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The On-line d-Dimensional Dictionary Problem*

Teofilo F.

Abstract

We present a new algorithm for the on-line d-dimensional

dictionary problem which has many applications includ-

ing the management of geometrical objects and geomet-

rical searching. The dictionary problem consists of ex-

ecuting on-line any sequence of the following operations:

INSERT(p), DELETE(p) and MEMBERSHIP(p), where p

is any point in d-space. We introduce a clean structure based

on balanced binary search trees, which we call d-dimensional

balanced binary search trees, to represent the set of points.

We present algorithms for each of the above operations that

take O(d + log n) time, where n is the current number of

points in the set, and each INSERT and DELETE opera-

tion requires no more than a constant number of rotations.

Our procedures are almost identical to the ones for balanced

binary search trees. The main difference is in the way we

search for an element. Our search strategy is based on the

principle “assume, verify and conquer” (AVC). We apply this

principle as follows. To avoid multiple verifications we shall

assume that some prefixes of strings match. At the end of

our search we must determine whether or not these assump-

tions were valid. This can be done by performing one simple

verification step that takes O(d) time. The elimination of

multiple verifications is important because in the worst case

there are Q(/og n) verifications, and each could take ~(d)

time.

1 Introduction.

The on-line l-dimensional dictionary, or simply the

dictionary, problem consists of executing any sequence

of instructions of the form INSERT(p), DELETE(p)

and MEMBERSHIP, where each p is a real number.

It is well known that any of these three instructions

can be carried out in O([og n) time, where n is the

current number of elements in the set, when the set is

represented by AVL-trees, B-trees (of constant order),

2-3 trees, balanced binary search trees (i.e., symmetric
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B-trees, half balanced trees or red-black trees), or weight

balanced trees. All of these trees are binary search

trees, with the exception of the B-trees which are m-way

binary search trees. The balanced binary trees are the

only ones that require only O(1) rotations for both the

INSERT and DELETE operations ([10], [12]).

The on-line d-dimensional dictionary problem has

a multitude of uses when accessing multi-attribute data

by value. These applications include the management of

geometrical objects and the solution of geometry search

problems, For example, the efficient approximation al- .

gorithms in [4] use the abstract data type implemented

in this paper to find suboptimal hyperrectangular cov-

ers for a set of multidimensional points. This covering

problem has applications in the location of emergency

facilities so that all users are within a reasonable dis-

tance of one of the facilities and it also has applica-

tions in image processing [4]. The current set of points

is denoted by P and point p c P has coordinate val-

ues given by (xl(p), zz(p), . . . . $d(~)). We examine sev-

eral data structures to represent a set of points P and

develop algorithms to perform any sequence of on-line

d-dimensional dictionary operations. We show that any

of the three operations can be performed in O(d+ log n)

time, where n is the current number of points in the set

and d is the number of dimensions. Furthermore, only

a (small) constant number of rotations are required for

each INSERT and DELETE operation.

As noted in [9], it was a common belief over a

decade ago that “balanced tree schemes based on key

comparisons (e.g., AVL-trees, B-trees, etc. ) lose some of

their usefulness in this more general context”. Because

of this, researchers have combined TRIES with different

balanced tree schemes to represent multikey aet~ (i.e.,

points in d-space). Let us now elaborate on this method.

A TRIE is used to represent strings (assume all have

the same length) over some alphabet Z by its tree of

prefixes. There are several implementations of TRIES:

(1) Each internal node in a TRIE is represented by

a vector of length m, where m is the number of

elements in Z . A function, normally computable

in constant time, transforms each element in Z into

an integer in O, 1, . . . . m — 1 (see structure in figure

376
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1, where E = O, 1, 2, 3).

(2) (Sussenguth [11]) Each internal node is represented

by a linear list (see structure in figure 2).

(3) (Clampett [3]) Each internal node in the TRIE is

represented by a binary search tree (see structure

in figure 3).

In general, implementation (1) requires the largest

amount of space and implementation (2) uses the least

amount of space. Also, efficient algorithms that operate

on (1) are the fastest and the ones that operate on (2)

are the slowest. The performance of (3) is between that

of (1) and (2).
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Figure 1: TRIE representation.
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Figure 2: Linked list representation for TRIE

nodes.

/9-..’ .-

Figure 3: Binary search representation for TRIE

nodes. Dashed arcs are binary search tree pointers and

other arcs are TRIE pointers.

For d-dimensional dictionaries defined over the set

of integers [0, m), the TRIE method is applied as

follows. Under representation (1) each TRIE node

is an m-element vector. The TRIE method treats a

point in d-space as a string with d elements defined

over the alphabet E = O, 1, . . . . m – 1 (see figure 1).

For large m or when instead of integers we have real

numbers this method is not suitable. In this case we

can represent each node in the TRIE by a linear list of

tuples each storing an element and a pointer (see figure

2), or a binary search tree replacing the list (see figure

3). Bentley and Saxe [2] used this technique together

with the following fully balancing scheme. The root of

each subtree is a node such that its “middle)) subtree

contains the terminal node of a median element in the

set represented by the subtree. Such a structure is very

useful for static search problems like sorting or restricted

searching ([8] and [7] ). Fully balanced subtrees are

very rigid structures that cannot be easily updated.

Therefore, are not appropriate for dynamic updates,

and should be replaced by more flexible structures in
dynamic environments. For example, the balancing of

these trees is performed by using techniques related
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to fixed order B-trees [5], weight balanced trees [9],

AVL trees [13], and balanced binary search trees [14].

For these representations each of the three operations

in a d-dimensional dictionary can be implemented to

take O(d + log n) time. However, the number of

rotations after each INSERT and DELETE operation

is not bounded by a constant.

We investigate a representation which is based

solely on binary search trees, rather than on a com-

bination of TRIES and binary search trees. To achieve

the proposed time complexity bound we represent the

set of points P in a balanced binary search tree in

which additional information has been stored at each

node. To distinguish this new type of balanced binary

search trees from the classic ones we shall refer to our

trees as d-dimensional balanced binary search trees. For

this representation we present procedures for INSERT,

DELETE and MEMBERSHIP which take O(d + log n)

time and require only a constant number of rotations

when executing an INSERT and DELETE operation.

Our procedures are almost identical to the ones for bal-

anced binary search trees. The main difference is in

the way we search for an element. Our search strategy

is based on the principle “assume, verify and conquer”

(AVC). We apply this principle as follows. To avoid

multiple verifications we shall assume that some pre-

fixes of strings match. At the end of our search we must

determine whether or not these assumptions were valid,

which can be accomplished by performing one simple

verification step.

2 The Algorithms.

In this section we outline our procedures and our

structure to implement d-dimensional dictionaries. Our

represent ation is based solely on balanced binary search

trees, rather than based on TRIES and binary search

trees as previous algorithms. It is important to note

that our trees are of the same form as the ones in [12],

except for the fact that all the pointers to external nodes

in [12] are replaced by null pointers in this paper. For

example, an internal node with two external nodes as

children in [12] is a leaf node in this paper. Before

explaining our procedures and our new data structure,

let us present a couple of naive approaches for solving

the d-dimmmional dictionary problem.

Suppose that we represent our set of points by a

balanced binary search tree in which each point is stored

as a d-tuple at a node and the ordering of the d-tuples

in the tree is lexicographic. Procedure NAIVE (p, r)

implements MEMBERSHIP in the obvious way, i.e.,

compares p with the value stored at the root of a subtree

and depending on the outcome it either t erminat es,

or proceeds to the left or right subtree of that node.

The value stored at a node is referred to by v and its

components by Zl(v), X2(V), . . . . fid(v). Let p and q be

two points (in cl-space). For 1 < i < d, we define

diff(p, q, i) as the index of the first component starting

at i where p and q differ or d + 1 ( i.e., smallest integer

j greater than or equal to i such that z~(p) = Z~(q),

i < k < ~, and xj (P) # Zj (g), unless no such ~ exists,

in which case j is d + 1 ). In what follows we say that

j is the first cliff starting at i between p and q when j

is equal to cliff (p, q, i). When i is 1 we say that j is

the first cliff between p and q. Procedure NAIVE is

formally given below.

procedure NAIVE(p, r);

t~r;

while t # null do

j + diff(p, t, 1);
case

:j = d + 1: return(true);

:Zj(p) < Zj(t ~ w): t is set to point to the

left subtree oft;

:Xj(p) > Zj(t ~ w): t is set to point to the

right sub tree of t;

end case

endwhile

return(false);

end of procedure NAIVE;

It is simple to show procedure NAIVE performs

the MEMBERSHIP operation correctly; however, its

time complexity is O(d log n) and there are problem

inst antes for which it requires Q(d log n) time.

Let us now modify the above procedure and reduce

its time complexity to O(d + log n). The algorithm is

similar, but the difference is that instead of comparing

elements starting always at position 1, we start the com-

parison where we stopped during the previous iteration.

The procedure is given below.

procedure FAST-NAIVE(p, r);

t+r;
i-l;

while t# null do

j & diff(p, t, i);

/* the case statement is identical to

the one in procedure NAIVE ‘/

i+j;

endwhile

return(false);

end of procedure FAST-NAIVE;

It is simple to show that the time complexity for

procedure FAST-NAIVE is O(d + iog n). Let us now

apply the procedure to search for points in the tree
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given in figure 4. Suppose p = (1,0,0,0,0). Procedure

FAST-NAIVE sets t to the root of the tree and j to

2. The procedure then advances to the left child oft

and j is set 3. Then t is advanced to the left subtree

of t and j is set to 4. The value of t is then set to

the left subtree of t and since it is null the procedure

returns the value of false, which is the correct answer.

When searching for the point (2,3,0,8,7) the procedure

returns the value of true, which is the correct answer.

However, the search for (1, 1,1,4,3) returns the value

of true which is incorrect. One can eliminate this

mistake by comparing p to t + v when procedure

FAST-NAIVE claims success. Let us call this new

procedure MOD-FAST-NAIVE. Since the number of

additional operation is O(d), the time complexity for

FAST-NAIVE is O(d + log n). Procedure MOD-

FAST-NAIVE is based on the principle assume-verify-

and-conquer (AVC). The idea is to avoid multiple

verifications by assuming that some prefixes of strings

mat ch. At the end of our search we must determine

whether or not these assumptions were valid. This

can be done by performing one simple verification step

that takes O(d) time. Unfortunately, the procedure is

incorrect. Searching for (1,3,0,8,7) and (1,1,1,4,1) will

generate incorrect results. Note that procedure FAST-

NAIVE performs the search correctly for (1,3,0,8,7).

Let us now discuss our structure and the procedures

that operate on it. Each node in the tree has the

following information in addition to the information

required to manipulate balanced binary search trees,

i.e., the rank bit (see [12]).

v: point

lchild: pointer

r-child: pointer

lptr: pointer

hptr: pointer

jl: integer

jh: integer

The element represented by

the node. The point is

represented by a d-tuple

which can be accessed via

Xl(v), ZZ(V), . . . . Xd(v).

Pointer to the root in the left

subtree oft.

Pointer to the root in the right

subtree oft.

Pointer to the node with

smallest value of the

subtree rooted t.

Pointer to the node with

largest value of the

subtree rooted t.

First cliff between v and

smallest value in subtree t.

First cliff between v and

largest value in mbtree t,
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Figure 4: Sample balanced binary search tree.

Our procedures perform two types of operations:

operations required to manipulate balanced binary

search trees (which we refer to as d andard operations)

and operations for manipulating and maintaining our

structure (which we refer to as new operations). The

standard operations are well known ([10], [12]); there-

fore, we shall only explain them briefly. The MEMBER-

SHIP procedure is identical to the one for searching in

a binary search tree. The input to the search procedure

is a value p. We start at the root and visit a set of tree

nodes until we either reach a pointer with value null

which indicates that p is not in the tree, or we find a

node with element p. In the former case we have iden-

tified the location where p could be inserted in order

to maintain a binary search tree, and in the later case

we visit only those nodes which are ancestors (in the

tree) of the node with value p. For the INSERT opera-

tion, we first perform procedure MEMBERSHIP. If the

element is in the tree the procedure terminates, since

we do not need to insert the element. Otherwise, pro-

cedure MEMBERSHIP will give us the location where

the element should be inserted. The element is inserted,

and if needed we perform a constant number of rota-

tions. Also, some information stored at some nodes in

the path from the root to the node inserted is updated.

The delete operation is a little bit more complex. First

we need to perform operations similar to the ones in pro-

cedure MEMBERSHIP to find out whether the element

is in the tree. If it is not in the tree the procedure ter-

minates, otherwise we have a pointer to the node to be

deleted. The following technique discussed in [6] (which

is similar to the one used for AVL trees) is used to re-

duce the deletion of an arbitrary node to the deletion of

a leaf node. If the node to be deleted is not a leaf node,

then we either find the next element or the previous el-

ement in the tree which has at least one null pointer.

If such a node is a leaf then the problem is reduced to

deleting that leaf node by interchanging the values in

these two nodes, otherwise three nodes have to inter-

change their values and again the problem is reduced
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to deleting a leaf node. Deletion of a leaf node is per-

formed by deleting it, performing a constant number of

rot ations and then updating some information stored in

the path from the position where the node was deleted

to the root of the tree.

To show that all of the operations can be imple-

mented in the proposed time bounds, we need to show

that the following (new) operations can be performed

O(d + log n) time.

(A) Given p determine whether or not it is stored in

the tree and if it is in the tree, then return a pointer

to it.

(B) Given p which is not stored in the tree, find

the place where it should be inserted in order to

maintain a binary search tree.

(C) Update the structure after adding a node (just

before rotation).

(D) Update the structure after performing a rotation.

(E) Update the structure after deleting a node (just

before rotation).

(F) Transform the deletion problem to deleting a leaf

node.

First we discuss procedure MEMBERSHIP(p, r) to

test whether or not point p given by (z1 (p), ZZ(p), . . . .

xd (p)) is in the d-dimensional binary search tree (or

subtree) rooted at r. This procedure implements (A)

above, and as we shall see later on it can be easily

modified to implement (B). Initially t is set to r and

comp is set to low. At each iteration, t,points to the

root of a subtree, and if comp = low (high) then j has

a value between 1 and d such that the jth component

of p and the smallest (largest) element in t differ or

j=d+l. As we shall see, j also satisfies some

additional properties. We say that p is in-bounds at

the subtree rooted at t if p is greater than or equal to

the smallest element in subtree t, and less than or equal

to the largest element in subtree t ( i.e., t + lptr ~ v ~

p ~ t + hptr -+ v ), otherwise p is out-of-bounds at the

subtree rooted at t. We claim that at each step in our

algorithm, one of the following three statements holds.

(i) If p is in the tree rooted at r then p is in-bounds and

(ii)

j ‘is the first component where p and the smallest

(largest) value in t differ when comp = low (high).

If p is not in the tree rooted at r and p is in-bounds

at t,then j is the first component where p and the

smallest (largest) value in tdiffer when comp = low

(high).

GONZALEZ

(iii) If p is not in the tree rooted at r-, then p is out-of-

bounds at t.

Let us outline our strategy when searching for p

at node t under the assumption that p is in the tree.

Later on we explain how to modify our strategy to

deal with the case when p is not in the tree. We only

consider the case when comp = low, since the other

case is symmetric. We claim that at each step in the

algorithm (i) holds true. Initially t points to the root

of the tree and j is the first cliff between p and the

smallest value in t. This operation together with the

assumption that p is in the tree implies that (i) holds

initially. We now show that if (i) holds during the kth

iteration and our algorithm performs certain operations

(that we specify below), then either p is found in the tree

and the algorithm terminates, or (i) holds at the k + 1st

iteration. If j = d + 1, then we know that p is equal

to the smallest element in t and we return; otherwise,

j < d + 1. There are three cases.

Case 1: (t ~ jl = j and zj(p) < zj(t + v)) or

t -+ jl < j (see figure 5).

By assumption p is in-bounds at t,and j is the first

cliff between p and the smallest value in t.From the

conditions of the case we know that p < t + v, so

p is not t + v nor it is in the right subtree of t.

Therefore, the left subtree oft is not null and p is

in-bounds at the left subtree of t,since we know

that p is in the tree rooted at r. By definition the

smallest value in t and the smallest value in the left

subtree oft are identical. Therefore, after resetting

t to t+ /child, we know that (i) holds.

P

111212]31xI X>4

j=5

1’

t --> v

1121314151

‘L!_---l

t --> lptr --> v

112121314

t-->jl=3

Figure 5: Case 1: t + jl <j.

Case 2: (t-+ jl= j ~d xj (p) > ~j(t-+ v)) or

t + jl > j (see figure 6).

By assumption p is in-bounds at t,and j is the first

cliff between p and the smallest value in t.From the



THE ON-LINE d-DIMENSIONAL DICTIONARY PROBLEM 381

conditions of the case we know that p > t + v, so

p is not t ~ v nor it is in the left subtree of t.

Therefore, the right subtree of t is not null and

p is in-bounds at the right sub tree of t,since we

know that p is in the tree rooted at r. Let j’ be the

first cliff starting at j between p and the smallest

element in the right subtree of t. Since j is less

than or equal to the first cliff between p and the

value stored at t,and p is in the right subtree of

t,it must be the case that j is less than or equal

to the first cliff between p and the smallest value

in the right subtree of t. So, j’ is equal to the
first cliff between p and the smallest value in the

right sub tree of t. If j’ = d + 1, then p is equal

to the smallest element in the right subtree of t.

Otherwise, after setting t to t+ rchild and j to j’,

we know (i) holds.

P

[1]2] 31x/ X>4

t --> lptr --> v I

11121314141

t

t-->jl=5

Figure 6: Case 2: t+ jl> j.

P

[11213141

j=o

!’

t --> v

1121314

t --> lptr --> v

V.____l

112[3/2

t-->jl=4

Figure 7: Case 3: t + jl = j.

Case 3: t -+ jl = j aud Zj(p) = zj(t + v) (see

figure 7).

By assumption p is in-bounds at t,and j is the first

cliff between p and the smallest value in t. Let j’

equal the first cliff starting at j between p and the

value stored at t. Since j = t ~ jl, we know that

j is less than or equal to the first cliff between p

and the value stored at t.Therefore, j’ is equal to

the first cliff between p and the value stored at t.If

j’ = d + 1, then p is equal to the value stored at

t and we return. Otherwise, j) ~ d, and there are

two separate sub cases.

P

11121314151x x<6

j=o 1, t --> v

11213141516

t --> lptr --> v 1

‘L__l

1121312

t-->jl=4

Figure 8: Subcase 3.1: z;(p) < z~(t + v).

Subcase 3.1: x;(p) < z~(t + v) (figure 8).

From the conditions of the case we know that

p<t~v, sopisnott~v nor itis in the

right subtree of t. Therefore, the left subtree

of t is not null and p is in-bounds at the left

subtree of t,since we know that p is in the

tree rooted at r. It is important to note that

if at the next iteration we proceed with comp

equal to low, then the time complexity bound

for our procedure will not be the proposed one,

because if this situation arises many times the

total time required to compute the j’s could

be aa large as Q(d log n). To eliminate this

problem we switch comp to high. Let j“ equal

to the first cliff starting at j’ between p and

the largest value in the left sub tree oft. Since

j’ is equal to the first cliff between p and the

value stored at t,and p is in-bounds at the left

subtree of t,itmust be that j’ is less than or

equal to the first cliff between p and the lar$est

value in the left subtree of t.Therefore, j‘ is

equal to the first cliff between p and the largest

value in the left child of t. If j“ = d + 1,

then p is equal to the largest value in the left

sub tree of t and return. Otherwise, (i) holds

after setting t to t+ lchild, j to j“ and comp

to high.
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P

~112/3i4151x x>6

j=d

1’

t --> v

11213141516

t --> lptr --> v

V-_-_-l

1121312

t-->jl=4

Figure 9: Subcase 3.2: z;(p) > x~(t ~ w).

Subcase 3.2: z$(p) > z~(t ~ v) (figure 9).

From theconditions of the case we know that

p>t-v, sopisnott-v nor itis in the

left subtree oft. Therefore, the right subtree

oft is not null and p is in-bounds at the right

subtree oft, since we know that p is in the tree

rooted at r. Let j“ be the first cliff starting

at j’ between p and the smallest element in

the right subtree oft. Since jt is equal to the

first cliff between p and the value stored at t

and p is in-bounds in the right sub tree oft, it

must be that j’ is less than or equal to the first

cliff between p and the smallest element in the

right subtree of t. Therefore, j“ is equal to

the first cliff between p and the smallest value

stored in the right subtree oft. If j“ = d + 1,

then p is equal to the smallest element in the

right subtree of t. Otherwise, (i) holds after

setting t to t+ rchild and j to j“.

We shall not discuss the case when comp = high

because it is similar. When p is not in the tree,

the procedure is slightly different. In this case the

path followed during the search starts at the root and

continues through all those nodes for which p is in-

bounds. If at some point both of the children of a

node are out-of-bounds for p, then either the search

terminates with an answer false, or we advance to

one of the children of the t and (iii) will hold from

that point on. The specific details about the search

strategy are spelled out in procedure MEMBERSHIP

given below. It is important to note that once (iii)

holds, j has no “important” meaning. However, to

guard against reporting that p is in the tree when it

is not, we perform an additional test (verification step).

The assumption that we make is that p is in the tree.

When the assumption is wrong, it is caught by the

GONZALEZ

verification step. This is why we call the technique

assume-verify-and-conquer (AVC). Let us now formally

define procedure MEMBERSHIP(p, r) to test whether

or not point p is in the subtree rooted at r.

procedure MEMBERSHIP(p, r);

/*Is (Z,(p), ZZ(p), . . . , ‘d(p)) in the d-dimensional
balanced binary search tree rooted at r */

comp +- low; t +- r;

j ~ diff(p, t ~ lptr + V, 1);

while t# null do

case

:comp = low:

ifj=d+l then

if p = t + lptr ~ v then return(true)

else return(false);

case

:(t + jl = j and xi(p) < zj(t ~ v)) or

t~ji<j:/*Case l*/

t * t ~ [child;

:@ ~ jl = j and Zj(p) > zi(t + v)) or

t+jl>j:/*Case 2*/

code-for-case-2( );

:else: /* Case 3 */

j’ - diff(p, t + V, j);

ifj’=d+l then

if p = t ~ v then return(true)

else return(false);

case

:z~(p) < x~(t - v): /* Subcase 3.1 */

code-for-sub case-3. 1( );

:~~(P) > $~(t ~ v): /* Subcase 3.2 */

code-for-sub ca.se-3.2( );

endcase

endcase

:comp = high: /* This section of code is omitted

endcase

endwhile

return(false);

end of procedure

since it is similar to the one

for comp = low. */

MEMBERSHIP

procedure code-for-case-2( );

t h t * rchild;

if t = null then return(false);

j’ - diff(p, t ~ lptr ~ V, j);

ifj’=d+l then

if p = t ~ lptr ~ v then return(true)

else return(false);

if x; (p) < m; (t ~ lptr ~ v) then return(false);

je j’;

end of procedure code-for- case-2
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procedure code-for-sub case-3.1( );

t+ t+ lchdd;

i$t = null then return(false);

~ .; diff(p, t ~ hptr ~ V, jl);

if~ =d+l then

if p = t + hptr + v then return(true)

else ret urn(false);

if Xjtt (p) > Xj,l (t ~ hptr + v) then return(false);

comp i- high; j e j“;

end of procedure code-for-sub case-3.1

procedure code-for-subca.se-3 .2( );

t* t+ rchild;

i$, t = null then return(false);

~ .7 diff(p, t ~ Iptr + v, j’);
if J =d+l then

if p = t ~ lptr + v then return(true)

else ret urn(false);

if xj,, (p) < Zj II (t + lptr + v) then return(false);
II

j+-j;

end of procedure code-for-sub case-3.2

It is trivial to modify the procedure so that when it

returns the answer true it also returns a pointer to the

place where the element is stored, for brevity we did not

include such instructions. Following arguments similar

to the ones for the case when p is in the tree, one can

easily prove the following lemma.

LEMMA 2.1. Given a point p procedure MEMBER-

SHIP(P, r) determines whether or not p is in the

d-dimensional balanced binary search tree rooted at r

in O(d + log n) time.

Proof The proof follows arguments similar to those

we used for the case when p is in the tree.

We have identified an algorithm that implements

(A) within the proposed time complexity bound. Let

us now consider how to implement (B), i.e., if p is not

in the tree then find the position where it should be

inserted. The node where procedure MEMBERSHIP

terminates may not be the correct place where insertion

should take place. However, while executing procedure

MEMBERSHIP we can save the path traversed in the

tree while searching for p. By the path traversed, we

mean all the nodes to which t pointed to plus the next

node that would be visited (i.e., the procedure returns

false just before t is set to t+ rchild, or t+ lchild and

such a pointer was not null). Suppose that the path

traversed is given by figure 10. The ais are pointers

to the nodes. Suppose that the node pointed at by

al z is the last node and it is not a leaf node. The

triangles are subtrees and the dot in them represents

the place where an element smaller or larger than all

the elements in the subtree would be inserted. We

label those locations b., bl, . . . . b12. The procedure that

performs this labeling is omitted, since it is straight

forward.

bO

b2

b3

b5

b7

b8

b6

b9 bl 1

Figure 10: Tree nodes searched.

Since (ii) or (iii) hold at each step in the traversal

and t is a binary search tree, it must be that all the

nodes for which p is in-bounds are visited before all the

nodes for which p is out-of-bounds. Furthermore, there

is at least one node for which p is out-of-bounds and

all the nodes in r for which p is in-bounds are in the

path. To determine the place where p must be inserted,

we find the last node (if any) in the path for which p
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is in-bounds. Consider figure 10. If p is out-of-bounds

at al, then pshould be inserted at b. or blz; if the last

node for which p is in-bounds is al, then p should be

inserted at bl; and so forth except for al z. Remember

that it cannot be that the last node for which p is in-

bounds is alz. Using the above strategy it is simple to

write a procedure that given the last node for which p is

in-bounds it determines where p should be inserted. Let

us now show how to find such a node. The list of nodes

isal~v, az+ v,.... There are O(iog n) elements in

the list, since the length of the path is O(log n). One

can easily construct the list sort ed in O(log n) time by

traversing the nodes in the path top-down. The sorted

list of elements for the path given in figure 10 is:

Suppose that we find the appropriate place for p

in the above list. If p is smaller (larger) than all the

elements in the list then p is out-of-bounds at al and

it should be inserted at b. (blz). On the other hand

if it appears before (after) a12 but just after (before)

ai ~ w then the last node for which p is in-bounds is

ai and it should be inserted at bi. Let us now outline

our procedure to find the appropriate place for p in the

list. Initially k is set to 1. Now let us eliminate all

the elements which disagree with component k of p in

the list. This can be accomplished by traversing the

list top-down and bottom-up. The top-down (bottom-

UP) traversal advances if component k of the element in

the list has a value smaller (larger) than the one in p. If

there remain no more elements in the list, then the place

where the search ends is the location where p belongs.

Otherwise, we increase the value of k and resume the

above process where we left. Eventually the appropriate

position for p will be found. Clearly, this process takes

O(d + log n) time since there are O(log n) elements. All

of the above observations are summarized in lemma 2.2.

For simplicity of exposition we separated this part of the

algorithm from procedure MEMBERSHIP; however, it

is simple to see how it can be incorporated into that

procedure.

LEMMA 2.2. Given a point p which is not

in the tree r, an algorithm based on procedure

MEMBERSHIP(p, r) and the above observations deter-

mines where p should be inserted in the d-dimensional

balanced binary search tree rooted at r in O(d + log n)

time.

We have identified an algorithm that implements

(B) within the proposed time complexity bound. Let

us now consider (C). If the tree is empty just before

the insert operation, then the update of a single node

is trivial, Suppose now that element p is added to a

non-empty tree. Let q point to the node added. Now

we must update the structure to reflect the new value

at some nodes that are predecessors of node q. Let s be

the predecessor to q closest to the root and such that the

path from s to q contains at least one arc and consists

only of rchild or lchild (but not both) tree arcs. Let

us assume the path consists of only rchiid (lchild) tree

arcs. Then, the hpt r (lpt r) of all of these nodes must

now point to the new node. The value jh (j/) in the path

must be updated. If we update them one by one without

reusing partial results, the time complexity will not be

the proposed one. However, the values stored at each

of these nodes are increasing (decreasing). Therefore,

the jh (ji) values are increasing. The correct values

can be easily computed in O(d + log n) time by reusing

previously computed jh (ji) values. Lemma 2.3, whose

proof is omitted, summarizes our observations.

LEMMA 2.3. Afler inserting a point p in a

d-dimensional balanced binary search tree and just be-

fore rotation the structure can be updated as mentioned

above in O(d + log n) time.

We have identified an algorithm that implements

(C) within the proposed time complexity. It is simple to

see that a similar procedure can be used to implement

(E). Let us now consider how to implement (D), i.e.,

rot ations. This is the simplest part. A simple rotation

is shown in figure 11. We only consider single rotations,

since the compound rot ations in [12] can be obtained

by applying several single rotations. Clearly, the only

nodes whose information needs to be updated are al

and az. Clearly, since there is a fixed number (2) of
them the operations can be implemented to take O(d)

time. This result is summarized in lemma 2.4, without

a proof.

LEMMA 2.4. After a rotation in a d-dimensional

balanced binary search tree the structure can be updated

as mentioned above in O(d) time.

Using arguments similar to the ones in Iemmss

2.3 and 2.4, one can easily show that (F) can be

implemented to take O(d + iog n) time. Our main result

which is based on the above discussions and the lemmas

is given below,

Proof. The proof is based on lemma 2.1 and the THEOREM 2.1. Any on-line sequence of opera-

arguments that appear just before lemma 2.2. tions of the form INSERT(p), DELETE(p) and
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MEMBERSHIP(p), where p is any point in d-

space can be carried out by the above procedures

on a d-dimensional balanced binary search trees in

O(d + log n) time, where n is the current number of

points, and each insert and delete operation requires no

more than a constant number of rotations.

Proof. By the above discussion, the lemmas and

the fact that only O(1) rotations are needed for each

INSERT and DELETE operations on balanced binary

search trees [12].

bl b2 b2 b3

Figure 11: Rotation.

3 Discussion.

It is interesting that our technique cannot be adapted to

AVL trees, weight balanced trees or B-trees of fixed or-

der, because the number of rotations in those structures

might be large (Q(log n)). Since each rotation could

take L?(d) time, the proposed time complexity bounds

would not hold. The main reason why they hold on

balanced binary search trees is that only O(1) rotations

are needed. An O(d + log n) time algorithm to CON-

CATENATE two sets represented by our structure can

be easily obtained. However, the SPLIT operation can-

not be implemented within this time complexity bound.

The main reason is that there could be Q(log n) rota-

tions.

For simplicity we defined the procedures for the

MEMBERSHIP operation in multiple phases. It is

simple to see that the multiple phases may be performed

concurrently while traversing the tree from the root.

It is important to note that procedures bm.ed on our

techniques can be easily coded, for brevity we did not

include the detailed procedures. The TRIE plus binary

search tree approach requires less space to represent the

elements than ours. However, our procedures are simple

and only a constant number of rotations are required

after each INSERT and DELETE operations.
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versions of this paper. The author also wishes to thank

J. van Leeuwen and M. Overmars for the bibliographical

pointers they provided the author.
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