
SIAM J. COMPUT.
Vol. 6, No. 1, March 1977

BOUNDS FOR LPT SCHEDULES
ON UNIFORM PROCESSORS*

TEOFILO GONZALEZt, OSCAR H. IBARRA$ AND SARTAJ SAHNI$

Abstract. We study the performance of LPT (largest processing time) schedules with respect to
optimal schedules in a nonpreemptive multiprocessor environment. The processors are assumed to
have different speeds and the tasks being scheduled are independent.

Key words. LPT schedules, uniform processors, nonpreemptive scheduling, independent tasks

1. Introduction. A uniform processor system [4] is one in which the proces-
sors P1,’" ",P, have relative speeds s1,..., s, respectively. It is assumed that
the speeds have been normalized such that sl 1 and si >= 1, 2<=i <-m. The
problem of scheduling n independent tasks (J,..., Jn) with execution times
(t, , tn) on m uniform processors to obtain a schedule with the optimal (least)
finish time is known to be NP-complete 1], 4]. Hence, it appears unlikely that
there is any polynomial time bounded algorithm to generate such schedules. For
preemptive scheduling, however, optimal finish time algorithms can be obtained
in polynomial time 6], [7]. Horowitz and Sahni [4] showed that for any m,
polynomial time algorithms exist to obtain schedules with a finish time arbitrarily
close to the optimal finish time. The complexity of these algorithms was, however,
exponential in m. The purpose of this paper is to study the finish time properties of
LPT schedules with respect to the optimal finish time.

DEFINITION. An LPT (largest processing time) schedule is a schedule
obtained by assigning tasks to processors in order of nonincreasing processing
times. When a task is being considered for assignment to a processor, it is assigned
to that processor on which its finishing time will be earliest. Ties are broken by
assigning the task to the processor with least index.

One may easily verify that for identical processor systems, this definition is
equivalent to that of [2, p. 100]. Graham [-3] studied LPT schedules for the special
case of identical processors, i.e., si 1, 1 <_- _<- m. If is the finish time of the LPT
schedule and f* the optimal finish time, then Graham’s result is that)t/f* < 3m

and that this bound is the best possible bound. In 2 we extend his work to the
general case of uniform processors. While the bound we obtain is best possible for
m 2, it appears that it is not so for m > 2. In view of this, we turn our attention to
another special case of uniform processors, i.e., s 1, 1 _<- < m and Sm S >= 1.
This case has previously been studied by J. W. S. Liu and C. L. Liu [5]. Using a
priority assignment according to lengths of tasks, they show that]/f*<=
2(rn-l+s)/(s+2) for s<=2 and f/f*<-(m-l+s)/2 for s>-_2, where f is the
finish time of the priority schedule.

* Received by the editors January 24, 1975, and in final revised form March 28, 1976. This work
was supported in part by the National Science Foundation under Grants DCR72-03728-A01 and
DCR74-10081.

t Department of Computer Science, University of Minnesota, Minneapolis, Minnesota. Now at
Department of Computer Science, Pennsylvania State University, University Park, Pennsylvania
16802.

t Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.

155

156 TEOFILO GONZALEZ, OSCAR H. IBARRA AND SARTAJ SAHNI

Similar bounds for list schedules are also obtained by them. We show that for
m >_- 3,)/f* -<_ 3/2- 1/(2m) and that this bound is the best possible for m 3. For
m > 3 we conjecture that fir* <= 4/3.

Before presenting our results we develop the necessary notation and basic
results. Throughout the remainder of this paper) and f* will denote the finish
times of LPT and optimal schedules respectively. Let S be the set of tasks being
scheduled. It will sometimes be necessary to distinguish between finish times of
different sets of tasks. To do this, S will appear as a superscript along with) or *as in s and f,s. If the number of processors is important, then this number will
appear as a subscript as in 1,,, f,,,s etc. We shall refer to the sets of tasks (jobs) by
their task execution time. Thus, we speak of a set, S, of tasks (tl--> t2 =>""--> t,)
meaning the execution time of task is ti and ti >= ti+l, 1 <= < n. The m processors
P1, ",P,, are assumed ordered such that sl 1 and 1 <-si <-si+l, 2 _-< < m. The
following result from [2, p. 102] is made use of:

LE,MMA 1.1. Iffor any m, S (tl >- t2 5 >= tn) is the smallest set of tasks [or
which f/f*> k, then tn determines the finish time (i.e., task n has the latest
completion time).

2. Basic results. In this section, we prove two important lemmas that are
used throughout the paper (Lemmas 2.2 and 2.3). We also derive the bound
2m/(m + 1) for the ratio)/f* for the general m-processor system. Examples are
shown for which f/f* approaches 3/2 as m

We begin with the following lemma. Informally, it states that if either the LPT
or optimal schedule of an (m + 1)-processor system has an idle processor, then the
ratio ff* for this schedule is no worse than ff* for m processors.

LEMMA 2.1. For m >= 1, let g(m,
g(m, s2,"" ,s,,). Consider any (m+l)-processor system with lob set S=
(tl >= t2 >-" >-- tn) and processor speeds 1 Sl <- s2 <-_. --<s,,/l. If a processor is
idle in either the LPT or optimal schedule of S, then /Sm+l ,S

g(m, s3/s2, ,s,,+I/S2).
Proof. Suppose in the LPT schedule of S a processor Pi is idle. Then it must

be the case that in the optimal schedule, P is also idle. Otherwise,]S/l _<-t,/s,
sfm+1

> tn/Si and)s.. ,s+1/[,/1 1. So we need only consider the case when Pi is idle
in the optimal schedule. If Pi is idle then clearly P1 is also idle or can be made idle
without increasing f* by scheduling the jobs from P1 onto Pi. Consider the
m-processor system with job set S and processor speeds 1 s2/s2 <-_ s3/s2 <--" <=

s ss,+l/s. Then by assumption, for this system, f’m/f, g(m, s3/s2," s,,,+l/s2).
s s ,S ,sMoreover, f,,,+l=fm/S2 and f,,+l=fm /S2. It follows that js ,s+l/fm+l<=

g(m, s3/s2, s,,+l/s2).
The next lemma gives an estimate of 1/f* for the case when) is determined

by the job with the smallest execution time.
LEMMA 2.2. Consider an m-processor system with]ob set S=

(.,t >- t2 >=" >- tn and speeds s 1, ",s,,. If in the LPTschedule ofS, the finish time

f is determined by t,, (i.e., if task n has the latest completion time), then /f*<-
1 + (m 1)t,/(Qf*), where O Z si.

Proof. Let the LPT schedule be as shown in Fig. 2.1, where Pk determines tlae
finish time. Each T is the sum (possibly 0) of task times of jobs scheduled on P

BOUNDS FOR LPT SCHEDULES 157

prior to tn’s assignment, T1 +" + T,, tl +. + tn_a.

el
T1/$1

P2
T2/s2

Tk/$k tn/Sk

FIG. 2.1

Since task n determines the finish time, 1= (Tk + tn)/Sk and (T/+ tn)/S i
for k. Hence, fs- T tn and so fZ, s,-Z, _-<(m-)t. This, together
with fs T + t yields

fO<=E Ti +mt
=Yt+(m-1)t,.

Since f*>=Yt/Q, we get//f*=<l+(m-1)&/(f*Q). 7]

Using Lemmas 2.1 and 2.2, we can now derive a bound for the m processor
system.

THEOREM 2.1. For an m-processor system, /f* <=2m/(m + 1).
Proof. For m 1, the theorem obviously holds. Now suppose the theorem

holds for 1,2,..., m-1 processors but fails for m-processors. Let S--
(t->t2 ->...->_t.) be the smallest set of jobs which gives a bound f,,/f*m>
2m/(m + 1). Then by Lemma 1.1, tn determines the finish time. There are two
cases to consider. Both lead to a contradiction.

Case 1. n -> m + 1. Then by Lemma 2.2,

(m- 1)t

1 +(m- 1)t,,/[O(ti/Q)]

(m-l) m-1 2m<= 1 + (m 1)t,= 1 + =< 1 q a contradiction.
ntn n m+l m+l’

Case 2. n <= m. Then in the optimal schedule, either each processor has
exactly one job or a processor is idle. In the first case, fm/f*m 1, since no
processor can be idle in the LPT schedule (see proof of Lemma 2.1). For the

?s/f,s< iSm_l/f,mS__ < 2(m- 1)/m < 2m/(m + 1) by Lemma 2.1second case lmtlm 1--

Either case leads to a contradiction. I-1
COROLLARY 2.1. For an m-processor system, /f* < 2.

158 TEOFILO GONZALEZ, OSCAR H. IBARRA AND SARTAJ SAHNI

The bound of Theorem 2.1 is probably not a tight bound. However, we can
show that there are examples approaching the bound 1.5 as m oo.

TIEOREM 2.2. For every m >= 2, there is an example ofan m-processor system
and a set o[obs S for which s/fs, c, where c is a positive root of the equation
2sm--sm-1 s-2 =0.

Proof. The example we shall construct has job set S
(tl->t2 =>’’" =>t,,, >--tin/l) (where m is the number of processors) and processor
speeds 1 sa _-<. =< Sin. The ti’s and si’s will satisfy the following properties (see
Fig. 2.2)"

tm tm
$1, P1 el tm

$2, P2
tm

P2

Sin, Pm

LPT schedule

FIG. 2.2

Optimal schedule

tm+l(2.1) f= -[- tin+ and f*
Sm

(2.2) t,, t,,+ t,

(2.3) t,,+t,+a=2t=ti+t for l<i<m-l,=
Sm-i+l

(2.4)
t,, + t,,+__2 m_2tt for 1 --<_ <_- m 1.

Sm Sm Sm-i

Then f/f* 2t/(2t/Sm) Sin. From properties (2.1)-(2.4) we can derive the equa-
tion for s,,. From (2.3) we get

(2.5) t 2ts,,_+a-t= t(2s,,_+l- 1).

From (2.4), we have

(2.6) Smti 2tSm-i.
Equations (2.5) and (2.6) yield

2s,,_i+s,,
for 1 <i <m-1.(2.7) Sin_i+

2s,

BOUNDS FOR LPT SCHEDULES 159

Using (2.7) repeatedly for 1, 2,. , m- 1 we get

Hence,

or

2Sin- q- Sm
Srt

2Sin

22Sin_2 + S + S

2Sin_ + Sin)2\ 2-
2Sin

(2Sm-3-s+Sm) 22\ +Sin "I-Sin

2 -.[.. $32Sin_3 at- Smd" S

2s 3

2 m--12Sl +Sin +Sin+" "t- S

2+Sin -1"$2 -[’" "[" S=-1

(since s 1)

(2.8) 2S’--Sm --Sin Sm--2 =O.

The polynomial on the left-hand side of (2.8) has one sign change and so from
Descartes’ rule of sign it also has one positive real root. This root must clearly be
> 1 as otherwise the left-hand side is <0.

Let c be this positive real root of equation (2.8). We can construct an example
of an m-processor system with)t/f, =c by setting Sm =C and computing
s2,’’’,Sm-1 in terms of c using (2.7). (Of course, Sa 1.) Then by letting
tm= t,,+l t, we can determine the values of tl," ", tm-1 in terms of t using
(2.4). I-1

COROLLARY 2.2. There exist uniform processor systems and ob sets S for
which /f*- 1.5.

Proof. From Theorem 2.2 we know that there are job sets, $, for which
//[* c where c is a positive root of (2.8). Let s be a root. Rearranging terms, we
get

2s’- 1 Z si
O<=i<m

sm--1

or 2sm+a-3s"-s+2=O.
Since s > 1, for m --> o we have s - 3/2 as a root. [-1

160 TEOFILO GONZALEZ, OSCAR H. IBARRA AND SARTAJ SAHNI

Example. (a) m 2: Then we have 2S22--$2--S=0, where we find $2

(1 + vri)/4. Of course, sl 1. Let t2 t3 1. From (2.4), we find

2t 8
tl S1

$2 1 + c]-"

One easily verifies that f/f*= (1 +’,/-i-)/4.
2(b) m 3" The equation to use is 2s33- s3- s3 2 0. s3 1.384 is an approx-

imate root of this equation. Using (2.7), we find s2 $3(2s3- 1)/2 1.223; Sl 1.
Let t3 t4--t-- 1. Using (2.4), find t2 (2t/$3)’$2-- 1.767 and tl (2t/s3)’s1--=
1.445. Again we can check that f/f* is approximately 1.384.

(c) Some other roots of (2.8) are 1.493 for m 10 and 1.499 for m 20.

3. The case st = 1, 1 <= i -<_ m, and Sm >_-- 1. In this section we study the special
case in which all but one of the m >= 1 processors has a speed of 1. The mth
processor Pm has a speed s => 1. The main result of this section is stated below as
Theorem 3.1.

THEOREM 3.1. For m >--2 the ratio f/f* has the following bounds"
(i))/f*_-<(l+vri-)/4 for m=2,
(ii) f/f* <-_3/2- 1/(2m) for m >2.
Proof. (i) is proved in Lemma 3.2. (ii) follows from Lemmas 3.1-3.6 and the

fact that the bound is a monotone increasing function in m.
Before proving the theorem we derive a general bound for 1/f* in terms of m

and s.
LEMMA 3.1. For an m-processor system with si 1 for 1 < m and s,, s,

/f* =<2(m- 1 + s)/(m- 1 + 2s).
Proof. If m 1, the lemma is obviously true since f/f* 1. Now assume that

the lemma holds for 1, 2, , m 1 processors but fails for m (m 2). For this m,
let S (ta t2.>:" ->- tn) be the smallest set of jobs for which /f* >
2(m 1 + s)/(m 1 + 2s). Suppose a processor is idle in either the LPT or optimal

PS s< Ps sschedule of S. Then [,/f,]’,,-1/f,- --< 2(m 2 + s)/(m 2 + 2s) <_-

2(m 1 + s)/(m 1 + 2s) by Lemma 2.1.
So we may assume that no processor is idle in either the LPT or optimal

schedule of S. We consider two cases, both leading to a contradiction.
Case 1. The LPT schedule is as shown in Fig. 3.1, where each T/represents

the sum of execution times of jobs scheduled on Pi prior to the assignment of
t,, Ta +...+ 7 t +’’’-t-tn-1. By assumption, no processor is idle. Hence
T/> 0 for 2 -<_ --<_ m. Since the first m "1 processors have speed 1, we may assume
that T/->- T1 for 1 -<_ -<_ m 1. Now if T1 0, then 1 tn. But f* _-> tn since by
assumption no processor is idle in the optimal schedule. Then 1/[* 1. So we may
also assume that T1 ->_ t,.

Thus, fl->2t,. From Lemma 2.2 we have /f* <-1 +(m-1)t,/(Of*), where
Q=(m-1)+s. This implies that Of*>=O-(m-1)t>=2Otn-(m-1)t,. Sub-
stituting this inequality back into Lemma 2.2 gives

m-1 20 2(m- l+s)(m 1)t,
=1+=<l+2ot_(m_l)t,, 20-m+1 20-m+1 m-l+2s’

a contradiction.

BOUNDS FOR LPT SCHEDULES 161

P1

P2

1ol

1o2

TI

FIG. 3.1

T’

lqo.

Ca 2. Suppose the LPT sche,Jule is as shown in Fig.
assume that ’_ . T1 ;,. We may 1.:o .sume hat T,, >0;
since)’= t,./s. If 2t,, then the protff proceeds a.,; in Case 1.
Note that Z t s[+ (m 1)t,. Therefore,

Since f < 2& we have

f o o
f-Tf+(m- l_)& -s +(m- 1)&/"

__f_ O 20 2(m 1 + s).
f* -s -t- (m 1)/2 m 1 + 2s m--- 1 + 2s

The bound for m 2 follows from the following lemma.
LEMMA 3.2. For an m processor system with si 1, 1 ..<=. < m and s,, s,

/f* .<- I[(3 m) +4i m)2 + 16(m 1)]. Moreover, for m 2, the bo,nd is fight.
Proof. Let k > 1 be the desired bound for f/.*. Let (.2) E s m 1 + s. First

We show that if s <=20(k-1)/(m-1), then f/f*<=k. Suppose not. Let S
(& _>=. => &) be the smallest set of jobs for whichf/f* > k. Then t, determines the
finish time and by Lemma 2.2, f/f*<=l+(m-1)t,,/(Of*). Hence f*<
(m- 1)&/[O(k 1)]. It follows that the number of jobs on each processor in the
o.ptimal schedule of S is less than (m-1)s/[O(k-1)] 2T 2. But then in this case,
f/f* 1. This contradicts the assumption that S produces a bound >k. Thus if
s . 2O(k 1)/(m-- 1), then f/f* -_<= k. This, in turn, implies that if O <
(m 1)+ 2O(k 1)/(m- 1), then f/f* ._-<_- k or that

(3.1) if O---<-
(m--l)2
m-2k+l’

then f/f*<=k.

162 TEOFILO GONZALEZ, OSCAR H. IBARRA AND SARTAJ SAHNI

Now by Lemma 3.1, we have

f ..2(m- 1 +s) 2(m- 1 +s) 20
f*= m-l+2s 2(m-l+s)-(m-1) 2Q-(m-1)"

It follows that if 2O/(2Q-(m- 1))- k, then /f*<-_k or

(m- 1)k
(3.2) if Q>=--;,---;- then f/f*<=k.

ztx 1)

To satisfy (3.1) and (3.2) simultaneously, we must have (m-1)2/(m-2k + 1)>_-
(m 1)k/(2(k 1)), from which we get k _-> 1/4[(3 m + 4(3 m)2 + 16(m 1)]. For
all such k, f/f*<_-k for all Q.

For the case m 2, we have k (1 +.__x/-i-)/4. In 2 we saw an example with
s2=(l+.4]-)/4 for which f/f*=(l+417)/4. Hence, this bound is tight for
m=2.

In arriving at the proof of the theorem for m > 2, it is necessary to prove four
lemmas. To begin with, we show that if for any set of jobs, S, an optimal schedule
has more than one job on any of the processors el,"" ", Pro-1 then s/f.s<__
3/2-1/(2m).

LEMMA 3.3. For any set offobs, S, either (i) processors el Pro-1 have at most
one job scheduled on each in every optimal schedule or

(ii) fs.,, <3 1

f*..s=2 2m"

Proof. Suppose (ii) is not true for some set of jobs. Let S (tl >- t2 ->" -> t,)
sbe the smallest set of jobs for whichf,,/f, > 3/2- 1/(2m). From Lemma 2.2 we

get

f (m- 1)t, 3 1
f,..,s<= 1 +

(m 1 + s)f*,, >-2-
or

(m- 1)t. m-1
(m 1 + s)f

>
2m

or

m-l+
t, >

2m
sf.,,

i.e., f* < 2t, which, in turn, means that none of the processors el Pro-1 can have
more than one job scheduled on them in an optimal schedule.

BOUNDS FOR LPT SCHEDULES 163

Next, we prove that if s >=m- 1 then f/f* _-__4/3.
LEMMA 3.4. ff s >- m 1 then /f* <-4/3 <-_3/2 1/(2m) for m >2.
Proof. Lemma 3.1 gives

/,<_2(m- l +s)
m-l+2s

The right-hand side of the above inequality is a decreasing function of s.
Hence, for s >_- m 1 we obtain

fro< 4m--4

f’m-- 3(m 1)

=4/3

=<3/2-1/(2m), m>2. D
As a result of Lemmas 3.3 and 3.4 the only counterexamples to Theorem 3.1

are sets of jobs, S, for which the optimal schedules have at most one job on each of
P--Pm- and the speed, s, of Pm is <m 1. The next two lemmas show that for
this kind of an optimal schedule and s < m 1 the bound of Theorem 3.1 cannot
be violated.

LEMMA 3.5. Let S (/i -> t2 >=" t,) be the smallest set of jobs for which
/f* > 3/2- 1/(2m). Ifin the LPTschedule, ti is the onlyjob scheduled on one ofthe
processors, P1, , P,,- and ifin an optimal schedule ti is the onlyjob scheduled on
one of the processors, Pa, , Pro-1 then, either

or

(i) fSmi[:sS< fm 1/ s
jm fm--

(ii) 6 < ti.
Proof. From Lemma 1.1 it follows that t determines the finish time ds. If any

one of the processors P,. , P is idle in an optimal solution (i.e. no jobs have
been scheduled on it), then f,..s ,s s < s s ,s< s /,sfm-l. BUt, fm= fm- andsofm/m =m--1/m--1-

We may therefore assume that no processor is idle in any optimal solution. Hence,
f’mS>= t.. If n, then]Sm t,, (as 6 is the only job on some processor P1," ", Pro-l)
and s/f,s< 1 Therefore n Now, we haveJmljm

but

Therefore,

f,s= max {ti, f,s_]{t}}

>=f,s{t,}... as

im =m- as i#n.

f"S-{h fro-iSm< Jm-1

164 TEOFILO GONZALEZ, OSCAR H. IBARRA AND SARTAJ SAHNI

LEMMA 3.6. When s < m 1 and an optimal schedulefor any set of]obs S has
at most one ob .on each o[processors P1 P,,- then ,,/[._<-_ 3/2- 1/(2m).

Proof Let S (t t2-" tn) be the smallest set of jobs and m the least
m > 2 for which the lemma is not true. From Lemma 3.1 we obtain f/f* =<-.
1 +(m- 1)/(m- 1_+ s)(tn/f*). By assumption f/I*> 3/2-1/(2m). Therefore,

(m-l) t,, 3 1
+ f->m-l+s 2 2m

2m
(3.3) f* < t,,,

m--l+s

If #,, is the number of jobs on P, in an optimal schedule then,
Substituting this inequality into (3.3) yields

2sm
(3.4) # < m--l+s"
Iqae right-hand side of the inequality (3.4) is an increasing function of s. Since
s < rn 1, (3.4) yields the following bound on #

2(m- l)m

" 2(m-- 1)
m.

The optimal schedule has at most one job on each of P-t-P,,-. Hence, n-_<-_.
2m -2.

I he remainder of the proof shows that if n . 2m 2 then Lemma 3.5 can be
used to show that fm/fm" ----f’L-/f,-, thus contradicting the assumption that this
was the least rn for which the lemma was false. (The contradiction comes about as
3/2- 1/(2m)is monotone increasing in m and the fact that when m 3 this bound
is 4/3 which is greater than the known bound for m 2.) Clearly, we may assume
that each processor has at least one job scheduled on it in every optimal schedule.

Let k be the smallest index (i.e. largest job) on any of the processors
P.-P,, in an optimal schedule. Then, the schedule obtained by assigning job
tk+i.-- to processor P, 1 < m, and the renaining jobs to processor-Pm has a

sfinish time no greater than the optimal finish time f,,. Such a schedule shall be
denoted by OPTk. Clearly, 1 k ..-_<_-- n m + 2. Since, n 2m- 2 at least one of the
processors P-.P_ has exactly one job scheduled on it (every. processor must
have at least one job on it as otherwise, by the definition of LPT, f t,, butf* t,,).
Let the index of this job be i. Then, ti must be the largest job amongst jobs
scheduled on Pa P,,__a in the LPT schedule (this again follows from the definition
of LPT). But, s < m- 1 implies t t,,,_ as LPT cannot schedule all of the first
m-1 jobs on Pm when s <m-1. For all k 1, OPT has a job with index
j k + m 2 m 1 on Pm- and this is the only job on .Pm--. By the ordering on
the jobs, ti t,, So, t > ti. Lemma 3.5 now implies that f,/f"s--.<L,_/f,,__,a*
contradiction. 13

Having shown that ff* is indeed bounded as in Theorem 3.1, the next
question is: How good is the bound. From the previous section we know that the

or

BOUNDS FOR LPT SCHEDULES 165

bound for m 2 is tight. Lemma 3.7 shows that the bound is also tight for m 3
and that for all m > 3 it is possible to have an }/f* arbitrarily close to 4/3. Lemma
3.8 shows that for m 4 and 5 there is no set of jobs $ for which }/f* > 4/3. This
shows that the bound of 3/2-1/(2m) is not a tight bound for all values of m and
leads us to conjecture that for m -> 3 the bound is in fact 4/3. Note the closeness of
this bound of 4/3 to the bound 4/3- 1/(3m) obtained by Graham [3] for the case
of s 1 (i.e., m identical processors).

LEMMA 3.7. Form >= 3 and any e > O, there is a,set ofjobs, S, and a speed s > 1
for which f/f* > 4/3 e.

Proof. For any m => 3 consider the set of jobs tl 1.5, t2 1.5, tj 1, 3 -_<j -<_
m + 2 and s 2 + e’ with e’ very close to zero. The LPT schedule has jobs tl, t2 and
tin+2 on Pm with1 4/(2 + e’). One optimal schedule is shown in Fig. 3.3. f* 1.5.
Hence, /f*=8/(6+3e’)4/3 as e’ 0.

t3 tx 1.5
Px P

P4 t4 P2 t2 1.5

Pm
t, t2, tin+2 tm’ tm+l tin+2P.
s=2+e’ s=2+e’

LPT Optimal

FIG. 3.3. LPTand optimal schedulesforLemma 3.7

LEMMA 3.8. For m 4 and 5, /f* -<- 4/3.
Proof. The proof is omitted and may be found in [8].
Conjecture.)/f* <_- 4/3 for m >= 3 and si 1, 1 -< < m and s,, >_- 1.

4. Conclusions. We have shown that in the case of uniform processors LPT
schedules have a finish time at most twice the optimal finish time. The worst
examples we could construct result in LPT schedules with finish times 1.5 times
the optimal for m. For the special case studied in [5] it is shown that
f/f*<=3/2-1/(2m).

Acknowledgment. We are grateful to the referee for providing a simpler
proof of Lemma 3.1.

REFERENCES

[1] J. BRUNO, E. G. COFFMAN, JR. AND R. SETHI, Scheduling independent tasks to reduce mean
finishing-time, Comm. ACM, 17 (1974), pp. 382-387.

[2] E. G. COFFMAN, JR. AND P. J. DENNING, Operating Systems Theory, Prentice-Hall, Englewood
Cliffs, N.J., 1973.

[3] R. L. GRAHAM, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969),
pp. 416-429.

166 TEOFILO GONZALEZ, OSCAR H. IBARRA AND SARTAJ SAHNI

[4] E. HOROWITZ AND S. SAHNI, Exact and approximate algorithms]’or scheduling non-identical
processors, J. Assoc. Comput. Mach., 23 (1976), pp. 317-327.

[5] J.W.S. LIu AND C. L. LIU, Bounds on scheduling algorithmsforheterogeneous computingsystems,
Proc. IFIP, (1974), pp. 349-353.

[6] J. W. S. LIu AND A. YANG, Optimal scheduling of independent tasks on heterogeneous computing
systems, ACM National Conference, 1974, pp. 38-45.

[7] E. HORVATH AND R. SETHI, Preemptive schedules for independent tasks, Computer Science
Tech. Rep. 162, Pennsylvania State Univ., College Park, 1975.

[8] T. GONZALEZ, O. n. IBARRA AND S. SAHNI, Bounds]’or LPTschedules on uniform processors.,
Tech. Rep. 75-1, Univ. of Minnesota, Minneapolis, 1975.

