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Abstract—Given a rectilinear polygonal boundary partitioned
into rectangles, the Minimum-Length Corridor (MLC-R) prob-
lem consists of finding a corridor of least total length. A corridor
is a set of connected line segments, each of which must lie along
the line segments that form the polygonal boundary and/or the
boundary of the rectangles, and must include at least one point
from the boundary of every rectangle and from the polygonal
boundary. The MLC-R problem is known to be NP-hard. We
present an alternative polynomial time constant ratie approxima-
tion algorithm for the MLC-R problem. Our algorithm is based
on the restriction and relaxation approximation techniques.

Index Terms—Corridors, Approximation Algorithms, Restric-
tion and Relaxation Techniques, Complexity, Computational
Geometry

I. INTRODUCTION

An instance I of the Minimum-Length Corridor (MLC-R)
problem consists of a pair (F, R), where I' is a rectilinear
polygon partitioned into a set R of rectangles! (or rooms)
Ri,Ry,...,R.. A corridor T(I) for instance I is a set of
connected line segments, each of which lies along the line
segments that form F' and/or the boundary of the rooms,
and must include at least one point from every room and
from rectangle F. The objective of the MLC-R problem is to
construct a corridor of least total length. A generalization of
the MLC-R problem where the rooms are rectilinear polygons
is called the MLC problem. The MLC problem was initially
defined by Naoki Katoh [1] and subsequently Eppstein [2]
discussed the MLC-R problem. Experimental evaluations of
several heuristics for the MLC problem are discussed in Ref.
[3]. The question as to whether or not the decision version of
each of these problems is NP-complete is raised in the above
three references.

Recently Gonzalez-Gutierrez and Gonzalez [4], and inde-
pendently Bodlaender, et al. [5], proved that the decision ver-
sion of the MLC problem is strongly NP-complete. Gonzalez-
Gutierrez and Gonzalez [4] also showed that the decision
version of the MLC-R problem is strongly NP-complete as
well as some of its variants. In virtue of these results, attention

IThroughout this paper we assume that all the rectangles {and rectilinear
polygons) consist only of horizontal and vertical line edges.

has shifted to the corresponding approximation problems.
Gonzalez-Gutierrez and Gonzalez [6] presented a constant
ratio approximation algorithm for the MLC-R problem. In
this paper we present an alternate approximation algorithm
for the MLC-R problem. The benefit of having two or more
approximation algorithms for the same problem is that one
may run all of them and then to select the best of the solutions
generated. This hybrid approach will generate solutions closer
to the optimal.

Bodlaender, et al. [5] consider several restricted versions of
the MLC problem. One of these restricted versions of the MLC
problem is called the geographic clustering problem. However,
not all instances of the MLC-R problem are geographic
clustering problem instances. It is not known whether the
decision version of the geometric clustering problem is NP-
complete. A polynomial time approximation scheme (PTAS)
for the geographic clustering version of the MLC and related
problems is presented in Ref. [5].

Another restricted version of the MLC problem considered
in Ref. [5] is when each room has a size p; defined as the side
length of the smallest enclosing square of the room, and each
room R; has perimeter at most 4p;. A room with this property
is said to be a room with square perimeter. A room R; is called
o-fat if for every square () whose boundary intersects R; and
its center is inside R;, the intersection area of () and R; is
at least & times the area Q. In general « € [0, 1]. For square
rooms « is equal to one, but for rectangular rooms « tends
to zero. It is not even known whether the decision version of
the MLC problem, when all the rooms have square perimeter
and are «-fat, is an NP-complete problem; however, there is a
polynomial time approximation algorithm with approximation
ratio 1?? — 1 [5]. In the case when all the rooms are squares
the approximation ratio is 15. Clearly, % — 1 is not bounded
above by a constant for the MLC-R.

The Group Steiner Tree (GST) problem may be viewed as
a generalization of the MLC problem. There is a simple and
straight forward reduction from the MLC problem to the GST
problem, which can be used to show that any constant ratio
approximation algorithm for the GST problem is a constant
ratio approximation algorithm for the MLC problem.

Stavik [7], [8], [9] defined a more general version of the



GST problem where Q = {C4,Ca,...,Cy} is not necessarily
a partition of the subset C' of vertices, but each errand % can
be performed at any vertex in C; C C and U;C; = C, ie., a
vertex in C' may be in more than one set C;. This version of
the GST problem is called by Slavik [8], [9] the Tree (Errand)
Cover (TEC) problem. The TEC problem is formally defined
as follows. Given a connected undirected edge-weighted graph
G = (V,E,w), where w : E — R™ is an edge-weight
function; a non-empty set C, C C V, of terminals; and a
set @ = {C1,Cs,...,Cy}, where C; C C and U;C; = C, we
want a tree T(Q) = (V',E’), where E/ C F and V' C V,
such that at least one terminal from each set C; is in the tree
T'(Q) and the total edge-length 3~ w(e) is minimized.

Slavik [8], [9] developed an approximation algorithm for the
TEC problem with approximation ratio 2p, when each errand
can be performed in at most p locations.

As we have seen, our problems are restricted versions of
more general problems reported in the literature. However,
previous results for those problems do not establish NP-
completeness results, inapproximability results, nor constant
ratio approximation algorithms for our problems.

In this paper we present a polynomial time approximation
algorithm for the MLC-R problem with approximation ratio
30. The approach is similar to the one in [6], but it differs
mainly on restriction points and the correctness proof. The
presentation in this paper is complete, but additional details
and examples appear in [10].

An application for the MLC problem is when laying optical
fiber in metropolitan areas and every block (or set of blocks)
is connected through its own gateway which may be placed
anywhere on the boundary of the set of blocks. The objective
is to find a minimum-length corridor interconnecting all the
gateways (one for each set of blocks) in the area. Our problems
also have applications in VLSI and floorplanning when laying
wires for clock signals or power, and when laying wires for an
electrical network or optical fibers for data communications.
There has been recent research activity for related problems
arising in intelligent transportation as well as in modern spatial
database systems for trip planning queries [11].

In Section II we discuss preliminary results and define the p-
MLC-R problem, a restricted version of the MLC-R problem,
used to approximate the solution of the MLC-R problem.
Then in Section III we present our parameterized algorithm
for the p-MLC-R problem. The parameterized algorithm takes
in a parameter S that identifies a subset of boundary points
from each rectangle and calls them critical points. The p-
MLC-Rg is exactly like the p-MLC-R problem except that
every feasible corridor must include a critical point from
each rectangle. Then Slavik’s approximation algorithm for
the TEC problem [8], [9] is used to generate a corridor for
the p-MLC-Rg problem instance. This is the corridor that
our algorithm generates for the p-MLC-R problem instance.
When the maximum number of critical points identified at
each rectangle is kg, our corridor has length at most 2kg times
the length of an optimal corridor for the p-MLC-Rg problem
instance. The approximation ratio for this algorithm depends
on the ratio (rg) between optimal solutions for p-MLC-Rg and
p-MLC-R problem instances. Therefore, the approximation

ratio for the parameterized algorithm is 2kg - rg. There are
many selector functions .S for which kg is a constant, e.g., the
selector function that identifies from each rectangle its corners
as critical points has kg = 4. However for some functions the
ratio rg cannot be bounded above by a constant. In Section
IV we present a method for selecting a set of points called
special points. This method sheds some light for possible
design principles that result in constant ratio approximation
algorithms. A constant ratio approximation algorithm arising
from the design principles is discussed in Section V. The
corresponding selector function identifies from each rectangle
its four corners and a special point. The main trust of the paper
is Section V where we establish that rg is bounded above by
a constant for the above selector function. In Section VI we
discuss results for related problems, conclusions, and open
problems.

II. PRELIMINARIES

The p-access point version of the problems, or simply the
p-MLC and p-MLC-R problems, are restricted versions of the
MLC and MLC-R problems where one identifies an access
point p located on the edges of the polygon F', and the solution
must include this access point p. NP-complete in Ref. [4]. An
optimal corridor for the p-MLC-R problem instance given in
Figure 1 is represented by the thick line segments. The solution
to any instance of the MLC (resp. MLC-R) problem can be
obtained by finding a corridor for the p-MLC (resp. p-MLC-R)
problem at each intersection point p located along the edges
of polygon F, and then selecting the best of these corridors.
Based on this observation we state the following theorem.

Theorem 2.1: Any polynomial time constant ratio approx-
imation algorithm for the p-MLC-R problem is also a poly-
nomial time constant ratio approximation algorithm for the
MLC-R problem. The approximation ratio is identical for both
algorithms.

As a result of Theorem 2.1, we have reduced the MLC-
R approximation problem to the p-MLC-R approximation
problem. Hereafter we concentrate our efforts on the p-MLC-R
approximation problem.
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Fig. 1. Optimal corridor for a p-MLC-R problem instance.

It is convenient to transform the geometric representation of
the p-MLC-R problem into the following graph representation.
There is a vertex for every distinct point located at the



intersection of two orthogonal line segments representing the
edges of rectangles and the polygonal boundary F'. A vertical
(resp. horizontal) line segment in the instance I of the p-
MLC-R problem is called an edge if it includes exactly two
points represented by vertices, and the two points are the
segment’s endpoints. We assume without loss of generality
that p is located at a vertex representing a point located on
F. Every instance I of the p-MLC-R problem is represented
by the graph G(I) = (V, E,w), where the set V of vertices
and the set of F of edges is defined above, and the weight
of an edge (w(e)) corresponds to the length of the line
segment represented by the edge. In this paper we use the
geometric and graph representation of the p-MLC-R problem
interchangeably, and mix the two notations. We use V(R;)
to denote all the vertices located along the boundary of
rectangle R;. We use C(R;) to denote the set of vertices that
corresponds to the comers of R;. Every vertex is a non-corner
point of at most one rectangle.

The instance of the TEC problem corresponding to the
instance (F, R, p) of the p-MLC-R problem is defined for the
(metric) graph G(V, E,w) constructed from (F, R, p) with an
errand I; for each rectangle R; located at all the vertices
V(R;), plus the errand Ey located at vertex p. Clearly every
feasible solution to the p-MLC-R problem instance is also a
feasible solution for the corresponding TEC problem instance
and vice versa. Furthermore, the objective function value of
every feasible solution to both problem instances is identical.

Let I represent any instance of the p-MLC-R problem. Let
T(I) be any corridor for instance I and ¢(I) be its edge-length.
Let OPT(I) be an optimal corridor for instance I and let
opt(I) be its edge-length. An approach to generate suboptimal
solutions for the p-MLC-R problem instance (F, R,p) is to
construct an instance of the TEC problem and then invoke
an approximation algorithm for the TEC problem instance.
The solution generated by the algorithm for the TEC problem
instance is the solution to the p-MLC-R problem instance.
Currently one uses Slavik’s [8], [9] approximation algorithm
for the TEC problem, which is based on relaxation techniques.
A direct application of this approach to the p-MLC-R prob-
lem generates a corridor whose total edge-length is at most
2p - opt(I), where p = max;{|V(R;)|}. Unfortunately, this
simple approach does not result in a constant ratio approx-
imation for the p-MLC-R problem since, as we pointed out
before, |V (R;)| is not bounded above by any constant. Our
parameterized approximation algorithm is a refined version of
this approach.

III. PARAMETERIZED ALGORITHM

To establish our algorithm we need to refine our previous
strategy. The idea is to restrict the solution space by limiting in
each rectangle R; the possible vertices, from which at least one
must be part of the corridor. Consider the p-MLC-Rg problem
where the selector function S identifies from each rectangle
R, a set of at most kg of its boundary points from which
at least one must be included by every corridor. The points
selected for each rectangle R; are called the critical points of
R;. Usually, the kg critical points for each rectangle R; defined

by S include a subset of its comer points as well as some
points with a special connectivity property. This connectivity
property will be defined later on. The objective function of the
p-MLC-Rg problem is to find a minimum edge-length corridor
that includes for each rectangle R; at least one of its critical
points.

Given S and an instance I of the p-MCL-R problem, we
use Ig to denote the instance of the corresponding p-MLC-
Rg problem. The instance of the TEC problem, denoted by
Jg, is constructed from the instance Is of the p-MLC-Rg
problem using the same approach as the one used for the p-
MLC-R problem, but limiting the errands from each rectangle
to the critical points of the rectangle. Clearly every feasible
solution to the p-MLC-Rg problem instance Ig is also a
feasible solution to the instance Jg of the TEC problem,
and vice versa. Furthermore, the objective function value of
every feasible solution to both problems is identical. Slavik’s
algorithm applied to the instance Jg of the TEC problem
generates a solution T'(Js) from which we construct a corridor
T(I) with edge-length t(I) for the p-MLC-R problem. We call
our approach the parameterized algorithm Alg(S), where S is
the parameter. Since Slavik’s approximation algorithm is based
on relaxation techniques and we apply it to a restricted version
of the p-MLC-R problem, we say that our approximation
algorithm is based on restriction and relaxation approximation
techniques. Let OPT'(Ig) be an optimal corridor for Ig and
let opt(Is) be its edge-length. Theorem 3.1 establishes the
approximation ratio for our parameterized algorithm Alg(S).
It is simple to see that the total edge-length of an optimal
solution of the instance Ig, opt(lg), corresponding to the p-
MLC-Rg problem, is at least as large as the total edge-length
of an optimal solution of the instance I, opt([), of the p-MLC-
R problem. We define the ratio between opt(Ig) and opt(I)
as rg (with 7g > 1). In other words, one needs to prove that
opt(Is) < rg - opt(I) for every instance I of the p-MLC-R
problem, in order to use the following theorem.

Theorem 3.1: Parameterized algorithm Alg(S) generates
for every instance I of the p-MLC-R problem a corridor T'(I)
of length t(I) at most 2ks - rg times opt(I), provided that
opt(Ig) < rg - opt(I).

Proof: Applying Slavik’s approximation algorithm [8], [9]
we generate a corridor T'(Ig) of length t(Is) < 2-kg-opt(Is).
Clearly T'(Ig) is also a corridor for I, so the solution gener-
ated, T'(I), is simply T'(Is). By the condition of the theorem,
opt(Ig) < rg - opt(I). It then follows that the length of the
corridor generated by our parameterized algorithm Alg(S) is
t(I) < 2kg - rg - opt(I).

O

For the above approach to yield a constant ratio approxima-
tion algorithm we need both kg and rg to be bounded above
by constants. For example, when § selects from each rectangle
R; its four corner points, kg is four. However, rg cannot be
bounded above by any constant [10].

For most selector functions S, proving that opt(Ig) <
rs - opt(I), for every instance I of the p-MLC-R problem,
is difficult because we do not have the optimal solutions at
hand. Instead we establish a bound for all corridors. That is,
we prove that for every corridor T'(I) with edge-length (1)



there is a corridor for Iy denoted by T(Ig) with edge-length
t(Ig) < rg-t(I). Applying this io T(I) = OPT(I) we know
that there is a corridor T'(Ig) such that ¢(Is) < rg - opt(I).
Since opt(Is) < t(Ig), we know that opt(ls) < rg - opt(I).

In the next section, we define formally a special connectivity
property. We use this property to define the special points
of rectangle R;. In Section V, we present our constant ratio
approximation algorithm, which results from incorporating to
our parameterized algorithm Alg(S) a selector function S.
This function S identifies the four corners as well as an special
point from each rectangle R;.

IV. SPECIAL CONNECTIVITY PROPERTY

We can show that several different basic selector functions
S do not result in constant ratio approximations when they are
incorporated into our parameterized algorithm Alg(S). These
facts point us in the direction of a method for selecting a set
of points called special points. Special points will turn out to
be very important when combined with other critical points to
generate constant ratio approximation algorithms (Section V).

A
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Fig. 2. Optimal solution OPT'(I(5)) for the family of instances I{j) of the
p-MLC-R problem.

Considering the family of instances given in Figure 2,
the only “good” selector functions S for our parametrized
algorithm are those that include for every gray rectangle its
middle point as a critical point. We call these points special
points, and we formally define them below. For the definition
of special point, assume that “rectangle” Ry, which is just
point p, is included in R, and p is said to be a comner of Ry.
Depending on the selector function S, a subset of the comer
points C(R;) are called the fixed points F(RR;) of rectangle
;. Now, the set of critical points consists of the union of the
disjoint sets of fixed points and special points.

The middle point of each gray rectangle in Figure 2 has the
minimum connectivity distance property. By this we mean, in
very general terms, that if given all partial corridors that do
not include a point from rectangle 12;, but include points from
all other rectangles, then a special point of R; is a vertex
in V(R;) that is not in F(R;), and the maximum edge-length
needed to connect it to each one of the partial corridors is least
possible. Finding special points in this way is in general time
consuming. Also, this definition is not valid for all problem
instances as the set of partial corridors, where every corridor
includes vertices from all the rectangles except from R;, may
be empty. In what follows we define special points precisely
for all problem instances in a way that is computationally easy
to identify a set of special points for each rectangle. Special
points are identified using an upper bound on the connectivity
distance.

Given that we have selected a set F'(R;) of fixed points for
each room (rectangle) R;, we define a special point as follows.
Let u € V(R;) and let T, be a tree of shortest paths rooted
at u to all other vertices (|J;; V(R;)) along the edges of
polygon F' and the edges of the rooms. Let SP(u,v) be the
length of the (shortest) path from vertex u to vertex v along
Ty. Let FP(u, R;) be the length of the (shortest) path from
point u € V(R;) to the “farthest” vertex of rectangle R; along
T, fori # j, ie.,

FP(u, R;) = maxyey(r,){SP(u,v)|u € V(R;),j # i}.

In other words, the edge-length needed to connect vertex u of
room R; to any corridor through the connection of room R;
is at most F'P(u, R;).

We define the connectivity distance CD(u, R) of vertex u
in room R, as

mm#i{FP(u, Rj)iRj S R}

If F(R;) C V(R;) we define the connectivity distance
CD(R;, R) of room R; as

minuEV(R.,:)\F(qu) {CD(U'? R)}

In other words, CD(R;, R) is the edge-length needed to
connect some specific vertex in V(R;)\F'(R;) to any corridor
through the connection of another room. The special point
of R; is a vertex u € V(R;)\F(R;) such that CD(u, R) =
CD(R;, R). Notice that there may be more than one point
satisfying this condition, in which case we select any of these
points as the special point. When F'(R;) = V(R;) then there
is no special point. It is important to remember that for the
definition of special point, g which is simply p is included
in R.

V. CONSTANT RATIO APPROXIMATION ALGORITHMS

In this section we present the selector function S(4C'+)
which defines the four corners as well as a special point
of each rectangle R;. When we incorporate S(4C+) into
the parameterized algorithm, it results in a constant ratio
approximation algorithm. This approximation is an alternative
polynomial time constant ratio approximation algorithm for
the p-MLC-R problem and, by Theorem 2.1, for the MLC-R
problem. We already proved [6], [10] that for the selector func-
tion S(20C+), which defines two opposite corners plus one
special point, the parameterized algorithm Alg(S(20C+))
results also in a constant ratio approximation algorithm.

In Subsection V-A we briefly sketch the analysis for the
approach applied to the selector function S(4C+).

A. Selecting the four corners and one special point

The critical points in S{4C+) for each rectangle R; € R
are its four corners and a special point. For this case kguo4)
= 5 and we can show that rgucyq)y = 3. Therefore, the
approximation ratio of the parametrized algorithm is 30 (as
in the case of S(20C+)).

We now briefly discuss our proof strategy to show that given
any corridor T'(I) there is a corridor T'(Ig(cyy) such that
t{Isac+)) < 3-t(I). Given any corridor T'() we identify all



the ncpe rectangles and establish an ordering (n1, na, ..., n,)
between them. Assume there exists at least one ncpe rectangle
(g > 1), otherwise t(Iguc+)) = t(I) and the result follows.
For each ncpe we find a shortest path from one of its critical
points to the corridor T'(I). We then select this path to connect
a critical point to the corridor T'(I). Clearly after deleting
some edges to remove any cycle that may have been created,
corridor T'(I) plus a subset of these connections give a corridor
T(Isac+))- Next we need to show that the sum of the length
of the segments introduced is at most 2-¢(I). This part is more
complex than the one for the selector function S(20C+) [6].

We characterize the region between every pair of adjacent
nepe rectangles. The region between two adjacent ncpe rect-
angles is said to be of type 0, 1 or 2 (see Figure 3). The
region between ncpe rectangles n; and ng1 is of type-2 (see
Figure 3 (a)), if the distance along the corridor between n; and
ni41, which we call {;, is larger than the edge-length needed
to connect both a critical point from n; and one from n;4; to
the corridor. This is the most desirable case. If this were to be
the case for every pair of adjacent ncpe rectangles the proof of
the approximation ratio would be simple to establish (in fact
we would even be able to establish a better ratio). However,
this is not always the case. The region between ncpe n; and
nip1 is of type-1 (see Figure 3 (b)), if [; is larger than the
edge-length needed to connect either a critical point from n;
to the corridor, or one from n;11 to the corridor, but not both.
If this were the case for every pair of adjacent ncpe rectangles
the proof would also be simple. The main problem is when the
region between ncpe n; and ngy1 is of type-0 (see Figure 3
(c)). In this case, the edge-length needed to connect a critical
point of either n; or n;41 cannot be bounded above by I;. This
is where the proof is complex because we need to consider a
sequence of ncpe rectangles, not just three as in the proof for
the case when we use the selector function S(20C+) [10].

Now suppose that there is a sequence of type-0 adjacent
ncpe rectangles as shown in Figure 4. The connection of
the first ncpe rectangle ny to the corridor has already been
accounted for in ;. Now we need to charge the connection
of a critical point of each ncpe rectangles ng,...,ng to the
corridor. The connection for the ncpe ng is charged to the
horizontal distance from ncpe n; to ncpe ng, and the vertical
distance from ncpe m2 to ncpe ng because one can show that
the area includes at least one rectangle already connected to
the corridor. Similarly, the cost of connecting ncpe n3 can be
charged to the horizontal distance from ncpe ng to ncpe ng
and the vertical distance from ncpe ng to ncpe ng. And so
forth until ncpe mg, where its connection is charged to the
corridor after it because there is a rectangle inside the box in
the center of Figure 4.

Other complex cases are given in Figure 5(a-b) which
indicate how to deal with the sequence of adjacent rectan-
gles of types 001000 and sequence 00111. By the sequence
Y1Ys ...Y; we mean that the first pair of ncpe rectangles is
of type Y7 and the second pair is of type Y3, and so on. There
are more critical cases that need to be considered. A complete
characterization of all critical cases is possible, but the proof
that they can be resolved to match the approximation bound
is quite complex.

(a) Type-2

(b) Type-1 (c) Type-0

Fig. 3. Region Types.

v

ni

Fig. 4. Sequence of type-0 adjacent ncpe rectangles.

We claim without stating any further details that the approx-
imation ratio of the parameterized algorithm Alg(S(4C+)) is
30.

V1. ADDITIONAL RESULTS AND DISCUSSION

Our approximation algorithm is based on restriction and
relaxation techniques. The analysis of our approximation al-
gorithm applies (with the same time complexity and approx-
imation ratio) when the boundary of the MLC-R problem is
a rectilinear polygon rather than the rectangle F, or when the
problem is to find a tree that is not necessary joined to the
boundary of F.

When we restrict the MLC-R problem to S(20C+) or
S(4C+), we use Slavik’s algorithm for the TEC problem
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Fig. 5. Assignment of regions between adjacent ncpe rectangles.

to generate a suboptimal solution for the MLC-R problem
instance. This is the most time consuming part of our pro-
cedures. The first open question is about the development
of a faster approximation algorithm for the MLC-R problem
restricted by S(20C+) or S(4C'+). The second open question
has to do with the development of an algorithm for those
problems with a smaller approximation ratio or even one that
generates an optimal solution. But since the MLC-R problem
is NP-hard when restricted by S(20C+) or S(4C+), it is
unlikely one can find an efficient algorithm for its solution.
The NP-hardness proof follows the same lines as the one in
Ref. [4], but we need to do some modifications to show that
the the MLC-R restricted to S(20C+) (S(4C+)) (i.e. every
rectangle must intersect the corridor at a critical point defined
by S(20C+) (resp. S(4C+))) is NP-hard.

A related problem studied by Slavik [8], [9] is the Errand
Scheduling (ES) problem. In this case the problem is to
find a shortest partial tour visiting a subset of vertices of
the given metric graph GG such that at least one vertex in
C; < C is in the partial tour, where C; is associated with
the errand i. When each vertex represents a unique errand,
the ES problem is an instance of the well-known Traveling
Salesperson Problem (TSP). Therefore the ES problem is
NP-hard. The ES problem has also been referred to as the
group TSP (g-TSP). Slavik [8], [9] shows that the ES problem

restricted to metric graphs problem can be approximated to
within %E when each errand can be performed in at most p
nodes. Another interesting problem is the group-TSP problem
when restricted to rectangles as in the case of the of the MLC-
R problem, which we call the rectangular group-TSP. In this
version of the TSP one may visit the same edge or vertex more
than once.

We claim that the same approach that we use for the MLC-
R problem can also be adapted to the rectangular group-
TSP. It is simple to show that the selector functions that do
not generate constant ratio approximations for the MLC-R
problem do not generate constant ratio approximations for the
rectangular group-TSP. However the parameterized algorithms
using the selector function S(40C+-) also generates a constant
ratio approximation to the group-TSP. In fact we can just use
the tour of the corridor (traversing each edge twice) as the
solution to the rectangular T'SP problem. The approximation
ratio in this case will be 60 times the length of an optimal tour.
However there is a better algorithm for this case. Instead of
using Slavik’s approximation algorithm for the TEC problem,
we use the one for the ES problem [8], [9] in the parameterized
algorithm. This results in an algorithm with approximation

ratio % “ks@oot) * Tseoc+ys where kspocy) = 3 and

Ts(200+) = 5, which is 22.5 for the rectangular group-TSP.

For brevity we do not discuss additional results. Approxima-
tion algorithms for other versions of the group-TSP problem
are discussed in Ref. [5].
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