of the "*" symbols with an "/" or an "r." When we apply an /-string with no
"*" symbols to an optimal assignment, D, we obtain an assignment identical to D
except for the paths connecting some of the nets in the groups Gi. The specific paths
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to be changed are indicated by the/-string. Applying an/-string with "*" symbols, I,
to an assignment, D, generates a (nonempty) set of assignments. This set of assignments
consists of all assignments obtained from D by applying an/-string obtainable from L

In Lemma 5.1 and the lemmas appearing in the appendices, we assume that when
interchanging the paths connecting two nets in M2rB that cross on the top side of G
will increase by at most two the vertical height of the assignment. The assumption is
not always true. In Fig. 5.1 we show the only counterexample. We call this interchange
a type I interchange. The two nets involved in this interchange form a type I pair.
Interchanging the path connecting a net in MB to one that does not cross the left or
right sides of G increases the vertical height of an assignment by at most two. This
statement always holds.

Sometimes Lemma 5.1 holds even when type I interchanges occur when transform-
ing an optimal assignment to the ones generated in our algorithm. Since there are cases
when this will not be true we need to apply some postprocessing improvement to
eliminate the effects of the type I interchanges. We will explain how to do this after
Lemma 5.1. We should point out that after this postprocessing procedure the 1.6
approximation bound will hold for all problem instances.

LEMMA 5.1. LetD be an optimal assignment such that D’
_
D. There is an assignment

Di, (constructed by our algorithm)such that ifM is defined as D except for all the nets
in M [.J MR which are routed as in the assignment Di,j, then

(a) HM(S,, S2)q- HM(S3, So) <- HD(S,, S)+ HD(S3, So) + (0.6) * m,
(b) H(So, S,)+ HM(S2, S3) Ho(So, S,)+ HD(S2, $3) + (0.6) * m2a.

(It is assumed that when D is transformed to any of the assignments Di and two paths
that cross on the top side of G are interchanged, such an interchange is not a typeI
interchange.)

Proof. The proof is given in Appendix A.
Let L be an optimal solution that includes D’. The existence of at least one of

these assignments is guaranteed by Lemma 2.3. Let S be any of the D, assignments.
The difference between S and L is the way in which some nets in MEan LI MR are
routed. Lemma 5.1 shows that at least one of our assignments differs in vertical height
from L by at most 0.6 mn and in honrizontal height by at most 0.6 * mL2R. As noted
in the text appearing immediately before Lemma 5.1, we cannot yet claim that the 0.6
bound holds when type I interchanges occur.

When there is a type I interchange, the height on the top side of G could increase
by at most one and the height of the bottom side of G could increase by at most two.
If instead of increasing the total vertical height by at most three it would have been
by at most two, then the previous lemma would be correct even with interchanges.of
type I. This is true sometimes, but in general we cannot guarantee that it will always
happen. In order for our 0.6 bound to hold we transform each assignment S (each of
the Di,’s) to another assignment R such that if the total increase in vertical height
when transforming L to S by interchanging some of the nets in ML2g was _-< w W3a,

b b a a II b b a a

(a)
(b)

FIG. 5.1. Type I interchange. (a) Before the interchange; (b) After the interchange.
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where a is the number of type I interchanges made and w is the contribution from
all other interchanges, then the actual difference in vertical height between L and R
is at most w + 2a. Before presenting our transformation algorithm we make a couple
of definitions.

DEFINITION 5.1. A pair of nets, (a, b), in M is said to form a crossing pair in
an assignment if the following conditions are satisfied (see Fig. 5.2);

(i) Net "a" is connected by a path that crosses the left side of G.
(ii) Net "b" is connected by a path that crosses the right side of G.
(iii) On the bottom side of G all the terminals from net "b" appear to the left

of all the terminals from net "a".
(iv) On the top side of G there is at least one terminal from net "a" located to

the right of the rightmost terminal from net "b" and at least one terminal from net
"a" is located to the left of the leftmost terminal from net "b".

la a babb aa
2 345 6 7 8.Terminal-numbers
b b aa II

FIG. 5.2. Crossing pair a, b ).

One can easily prove that any two nets involved in a type I interchange will, after
the interchange, form a crossing pair. However, the converse is not true. Later on we
show that such a pair has harming effects only when it is a conflicting pair.

DEFINITION 5.2. A crossing pair (a, b) includes point x if either of the two
following conditions is satisfied:

(i) If x is located on the top side of G, then all terminals from net "b" located
on the top side of G appear to the left of x and the rightmost terminal from net "a"
.is located to the right of x (interval (6, 8) in Fig. 5.2). Or

(ii) If x is located on the bottom side of G, then all terminals from net "b" located
on the bottom side of G appear to the left of x and all the terminals from net "a"
are located to the right of x (interval (10, 11) in Fig. 5.2).

DEFINITION 5.3. A crossing pair (a, b) partially includes point x if x is located
on the bottom side of G and there is a terminal from net b at point x or to the left
of x, and there is a terminal from net a at point x or to the right of x (interval [9, 12]
in Fig. 5.2).

Note that if point x located on the bottom side of G is included in a crossing
pair then it is also partially included in it, but the converse is not always true.

DEFINITION 5.4. A conflicting pair, (a, b), is a crossing pair that includes the
leftmost point with maximum height located on the top side of G, partially includes
all the points with maximum height located on the bottom side of G and includes
either the leftmost or the rightmost point with maximum height located on the bottom
side of G.

Our postprocessing procedure will find conflicting pairs and interchange their
connecting paths. In Fig. 5.3 we show a conflicting pair and in Fig. 5.4 we indicate
how these paths are interchanged.

This transformation reverses the effects of type I interchanges.
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FIG. 5.3. (a, b) forms a conflicting pair.

’r Points with

maximum height

FIG. 5.4 Interchange of the conflicting pair given in Fig. 5.3.

ALGORITHM MODIFY
R-S;
//The statement in this comment is not executed by the algorithm; its presence
is to simplify the proof of Lemma 5.2.
Mark all nets involved in type I interchanges when L was transformed into S.//

while there is a conflicting pair in R do
interchange a conflicting pair in R
//The statement in this comment is not executed by the algorithm; its presence

is to simplify the proof of Lemma 5.2.
Unmark all marked nets involved in the interchange just performed as well
as all nets involved in a type I interchange with the nets in the conflicting
pair just interchanged.//

endwhile
end of algorithm

During each iteration of the algorithm the maximum height on the top side of G
is not increased; however the maximum height on the bottom side of G is decreased
by at least one. Note that the maximum height on the top side of G is not increased
because a conflicting pair includes the leftmost point with maximum height on the top
side of G.

Let a be the number of type I interchanges made when transforming L to S and
let w + 3a be the total increase in vertical height because of such transformation. Let
Ro- S and So a. For i_-> 1 let Ri be assignment R at the end of the ith iteration of
algorithm MODIFY and let ai be the number of type I pairs that remain marked at
the end ofthe ith iteration of algorithm MODIFY (using the "imaginary" computations
described inside the comments).

LEMMA 5.2. The vertical height of assignment Ri minus the vertical height of
assignment L is at most w + 2a + a.

Proof. We prove this lemma by induction on i. By definition, the statement of the
lemma is true for i= 0. Assume it is true for i-1 => 0 and let us now show it is true
for i. There are three cases depending on the number of nets unmarked during the ith
iteration of the algorithm.

Case 1. No nets are unmarked during the ith iteration.
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Since at each iteration of the algorithm we decrease the vertical height by at least
one and since no terminal is unmarked at this step,

(HR,(S1, $2)+ HR,(S3, So))-(HL(S1, S2)+ HL(S3, So))

< (HR,_,(S1, $2)+ HR,_,(S3, So))-(HL(S1, $2)4- H,(S3, So))

<_ W d- 2ot -l- ot

w + 2a + ai

and the induction hypothesis holds for i.
Case 2. A type I pair is unmarked during the ith iteration.
Since at each iteration of the algorithm we decrease the vertical height by at least

one and since ai ti-1 1,

(H,,,(S, S:)+ H,(S, So))-(H(S, S:)+ I4(S, So))

=< (HR,_,(S,, $2)+ HR,_,.(S3, So))-(Hz.(S1, $2)+ HI.(S3, So))- 1

w + 2a + c-1 1

w + 2a +

and the induction hypothesis holds for i.
Case 3. Two type I pairs are unmarked during the ith iteration.
Each of the nets in the two pairs contributed two to the 2c term in (HR,_(S1, $2)+

HR,_(S3, So))-(HL(S1,S2)-I-HL(S3, So)) and one to the a-i term in the same
expression. Now, we know that two of these nets will be routed as in assignment L,
so the total increase of the vertical height by each of the two remaining nets is at most
two. Hence the total contribution of the interchange is at most four.

(H,(S,, S:)+/4,(S, So) t-I,.( S, S) + H(S So))

=< contribution of the nets not involved in this interchange
(which is the same as in the previous iteration)+
contribution of the two pairs involved in the interchange

-< (w+ 2(a 2) + (a,_l 2)) + 4

w+2t + c_1-2.

Since a a_1-2, the induction hypothesis holds for and the proof of the lemma
follows by induction.

DEFINITION 5.5. When algorithm MODIFY terminates, let x be the leftmost point
located on the top side of G whose height in assignment R is maximum.

LEMMA 5.3. The vertical height ofassignment R minus the vertical height ofassign-
ment L is at most w + 2a.

Proofi It is simple to see that

(HR(S1, $2)+ HR(S3, So) --(HL(S1, $2)-[- HL(S3, So) w q-2a + a’

where a’ is the value of a at the end of the last iteration of the algorithm. If a’ is
zero, there is nothing to prove. So let us assume it is not the case. Let k be the number
of type I pairs that do not include point x. Each of these k pairs will only contribute
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two to

(HR(X, x)+ HR(S3, So))-(HI(S1, S2) -- HL(S3, So))

(HR(S,, $2)+ HR(S3, So))-(HL(SI, $2)+ HL(S3, So)).

Hence, if k a’, there is nothing to prove. So, assume that k < a’ and let a"= a’-k.
That is c" is the number of type I pairs that include point x. Hence,

(HR(S,, S2)+ HR(S3, So))-(HI_.(S1, $2)+ HL(S3, So))<= w+ 2a + a".

Let Yl (Y,.) be the leftmost (rightmost) point on the bottom side of G whose height
in assignment R is maximum. Since the algorithm terminates when there remains no
conflicting pairs, there can be no type I pair that includes x, yl and partially includes
(or includes) y; or includes x, y and partially includes (or includes) y. Let g (gr) be
the number of type I pairs that include x and y (y). There are two cases depending
on the values of Z and Zr.

Case (i): Z g It is simple to verify that each type I pair is counted (included)
in either zt, z or in a- z- z. Every type I pair counted in z contributes to

(H(x, x)+ HR(y,, y,))-(HL(S1, S2)+ HL(S3, So))

exactly three, each of the type I pairs counted in z contributes one, and each of the
remaining type I pairs (those not counted in Zr and Zl) that include x contributes at
most two. Hence,

(HR(X,x)+HR(Yl, Yl))-(HL(S1,S)+Ht.(S3, So))<= w+2(ce Zl- Zr) +3 *

Since Z Zr, Z + Z Ol, and

(HR(X, X)+ HR(Yl, Yl))-(HL(S1, $2)+ HL(S3, So))

(HR(S,, $2)+ HR(S3, So))-(HL(SI, $2)+ Ha(S3, So)).

Hence, HR S1, $2)+ HR S3 So) H.(SI Sa) + HI(S3 So))<-- w+ 2a. This completes
the proof for case (i).

Case (ii): zt > zr. The proof for this case is similar to case (i), so it will be omitted.
This completes the proof of the lemmao

An algorithm similar to MODIFY has to be applied to the mi, in order to be able
to claim the bound 0.6. mR. Let us refer to this new procedure MODIFYoLR. Our
algorithm works as follows"

Obtain assignments mi,
Use MODIFY and MODIFY-LR to transform each mi, into a new assignment,

Output the assignment Mi.j of least area;

We have also been assuming that in all optimal assignments the nets in M2rB UMR

are connected by paths that cross exactly two corners of G. In general this is not true.
Let D be an optimal assignment and let mf’ (mR’) be the number of nets in MTn

(M2R) that are connected in D by paths that cross two corners of G. Let m2rn’=

mf- mf’ and mR’’- mR- m#R’ When transforming an optimal assignment D to
one of the assignments generated by our algorithm, we will first modify the assignment
to one in which all nets in Mr2 [3 M#g are connected by paths that cross exactly two
of the corners of G. This new assignment is obtained by connecting all nets in Mf
(MR) that are connected by paths that cross the four corners of G, by paths that do
not cross the right (top)side of G. The new assignment satisfies the restrictions imposed



ROUTING MULTITERMINAL NETS 691

before. The cost of this modification must be accounted for (see Lemma 5.4). Note
that each time an interchange is performed we will increase by at most one the height
of one side of G, but we will decrease the height of another side (adjacent to the
previous one) of G by one. From the above discussion and lemmas, we obtain the
following lemma which we state without a proof.

LEMMA 5.4. LetD be an optimal assignment such that D’
_
D. There is an assignment

Mi.j (constructed by our algorithm) such that ifM is defined as D except for all the nets
in MB MR which are routed as in the assignment Mid, then

(a) HM(S1, S2)+ HM(S3, So)<- HD(S,, Sa)
+ HD(S3, So) + (0.6) * m2

TB + m2Tn’- m2LR’,
(b) HM(So, S,)+ HM(Sa, $3)_-< HD(So, S,)

+ Ho(S2, $3) + (0.6) * mR +mR’’- m"’.
Before proving our main result in this section we establish a lower bound on the

area required by any optimal solution. The lower bound is given in Table 5.1.
LEMMA 5.5. Let D be an optimal assignment such that D’ D. Assignment D

and rectangle G satisfy the lower bounds given in Table 5.1.
Proof. We only prove the lower bounds in the first column of Table 5.1 since the

proof for the bounds in the second column is similar. Clearly, each net in M2LR has
at least one terminal on the left and right side of G.

Using the above observation, we obtain the bounds given by the first column of
Table 5.2.

Let us now establish a lower bound on the number of paths crossing the corners
of G. Since every path for a net in MrS’ UMR’ crosses two corners of G, and every
path for a net in M2TS" U ML2R" crosses four corners of G, we know that

Y. HD(S,, S,)->_ 2(mEB’+ mR’)+a(mT2n"+ mR").
i=0

It is simple to show that

HD(S1, $2)+ HD(S3, So)--> 0.5 * (HD(SI, SI)+ HD(S2, $2))

+0.5 (Ho(S3, $3)+ HD(So, So)).

TABLE 5.1
Lower bounds for the R1M-2 problem.

Set
Contribution to our lower bound for
hi(A)+ HD(SI, $2)+ HD(S3, So)

Contribution to our lower bound for
w/(X )+ HD(SO, S,)+ HD(S2, $3)

TABLE 5.2

Set
Contribution to our lower bound for

hl(,

m’+m"

Contribution to our lower bound for
Ho(S, S9 + Ho(S, So)
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The lower bound for the second column ofTable 5.2 follows from the above inequalities.
The proof for the lower bounds for the first column of Table 5.1 can be obtained by
adding the bounds given by Table 5.2. This completes the proof of the lemma, l-1

THEOREM 5.1. Let D be an optimal assignment such that D’ D and let P be the
assignment produced by our algorithm. Then, A P <- 1.6 * A D).

Proof. Let M be any of the assignments constructed by the algorithm such that
M Mi.j and Mi.j is an assignment that satisfies Lemma 5.4. We now prove that
A(M) <= 1.6 A(D). Since A(P) <- A(M) our bound holds. Using Lemmas 5.4 and 5.5
we know that:

where

A(M)/A(D) <= (1 + alibi) * (1 + Cl/ dl),

al 0.6mn’+ 1.6m2rn’-mR’,
bl m’n’ + 2mn"+2mR’+3mR’,
Cl =-m[n"+O.6mR’+ 1.6mR’,
dl 2m2n’ + 3ma"+ mR’+2mR’.

The proof of the theorem can be obtained by multiplying all terms and obtaining
an expression of the form (ax+by+...)/(a’x+b’y+...), where a, b,..., a’, b’,.
are constants and x, y, are products of variables. The final step consists of showing
that a/ a’ -< 1.6, b/b’ -< 1.6,. .

This completes the proof of the theorem, l-1

6. Approximation algorithm for the RIM problem. In this section we show that
our algorithm takes O(n(m + log n)) time and generates a solution with area
<-1.6, OPT, where OPT is the area of an optimal solution.

ALGORITHM FOR THE R1M PROaLEM
Construct assignments D’, D3 and D4;
Di, D’ [_J D [_J D4 [.J DfB [.j DR for 0 -< i, j =< 63;
Apply algorithm MODIFY and MODIFY-LR to each D, to obtain M,;
Let P be one of the M,’s of least area;
Construct and output a layout with area A(P) for P;

end of algorithm

THEOREM 6.1. The time complexity of our algorithm is O(n(m+log n)).
Proof. It is simple to verify that all the steps in our algorithm take O(n) time

except for the initial sorting of the terminals (if not initially sorted), the construction
of assignment D, D. (X { T’, R’, B’, L’}), and procedure MODIFY and MODIFY-
LR. Clearly, sorting can be performed in O(n log n) time. Assignment D, (as well as
assignments D, X { T’, R’, B’, L’}) can be obtained in O(n log n) time by a simple
recursive procedure that manipulates four priority queues and uses a simple marking
scheme. The priority queues can be implemented by heap trees [AHU] and the marking
scheme can be implemented using a one-dimensional array. A slightly complex marking
scheme can be used to reduce the time complexity of this part of the algorithm to
O(n). For brevity such a scheme will be omitted. The total number of iterations
performed by procedure MODIFY and MODIFY-LR is at most O(m) since at each

See footnote in Theorem 4.1.
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iteration the height of assignment R on the bottom side of G is decreased by one and
the height can be at most O(m). The statements inside the "while loop" of both
procedures can be easily implemented to take O(n) time. Hence, the total time
complexity for both these procedures is O(n(m+log n)). E]

Before proving our main result we establish a lower bound on the area required
by any optimal solution. The lower bound is given in Table 6.1.

TABLE 6.1
Lower bounds for the R1M problem.

Set
Contribution to our lower bound for
h/(h )+ Up(S,, $2)+ no(s3, So)

mB’+2m’’
2mR’+3m2LR"
1.SmB + 0.Sxn
2mR + 0.5x3a

2.5m4A

14m
2.5m47"’+ 2.5ma’
3m4R’+3m4v

p47" * m4
r + 5m4r+6m

p m4 +6m

Contribution to our lower bound for
w/(A)+ no(So, $1) + no(Sz, $3)

2m’a’+ 3m’a"
m2t,R’ +2m"
2mara+ 0.5x3ra

1.5m + 0.5x3
2.5m4A

14m
3mr’+3m4’

2.5m4’+2.5m4v
q,m+6m+6m

q4 * m4
R + 5m4

LEMMA 6.1. Let D be an optimal assignment such that D’
_
D. Then assignment D

and rectangle G satisfy the lower bounds given in Table 6.1.
Proof The proof for this bound follows from Lemmas 3.2, 4.5 and 5.5.
THEOREM 6.2. Let D be an optimal assignment such that D’_ D and let P be the

assignment generated by our algorithm. Then, A(P)<= 1.6. * A(D).
Proof Let M be any of the assignments constructed by the algorithm such that

M Mi, and M,j is an assignment that satisfies Lemma 5.4. We now prove that
A(M) <- 1.6. A(D). Since A(P)<=A(M) our bound holds. Using arguments similar
to those used in the proofs of Lemmas 3.1, 4.1, 4.2, 4.3, 4.4, and 5.4, and the lower
bound given in Lemma 6.1, we know that"

(A(M)<_ 1+ ai bi * 1+ ci di 4

A(D)- i= i=1

where a, bi, ci and di are defined in Table 6.2 and x, y are positive integers such that
x+y=l.

Substituting m(>=x(, m#R>=x#R and a >-m’/4 (remember that maa=>4) and
multiplying all terms, we obtain the expression of the form (ax + by+. .)/(a’x + b’y+
..), where a, b,..., a’, b’,. are constants and x, y,... are products of variables.

The final step consists of showing that a/a’<= 1.6, bib’<= 1.6,. .. This completes the
proof of the theorem.

Our algorithm generates 212 assignments and it outputs one that requires the least
layout area. An algorithm that only generates 26 assignments can be easily obtained
by only taking the best of the modified D’U D U D4 UD together with the best of
the modified D’U D U D4UDR. Note that a transformation applied to the first
assignment does not modify the horizontal height on the second assignment, and a

The footnote in Theorem 4.1 applies for 1, 8.
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TABLE 6.2(a)

0.6ma’+ l.6m r2n"_ mR"

x
0.5ma +
7X * m

0.75mar’+ 0.75m4a’
0.5m4R’+ 0.5m

q47" * m4 +m+ m4
m4 + q4 m4

rnn’+ 2rnn"+ 2rn}R’+ 3m}R"
1.5m3TM + 0.5x3TM + 2m} + 0.Sx}

2.5m4A

14mN

2.Smff’+ 2.5m’
3mR’+3rn4t-’

p , m+ Sm’+6m4
p4 m4 +6mR

TABLE 6.2(b)

_mn"+O.6mR’+ 1.6mR"
xR

0.5m4a
7y * m

0.5m4r’+ 0.5m4’
0.75maR’+ 0.75m4’

p4
r
* rn4

:r + rn" + 2m4a
p4 m4 + rn4

transformation applied to the second assignment does not modify the vertical height
on the first assignment. For brevity we will not prove that this solution also satisfies
our approximation bounds. In 4 and 5 we assumed that the number of nets in some
sets was a multiple of some fixed constant. More specifically, we.might have to delete
at most five nets from sets M2rB and MR; at most three nets from sets M4A, M4r’, M4R’,
M’ and M4’; and procedure PARTITION deletes at most eight nets (those never
added to M, Mar, M4R and M). All of these nets with a "small" number of terminals
can be routed optimally by trying all possible routing paths and then selecting the
best of the solutions generated. If some of these nets do not have a "small" number
of terminals then select any routing paths for them. Note that it will not make too
much difference which routing path is selected since their contribution to the lower
bound in an optimal solution is large (contribution from the number of terminals).
There are better ways of dealing with the remaining 33 nets; however, for brevity these
other methods will not be discussed in this paper.

7. Discussion We have shown that there is an efficient approximation algorithm
that generates a solution within 60% of optimal for the RIM problem. The algorithm
takes O(n(m +log n)) time and the constant associated with this bound is small. Our
algorithm generates 26 assignments (see comment at the end of 6) and it outputs one
with least layout area. We conjecture that the solutions generated by our algorithm
are usually closer to optimal than the bound of 60%. The reason for this is that our
bounds are rough and are based on analyzing groups of nets separately. We took this
approach in order to simplify the analysis, which in spite of this became very complex.
One of the interesting aspects of our algorithms is that the proof of Lemma 5.1 can
be obtained by solving a set of Linear Programming problems. Before we proved this
lemma we programmed a personal computer (IBM with INTEL 8088 and 8087
processors) to prove the lemma for us. The computer solved several hundred linear
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programming problems using the simplex method. In each of these problems there
were around eighty equations and about one hundred variables. The simplex method
that we programmed took about 30 iterations to generate the optimal solution to each
of the LP problems. The total execution time was about 50 CPU hours.

A better solution (not a better approximation bound) can be obtained by selecting
more groups for the nets in set M2r and MR, as well as some postprocessing
improvements similar to those performed by procedure MODIFY. For brevity we will
not discuss such extensions. If less than six groups are selected for MEre or ML2R, one
cannot prove the approximation bound 1.6, When three groups are selected (as in
[GL3]), the approximation bound is exactly 1.69.

Appendix A.
LEMMA A.1. Let D be an optimal assignment such that D’

_
D. There is an assign-

ment Did (constructed by our algorithm) such that ifM is defined as D except for all the
nets in M UMg which are routed as in the assignment Did, then

(a) HM(S,, S2) --- H(S3, So)<= HD(S1, S2) -]- HD(S3, So) + (0.6) * m2rn,
(b) H4(So, S,)+ H(S2, $3)--< HD(So, S,)+ Ho(S:, $3) + (0.6) * ma.

It is assumed that when D is transformed to any of the assignments Dig and two paths
that cross on the top side of G are interchanged, such an interchange is not a type I
interchange.

Proof Since the proof for part (b) is similar to the proof of part (a), we only
prove part (a). Before proving the lemma we make the following observations (note
that we are assuming that there are no type I interchanges)"

(i) The interchange of a path connecting a net in M" in assignment D to one
that crosses the least number of corners in G will increase by at most two the vertical
height of D.

(ii) The interchange of two paths that cross on the top side of G in assignment
D will increase by at most two the vertical height of D.

Let Gi, for 1 _-< _-< 6, be the partition of the nets generated by our algorithm (these
sets were called Nrs, for 1 _-<i_-< 6, in our algorithm). For assignment D, let l be the
number of nets in G that are connected by a path that crosses the left side of G and
let r be the number of nets in Gi that are connected by a path that crosses the right
side of G.

In what follows we apply several /-strings to assignment D. When an /-string
contains three "." symbols and three ..... symbols, for example "....**", eight assign-
ments are obtained. In Appendix B we prove that at least one of these assignments,
M, has the property that

HM(S,, $2)+ HM(S3, So)Ho(S1, S2) ’- HD(S3, So) + (1/3) *

When the/-string contains five "," symbols and a "." symbol, for example "**.***"
32 assignments are generated. In Appendix B we show that at least one of these
assignments, M, has the property that

HM(S1, S2) -]- HM(S3, So) HD(S,, S2)q- HD(S3, So) + (8/15) * m2T.
In what follows we will use/-strings that contain three "." symbols and three letters,
for example "r, rl**." Using the lemma in Appendix B we know that the /-string
"....**" when applied to D produces an assignment with some given property. If such
assignment is modified by the/-string "r.rl.." we obtain an assignment whose vertical
height differs from the one in D by at most 2 max {rl + r3, l} + (1/3).m. A similar
interpretation is given to /-strings with five "." symbols and one "1" symbol. In this
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case the bound on the increase of the vertical height is given by the lemma in
Appendix C.

We prove part (a) of the lemma by contradiction. Suppose that all assignments
M obtained from D by applying the/-string "******" do not satisfy the lemma. There
are three cases that need to be considered.

Case 1" max{li, ri}>=(2/15).m2, for some 1=<i_-<6. Let j be such that
max{/, r}=>(2/15), mr. Since r+/= mrS/6, we know that min{/, r}=<mrS/30.
Applying the /-string that consists of all "." symbols except for a "[" symbol in the
jth position to D generates an assignment whose vertical height differs from the one
in D by at most

2 min {/, 5} + (8/15) m2TM,
which we know must be greater than (0.6), mrs. Substituting the upper bound for
"min" obtained above we know that (9/15) > 0.6, a contradiction. Hence, the conditions
of Case 1 do not hold.

Case 2.

(A.2.0) max {li, r} < (2/15) mra for 1_-< i_-<6, and

(A.2.1) r2 + r4 -> 13 + 15.
First of all we prove a pair of inequalities (A.2.2 and A.2.3) hold. These inequalities

will be useful later on. Applying the /-string "rrl***" to D generates an assignment
whose vertical height differs from the one in D by at most 2 max {r + r:,/3}+ mfS/3,
which we know must be greater than (0.6), m2TM. This is equivalent to

max {r + r_,/3} > (2/15) * m2.
If 13>=r + r2 then from the above inequality we know that /3 > (2/15), m2rs. This
contradicts (A.2.0). So it must be that

(A.2.2) r + r2 > 13.
Applying the /-string "***rll" to D and using similar arguments, we know that

(A.2.3) 15 + 16 > /’4"

Hence, it must be that inequalities (A.2.2) and (A.2.3) hold as otherwise there is a
contradiction.

We now show that for this case there is a contradiction. There are two subcases.
Subcase 2.1.

(A.2.1.1) 14t" 15/ 16 => rl + r2+ r3.

CLAIM. Ifone ofthefollowing inequalities does not hold then there is a contradiction"

(A.2.1.2) 13 -t- 14 -k 16 >-- r -k r2 q- rs,

(A.2.1.3) 12 + 14 + 16 => r + r3 +
(A.2.1.4) r5<16,

(A.2.1.5) r4</5,

(A.2.1.6) r3 </4,

(A.2.1.7) r2 > 13.
ProofofClaim. In what follows we show that (A.2.1.2)-(A.2.1.7) hold as otherwise

there is a contradiction.
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Proofof (A.2.1.2)-(A.2.1.3). If any ofthese inequalities does not hold then replace
in it r by mB/6-1 and lk by mB/6-rk for appropriate values of k and j, and we
obtain a contradiction to inequality (A.2.1.1).

Prooffor (A.2.1.4). Since inequality (A.2.1.1) holds we know that applying the
/-string "’rrrlll" to D produces an assignment with a vertical height that differs from
the one in D by at most

2(/4+ ,+/6),

which we know must be greater than (0.6) mn. If rs >- 16 then replacing 16 by r5 and
replacing r5 + ls by mn/6 in the above inequality we know that 14 > (2/15) m2r. This
contradicts inequality (A.2.0). Hence, it must be that rs < 16. This completes the proof
for (A.2.1.4).

Prooffor (A.2.1.5). Since the proof for this part is similar to one for the previous
one, it will be omitted.

Prooffor (A.2.1.6). Same as the proof for (A.2.1.4) but applying the/-string "rrllrl"
and using inequalities (A.2.1.4) and (A.2.1.2).

Prooffor (A.2.1.7). The proof follows from (A.2.1.5) and (A.2.1).
End of Claim.
We now show that when inequalities (A.2.1.2)-(A.2.1.7) and (A.2.0) hold then

there is a contradiction. Applying the /-string "rirlrl" to D and using inequalities
(A.2.1.4), (A.2.1.6) and (A.2.1.3), we know that

12- 14"" 16> (0.3) * m2rn.
Similarly, applying the/-string "lrlrlr" and using inequalities (A.2.1.7) and (A.2.1), we
know that

min {rl, 11}+ r2+ r4+ r6> (0.3) m2rB.
Adding these two inequalities and replcing r +/ by (1/6) mra, we know that

min {r, 1,} > (0.1) m2to,
a contradiction (since r + I (1/6) m2r). This completes the proof for Subcase 2.1.

Subcase 2.2.

(A.2.2.1) 14+ 15+ 16--< rl + r2+ r3.

CLAIM. Ifone ofthefollowing inequalities does not hold then there is a contradiction.

(A.2.2.2) rl / rE + r4 ----> 13 + 15 / 16,

(A.2.2.3) rl + r3 + r4 -> 12 + 15 + 16,

(A.2.2.4) rl + r3 + r5 >-12 +14 +16,
(A.2.2.5) rl + r2 + r5 _>- 13 + 14 + 16,

(A.2.2.6) rl > 12,

(A.2.2.7) r2 > 14,

(A.2.2.8) rl >/3,

(A.2.2.9)

(A.2.2.10)

(A.2.2.11)

(A.2.2.12)

r2>/3,

r3 > l,

13+ ls+16>- r2+ r4,

11 + Is < (2/15) * m2ra.
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ProofofClaim. In what follows we show that (A.2.2.2)-(A.2.2.12) hold as otherwise
there is a contradiction.

Proofof (A.2.2.2)-(A.2.2.5). If any of these inequalities does not hold then replace
in it r by mfa/6-1 and lk by mrEa/6-rk for appropriate values of j and k, and we
obtain a contradiction to inequality (A.2.2.1).

Proof of (A.2.2.6). The proof for this part uses arguments similar to the ones in
the proof of (A.2.1.4) in Subcase 2.1. The /-string applied in this case is "rrlrll" and
inequalities (A.2.2) and (A.2.2.2) are used to establish the bound on the difference in
vertical heights.

Proof of (A.2.2.7). Similar to the proof for (A.2.2.6).
Proof of (A.2.2.8). Same as above but applying the /-string "rrrlll" and using

inequality (A.2.2.1).
Proof of (A.2.2.9). Similar to the proof for (A.2.2.8).
Proof of (A.2.2.10). Same as above but applying the /-string "rlrrll" and using

inequalities (A.2.2.6) and (A.2.2.3).
Proofof (A.2.2.11). If 13 + 15 + 16 < r2 + r4, then since (A.2.2.9) holds we know that

applying the /-string "]rlrll" to D produces an assignment with a vertical height that
differs from the one in D by at most

2 min {11, rl}+2r2+2r4,

which we know must be greater than (0.6), m2r. Since min {rl, ll}<=ma/12 and
rj + l mn/6 for all j, the above inequality becomes

12 + 14 < (7/60) m2ra.
Also, applying the/-string "rl, l**" to D generates an assignment whose vertical height
differs from the one in D by at most

2 max {rl,/2 + 14}+ mfa/3,

which must be greater than (0.6) m2ra. Substituting 12 + 14 < (7/60) m2
r and inequality

(A.2.0) in the above expression results in the inequality 0.6 > 0.6, a contradiction. So
it must be that

13+ ls+16>- r2+ r4.

Proofof (A.2.2.12). Applying the/-string "rrllrl" and using inequalities (A.2.2.8),
(A.2.2.7) and (A.2.2.5), we know that

(eq.A.1) 2(rl + rE+ r5)> (0.6) * mEre.
Similarly, using "rlrlrl," (A.2.2.6), (A.2.2.10) and (A.2.2.4), we know that

(eq.A.2) 2(rl + r3 + rs) > (0.6) * m2To.

Substituting ri by 1/6-li in the inequality obtained by adding (eq.A.1), (eq.A.2) and
four times (11 + 15 => (2/15) m2r), we know that

/2+ 13 <2/15 m2TM.

Now, applying the/-string "rll***" to D generates an assignment whose vertical height
differs from the one in D by at most

2 max {rl,/2+/3}+ mf/3,
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which must be greater than (0.6) m"8. Since max {rl,/2+ 13} <-(2/15) * mTS, we know
that 0.6 > 0.6. A contradiction. So it must be that

11 + 15 < (2/15) m".
End of Claim.
We will now show that at least one of the above inequalities does not hold. There

are two subcases:
Subcase A.2.2.1: r1+r3>=12+14+ls. Applying the /-string "rlrllr" and using

inequalities (A.2.2.6) and rl + r3 >-/2+/4+ 15, we know that

2(rl + r3 + r6) > (0.6) m".
Similarly, using "Irlrll", (A.2.3) and (A.2.2.11), we know that

2/1

Adding these last two inequalities, we know that

15 > m/10.
Since r is less than (2/15). mB, it must be that

l > m8/30.
Adding these two inequalities, we know that l + 15 > (2/15) m, which contradicts
(A.2.2.12).

Subcase A.2.2.2: r + r3 12 / 14+ 15. Applying the /-string "rlrllr", and using
inequalities (A.2.2.6) and rl + r3 12 + 1+ 15, we know that

(eq.A.3) 2(12+1+15)+2r6(0.6)* m.
Similarly, using "lrlrll," (A.2.3) and (A.2.2.11), we know that

(eq.A.4) 2/1 + 2(13 +

Using "lrlrlr," (A.2.2.9) and (A.2.1), we know that

(eq.A.5) 21 + 2(r2 + r4+ r6) > (0.6) * m.
Replacing li+ ri by m8/6 in 2 (eq.A.4) +2 (eq.A.2) + (eq.A.3) + (eq.A.5), we know
that

11 + 15 > (2/15) mto,
which contradicts (A.2.2.12). This completes the proof of this subcase and Case 2.

Case 3" max {1, r}< (2/15) m2rs, and r2+ r4=< 13+ 15.
The proof for this case is symmetric to the one for Case 2.
This completes the proof of the lemma, l-1

Appendix B.
LEMMA B.1. Let D be an optimal assignment such that D’_ D and let I be an

i-string with three "," symbols and three "." symbols. Applying the i-string I to D
generates an assignment M with

HM(S,, $2)+ HM(S3, So)<-HD(S,, S2)+ HD(S3, So) + (1/3) * mTn.
It is assumed that when D is transformed to any of the assignments obtainable from D
and I, all the interchanges ofpairs ofpaths that cross on the top side of G are not type
I interchanges.
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Proof. It is simple to show that the observations (i) and (ii) given in the proof of
Lemma 5.1 hold for this case.

Let Gi, for 1 =< _-< 3, represent the ith group of nets (from left to right) for which
there is a "," symbol in I. For assignment D, let li be the number of nets in Gi that
are connected by a path that crosses the left side of G and let r be the number of
nets in G that are connected by a path that crosses the right side of G. In what follows
we will use /-strings of size three. Their meaning is obvious.

We prove our lemma by contradiction. Suppose that all assignments M obtained
from D by using the/-string "***" do not satisfy the lemma.

Applying the /-string "rll" to D generates an assignment whose vertical height
differs from the one in D by at most

2 max { rl, 12 +/3},

which we know must be greater than (1/3), mB. If rl->_/2+/3 then it must be that
rl > (1/6) m2TB, a contradiction. Therefore, 12 + 13 > (1/6) m, which is equivalent to

(B.1) 13 > r2.

Applying the /-string "Irl" to D generates an assignment whose vertical height
differs from the one in D by at most

2 ll + 2 max { rE, /3},

which we know must be >(1/3) mETM. Substituting inequality (B.1) in this inequality,
we know that

(B.2) 11 + 13 > (1/6) m.
Using similar arguments with the/-strings "rrl" and "rlr," we know that

r + r > (1/6) * m2TM.
Adding this inequality to inequality (B.2) gives that the number of elements in G and
G3 is greater than (1/3), mB. This is a contradiction. Hence, at least one of the
assignments obtained from the above/-strings satisfies the lemma. This completes the
proof of the lemma. [3

Appendix C.
LEMMA C.1. Let D be an optimal assignment such that D’_ D and let I be an

i-string with five "," symbols and one "." symbol. Applying the i-string I to D generates
an assignment such that

H(S1, $2)+ H(S3, So) <- Ho(S,, $2)+ Ho(S3, So) + (8/15) * m2rn.
It is assumed that when D is transformed to any of the assignments obtainable from D
and I, all the interchanges ofpairs ofpaths that cross on the top side of G are not type
I interchanges.

Proof It is simple to show that the observations (i) and (ii) given in the proof of
Lemma 5.1 hold for this case.

Let G, for 1 =< =< 5, represent the ith group of nets (from left to right) for which
there is a "." symbol in L For assignment D, let l be the number of nets in Gi that
are connected by a path that crosses the left side of G and let r be the number of
nets in G that are connected by a path that crosses the right side of G. In what follows
we will use/-strings of size five. Their meaning is obvious.
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We prove our lemma by contradiction. Suppose that all assignments M obtained
from D by applying the/-string "*****" do not satisfy the lemma. There are two cases:

Case 1.

(C.0) r + r > 12 + l,.

CLAIM.

(C.1) r1+ r2>13+14,

(C.2) r > 12.
Proofof Claim. We now show that the above inequalities hold as otherwise there

is a contradiction. We prove each part separately.
Proofof (C.1). The proof can be easily obtained by replacing ) by (1/6) m2

rB -/
and Ik by (1/6). mB-rk, for appropriate values ofj and k, in inequality (C.0).

Proofof (C.2). Applying the/-string "trill" to D and using inequality (C.1) gives
that the increase of the vertical height is at most

2(r + r2) + 2 min { 15, rs},

which we know must be greater than (8/15), m". Since min{15, r5}<-(1/12), mr2,
we know that

r, + r2> (11/60) * m2rn.
If rt-< 12 then substituting in the above inequality, we know that

/2+ rE> (11/60) * m2ra.
But 12 + r2 (1/6) * m2rB, a contradiction. Hence, r must be greater than 12.

End of Claim.
We now show that when (C.1) and (C.2) hold there is a contradiction. There are

two subcases.
Subcase 1.1.

(C.1.0) r2 + r4 <13 + ls.
CLAIM.

(C.l.1) r2 + r3 <14 +15,
(C.1.2) r4</5.

ProofofClaim. We now prove if any of the above inequalities does not hold there
is a contradiction. We prove each part separately.

Proof of (C.I.1). Same as the proof for (C.1) but uses inequality (C.1.0).
Proof of (C.1.2). Same as the proof for (C.2) but uses the /-string "lrrll’" and

inequality (C. 1.1 ).
End of Claim. Iq

We now show that when the above inequalities hold there is a contradiction.
Applying the/-string "rlrlr" to D and using inequalities (C.2) and (C.0) we know that
the increase in vertical height is

2(r + r3) + 2r5
which we know must be greater than (8/15) mrs.

Using similar arguments with/-string "IrM ", and inequalities (C.1.2) and (C.1.0),
we know that

2/1 + 2(13 + 15) > (8/15) m2Tn.
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Adding these last two inequalities and replacing rj +/ by 1/6, we know that

1 > 16/15,

a contradiction. This completes the proof of this subcase.
Subcase 1.2.

r2+ r4>=13 + ls.(c.2.o)

CLAIM.

(C.2.1)

(C.2.2)

(C.2.3)

(C.2.4)

(c.2.5)

r: + r3 >-_14 + l
r2>/3,

r, + r < +14+ l,

rl + r3 <12 +14+ ls,

r2 + r3 > (4/15) * mr2n.
Proof of Claim. We now show that if any of the above inequalities does not hold

then there is a contradiction. We prove each part separately.
Proof of (C.2.1). The proof for this part is similar to the proof for (C.1). The

main difference is that we use inequality (C.2.0).
Proof of (C.2.2). The proof for this case follows the same arguments as the ones

in the proof for (C.2) but uses the/-string "[rrlr’ and inequality (C.2.1).
Proof of (C.2.3). If r + r2 -> 13 + 14 + 15 then applying the /-string "rrlll" to D

generates an assignment whose vertical height differs from the one in D by at most

2(/’1 +/’2),

which we know must be greater than (8/15), mr2n. Replacing rj by (1/6), m2rn-/,
we know that

11 + 12 < (1/15) * m2rB.
Applying the /-string "11.**" to D, we know that

2(/, +/2) + (1/3) * mfn> (8/15) * mr2n..
Substituting the first of these inequalities into the second, we know that

7/15>8/15,

a contradiction.
Proofof (C.2.4). The proof for this case is by replacing r2 by (1/6) m- 12 and

13 by (1/6). m"- r3 in (C.2.3).
Proof of (C.2.5). Applying the /-string "rlrlr" to D and using inequalities (C.2)

and (C.0), we know that

(eq.C1) 2(rl + r3) + 2r5 > (8/15) m.
Applying the/-string "lrlrl" to D and using inequalities (C.2.2) and (C.2.0), we know
that

(eq.C2) 211+2(r2+ r4)> (8/15) * mr2n.
Applying the /-string "rrlll" to D and using inequality (C.2.3), we know that

(eq.C3) 2(13+14+1)> (8/15) * mr2.
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Applying the/-string "dr//" to D and using inequalities (C.2) and (C.2.4), we know that

(eq.C4) 2(12 + 14 + 15) > (8/15) ma.
Replacing r +/ by (1/6), m" in the expression

2(eq.C1) / 2(eq.C2) / (eq.C3) + (eq.C4),

we know that

r2 + r3 > (4/15) m2r.
End of Claim. E]

We now show that if the above inequalities hold then there is a contradiction.
Applying the /-string ",//**" to D generates an assignment D whose vertical

height differs from the one in D by at most

2(/2+/3) + (1/3) * m2r,
which we know must be greater than (8/15), mn. Replacing / by (1/6), m2rB- r,
we know that

r2 + r3 < (7/30) * mf.
But this contradicts (C.2.5). This completes the proof of this subcase and Case 1.

Case 2.

(C.3) r1/ r3<-12/14

Subcase 2.1. r2 + r4 < 13 / 15.
The proof of this case is symmetric to the one for Subcase 1.2 in Case 1.
Subcase 2.2.

(C.4)

CLAIM.

r+ r4>- l + l.

(C.4.1) rl / r2 <=13 /14

(C.4.2) r2 + r3 >-14 + ls,

(C.4.3) r3 < 14,

(C.4.4) r2 > 13.

Proof of Claim. We now show that if any of the above inequalities does not hold
then there is a contradiction. We prove each part separately.

Proof of (C.4.1). The proof for this part is similar to the proof for (C.1). The
main difference is that we use inequality (C.3).

Proof of (C.4.2). The proof for this part is similar to the proof for (C.1). The
main difference is that we use inequality (C.4).

Proof of (C.4.3). The proof for this case follows the same arguments as the ones
in the proof for (C.2) but uses inequality (C.4.1).

Proof of (C.4.4). The proof for this case follows the same arguments as the ones
in the proof for (C.2) but uses the/-string "lrrll" and inequality (C.4.2).

End of Claim. tq
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We now show that when the above inequalities hold there is a contradiction.
Applying the /-string "r/r/l" to D and using inequalities (C.4.3) and (C.3) we know
that the increase in vertical height is at most

2(12 + 14) + 2 min {1, rs}

which we know must be greater than (8/15), m2To.
Using similar arguments with /-string "lrlrl" and inequalities (C.4.4) and (C.4),

we know that

2r2+ 2r4+ 2 min {11, rl} > (8/15) * mrB.
Adding these last two inequalities and replacing r+/ by 1/6 and min{/k, rk}<=
(1/12) * rn2

rB results in the inequality

1 > 16/15,

a contradiction. This completes the proof of this subcase and Case 2.
This completes the proof of the lemma. [3

[AHU]

[GL1]

[GL2]

[GL3]

[GLL]

[HS]

[L]

[La]

[MC]
JR]

[SBR]

REFERENCES

A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1975.

T. GONZALEZ AND S. LEE, An optimal algorithm for optimal routing around a rectangle, Proc.
20th Annual Allerton Conference on Comm. Control and Computing, Univ. of Illinois, Urbana,
IL, October, 1982, pp. 636-645.
, An O(n log n) algorithm for optimal routing around a rectangle, Technical Report # 116,

Programs in Computer Science, The University of Texas at Dallas, Dallas, TX, November 1982.
(Revised May 1985.)

Routing multiterminal nets around a rectangle, IEEE Trans. Comput., C-35 (1986), pp. 543-
549.

U. I. GUPTA, D. T. LEE AND J. LEUNG, An optimal solution for the channel-assignment problem,
IEEE Trans. Comput., C-28 (1979), pp. 807-810.

A. HASHIMOTO AND J. E. STEVENS, Wire routing by optimizing channel assignment without large
apertures, Proc. 8th IEEE Design Automation Conference, 1971, pp. 155-169.

A. S. LAPAUGH, A polynomial time algorithm for optimal routing around a rectangle, Proc. 21st
IEEE Foundations of Computer Science, 1980, pp. 282-293.

Algorithms for integrated circuit layout, an analytic approach, Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, 1980

C. MEAD AND L. CONWAY, Introduction to VLSI Systems, Addison-Wesley, Reading, MA, 1980.
R.L. RIVEST, The PI (Placement and Interconnect) System, Proc. 19th IEEE Design Automation

Conference, pp. 475-481.
S. SAHNI, A. BHATT and R. RAGHAVAN, The complexity of design automation problems, Proc.

17th Design Automation Conference, June 1980, pp. 402-411.


