
P-COMPLETE PROBLEMS AND APPROXIMATE SOLUTIONS

Sartaj Sahni and Teofilo Gonzales

Computer Science Department
University of Minnesota

Minneapolis, Minnesota

ABSTRACT

We study the class of P-Complete problems and show
the following:

i) for any constant e > 0 there is a P-complete
problem for which an e-approximate solution can
be found in linear time

ii) there exist P-Complete problems for which lin­
ear time approximate solutions that get closer
and closer to the optimal (with increasing
problem size) can be found

iii) there exist P-Complete problems for which the
approximation problems are also P-Complete.

KEY WORDS

P-Complete, approximation algorithm, polynomial
complexity, k-Partition, k-MaxCut, traveling salesman,
cycle covers.

1. INTRODUCTION

Our notion of P-Complete corresponds to the one
used in [6]. This can easily be seen to be equivalent
to that of Cook [2]. A problem, L , will be said to
be P-Complete iff the following holds: L can be
solved in polynomial deterministic time iff the class
of nondeterministic polynomial time languages is the
same as deterministic polynomial time languages
(i.e. P = NP) . Knuth [5] suggests the terminology
NP-Complete. However, his notion of "completeness" is
that of Karp [4]. Since the equivalence or non­
equivalence of the two notions is not known, we will
use the term NP-Complete for problems that can be
shown complete with Karp's definition and P-Complete
for those which require the definition of [6]. The
reader unfamiliar with P-Complete problems is referred
to [4] and [6]. All problems that are NP-Complet e
(i.e. complete under Karp's definitions) are also
P-Complete [2 and 6]. The reverse is unknown. Since
it appears that P � NP, the P-Complete
problems probably have no polynomial solution. Many
of these problems, especially the optimisation
problems, are of practical significance. Often. as in
the case of the Knapsack problem [7], approximate
solutions (i.e. feasible solutions that are guaranteed
to be 'reasonably' close to the optimal) would be
acceptable so long as they can be obtained 'quickly'
(e. g. by an O(nk) algorithm for small k) . Johnson
[3] and Sahni [7] have studied some P-Complete prob­
lems with respect to obtaining 'good' (i.e. poly­
nomial) approximate algorithms. (For·our purposes,
an algorithm for a maximization problem WillAte said
to be f(n) -approximate (f.(n) < 1) iff I F* - F < f(n)

F*
-

for all n (F* is the maximum value of the objective
function and F the approximation to the maximum, we
assume F*>O» . For a more formal definition see [7] .)
However, interesting questions like:

a) are there polynomial time approximation algor­
ithms for all P-Complete problems (note that the
problems in [4J are stated as language

28

recognition problems and in order to speak of
approximate solutions we shall have to convert
them to optimisation problems. Thus, the clique
problem of [4 J will become the max clique prob­
lem) and

b) are there P-Complete problems for which one can
obtain solutions arbitrarily close to the
optimal in polynomial time (the algorithms of [7]
can get to within 11k of the optimal in O(nk)
time, here we present problems for which one can
get to within 11k in O(n) time, where n is the
space to describe the problem) , remain open.

In this paper, we shall attempt to answer these
questions.

The following problems known to be NP-Complete (see
Karp [4 J) shall be used in the reductions:

i) Partition: Given s integers (c
l

,c2, • • • ,cs
) is

there a subset I�{1,2, • • • ,s} such
that E c = E c

heI h htI h

ii) Cut: Given an undirected graph G(N,A) ,
weighting function w : A + Z, positive
integer W, is there a set SeN such that

E w{u,v} > W
{u,v}eA

-

ues
vts

iii) Sum of Subsets: Given n+l positive integers
(r

l
,r2, • • • r

n
,m) , is there a

subset of the r. 's that sums
to m. �

The problems we shall use to answer the questions
posed earlier are:

a) k-Partition: Given n integers rl,r2, • • • rn and

an integer k � 2, are there
disjoint subsets I

l
,I2, • . • ,Ik k such that 0 I

i {1,2, • • • n} and
i=l

(The Partition problem i) above
is then just the 2-Partition
problem.)

b) k-Cut: Given and undirected graph G = (N,A),
integer k � 2, weighting function
w : A + Z, positive integer W, are
there disjoint sets S

l
,S2" ." S

k
such

k
that 0 S

i
= N and l: w(u,v) � W.

i=l {u,v}gA
ueSi
ueSj
;i.�j

(The Cut problem ii) above is just the
2-Cut problem.)

b') Find disjoint sets, Si 1 � i � k,

such that L!:J s, = N
i=l l

is maximised.

and l: w{u,v}
{u,v}EA

UESi
VES,

J
ifj

c) [n/J -Partition: same as a) except that the
number ..pf disjoint subsets is
nowin/kl , k � 2.

d) fn/J Cut: same as b) except the nu�e� of
disjoint subsets is now I n/kl , k � 2.

d') ;/kl -Maxcut: same as b') with k replaced by

2. COMPLETENESS PROOFS AND APPROXIMATIONS

W e begin by showing that problems a-d of the intro­
duction are P-Complete.

Lemma 2.1
(I) The following problems are NP-COMPLETE

a) k-Partition
b) k-Cut
c) Inlkl-Partition
d) jU/kl -Cut

(II) k-MaxCut and fn/kl -MaxCut are P-Complete.
Proof

We have to show that i) if P=NP then a)-d) can be
solved in polynomial time and ii) if a)-d) can be
solved in polynomial time then the class of P-Complete
problems is polynomial solvable (this can be shown by
reducing any known P-Complete problem to a)-d».

i) is trivial. so we shall only show ii).
ii) Partition a k-Partition. For any Partition

probleIl (cl,c2 •••• cs) define a k-Partition problem
(rl,r2,,···,rs+k_2) where

1 < i < S

s + 1 < i < s + k - 2
(we may assume that l:c, is even as otherwise the
partition problem cleafly has no solution). Now,
l:ri = kp and the k-Partition problem has a solution
iff the corresponding Partition problem has one.
k-Partition g k-Cut

If the given k-Partition problem is (rl, • . . • r)
define the corresponding k-MaxCut problem to be n

G = (N,A) with N = (1,2 •••• n) •
A = {{i.j} liEN. jEN, if;t
w({i,j}) = r, r, l J

and W = (k-l) (l:rl,) 2
2k

(Note, we may again assume k divides l:r, .)
l

Clearly, there is a k-Cut > W iff (rl,r2 •• . • ,rn) has
a k-partition.

lThe k-MaxCut problem is a generalisation of the
'grouping of ordering data' problem studied in [1).
[lJ restricts the sets Si to be sequential. i.e • • if
i,jES,Q,

and i < j then i+1.i+2, . . . • j-J ES,Q,' [1]
presents an O(kn2) dynamic programming "algorithm for
this.

29

Partition a f/kl -Partition. We prove this only for
k 2. From the partition problem (c .c2 •••• • c).
s > 3. construct the following rn/� lpartitionsproble�

r, c, 1 < i < S l l - -

r, p s + 1 < i < n
l

n = 2(s-2)
P l:c./2 (if l:c, odd then there is no partition)

l l
Clearly, the partition problem has "a solution iff the
r/� -Partition problem has one.

fn/kl -Partition a rn/f] - MaxCut.
is similar to that for k-Partition
from I and the techniques of [5].

The proof for this
k-Cut II follows

•
We note that the proofs used in Lemma 1 are minor

extensions of the ones used in Karp [4] . The (n-k)­
Partition and (n-k)-MaxCut problems are polynomial.
We next prese� an approximation algorithm for the
k-MaxCut and aln/kl-MaxCut problems. Consider the
algorithm MAXCUT below: (Intuitively. this algorithm
begins by placing one vertex of G into each of the ,Q,
sets S, 1 < i < ,Q,; The remaining n-,Q, vertices are
examin�d o�e at a time. Examination of a vertex, j,
involves determining the set S, 1 < i <,Q, for which

l: w{m,j} is minimal. Vertexl j is then inserted/
mES, l
assigned to this set.)

Algorithm MAXCUT (,Q"G)
comment. ,Q, •• • number of disjoint sets. S, • into

l
which the vertices, N = (1,2, . ••• n), of the graph

G(N,A) are to be partitioned.SOL ••• the value of the
vertex partitioning obtained,w{i.j} ••• weight of the
edge {i.j} . SET(i) • • • the set to which vertex i
has been assigned (SET(i) = 0 for all vertices not yet
assigned to a set). WT(i) ••• used to compute

l: w{m.j} , 1 � i � ,Q,
mESi

This algorithm assumes that the graph G(N,A) is pre�
sented as n lists vl.v2, ••• ,v . Each list v, contains
all the edges, {i,j}EA , that �re adjacent tol vertex i.
No assumption is made on the order in which these edges
appear in the list. end comment

� [InitialiseJ If,Q, > n then do -- -

otherwise

� [process

SOL + l: w{i,j}
{i,j }EA

1< i< n Si + {i}
S, + !3 l

n+l < i < ,Q,
Stop
end;

Set S,
l

+ i I

WT(i) + 0

< i < ,Q,
1 < i �,Q"

SET (i) + i 1 < i < ,Q,
SET (i) + 0 .Q, + 1 < i
SOL + l: w{ i,j}

{i.j}EA
l�i<j�,Q,

j + ,Q, + 1
edge list of vertex jJ

< n

for each edge {j,m} on the edge list of vertex
j do

if SET(m) f 0 then WT(SET(m» + WT(SET(m» + - w{j ,m}
end

d. + degree of vertex j = # of edges adjacent to
J vertex j

� [find the set for which L w{j,m} is minimal]
mESi

look at WT(a) 1 < a < min{d.+l,�} and determine i
such that WT(i) is minimal Jin this range. (Note
that if d. + 1 � � then at least one of WT(a)
1 < a < dJ + 1 must be 0 and minimal. For - - j
d. + 1 > � all WT(a) are looked at and the minimal J -
found.)

� [assign vertex j to set Si]
SET(j) + i

� [update SOL and reset WT]
for each edge {j,m}EA for which SET(m) � 0 do
if SET(m) � i then SOL + SOL + w{j,m}
WT(SET(m» +-0--end

Step 6lnext vertex] j + j+l ,
if j � n then .&2. .!.£ step 2

otherwise terminate algorithm
•

Lemma 2.2
The time complexity of algorithm MAXCUT is O(�+n+e)

on a random access machine (n is the number of verti­
ces, e the number of edges and � the number of groups
into which the vertices are to be partitioned).
Proof

Step
1

Time Per Execution Total Time

•

2

3

4

O(n+e + �)
o (d.) J
O(dj + 1)

0(1)
5 0 (d.) J
6 0 (1)

Hence total time

Lemma 2.3

O(n+e + �)
o (e)

O(e + n)

o (n)
O(e)

O(n)
O(n + e + �)

Algorithm MAXCUT is a l/k - approximate algorithm
for the k-MaxCut problem.
Proof

If n � k then MAXCUT generates the optimal solution
value.
Define the internal weight of the set Si to be

l; w{u,v}. UT-V
k

Then the total internal weight (TIW) = L internal
i=l

weight (S.). The external weight (EW) L w{u,v}
1. U,V

UES.
1. VESj

ilj
In � when vertex j is assigned to set i either
WT(i) = 0 (corresponding to d. < �) or J
WT(i) � L WT(m)/k .

l<m<k
i.e. if the total internal weight increases by WT(i)
then the external weight increases by at least
(k-l)WT(i). Consequently, at termination, TIW < EW/
(k-l) (note that SOL = EW). But, the optimal value
of the solution < TIW + EW. Let F* be the optimal.

30

EW = SOL is the approximation obtained by MAXCUT. The
worst case occurs when TIW approaches EW�-l). Hence
I F* ;*

SOL I < l/k.

• The next two theorems establish the existence of
P-Complete problems for which linear time approximate
solutions, that are exceedingly close to the optimal
solution value, can be obtained. I.e., there are
P-Complete problems that can "almost" be solved in
linear time. In this sense, then, these problems are
the simplest P-Complete problems.
Theorem 2.1

For any constant c, 0 < C < 1, there esists a P­
Complete problem for which an c-approximate solution
may be obtained in linear time.
Proof

Let k be an integer such the l/k � c. From Lemma
2.1, the k-MaxCut problem is P-Complete. From Lemmas
2.2 and 2.3 it follows that an c-approximate solution
to this P-Complete Problem may be obtained in linear
time.

•
Theorem 2.2

There exists a P-Complete problem and a linear time
f(n)-approximate algorithm with the property that
fen) + 0 as n +00, i.e. the approximate solutions get
increasingly accurate as n increases.
Proof
---yrom Lemmas 2.1, 2.2 and 2.3 it follows that
is a linear time l/P/� -ap�roximate algorithm
the P-Complete problem: rn/kl -MaxCut.

there
for

•
We conclude this section by establishing the exis­

tence of a P-Complete problem for which the approxima­
tion problem is also P-Complete.
Theorem 2.3

There is a P-Complete problem that has a polynomial
time c-approximate (0 < C < 1) algorithm iff P= NP.
Proof
---yrom any sum of subset problem (r ,r , • • • r ,m)
construct the following Knapsack typ� ptoblem�

n
max k LO. + 0n+l 1 1.

n
subject to: L wioi + wn+lon+l 1

m • • • K!

where w. = r.
1. 1.

l< i< n + l

1 � i � n and wn+l = m. Clearly,
P-Complete. The maximum (i.e. F*) is either 1
(corresponding to ° . = 0 1 <i < n and ° = 1)

1. - - n+l

Kl is

or it
is �k. Also F* � k iff the sum of subset problem has
a solution. Assume. there is a 8-approximate algorithm
for this problem. Let F be the value (i.e. the
approximate solution value) yielded by this algorithm.
Then I F*

F: FI � E. All solutions approximating F*=l

have value 1 - E < F < 1 + 8. While solutions
approximating F* > k have value k(1-8) < F. By
choosing k suitably large, we can make these two
ranges disjoint. Hence, form a knowledge of F one
can determine whether or not the sum of subsets
problem has a solution. Consequently, the c-approx­
imation problem for K! is also P-Complete •

•

3. OTHER P-COMPLETE APPROXIMATION PROBLEMS

In this section we look at some other P-Complete
problems and show that they have a polynomial time

approximate algorithm iff P = NP. This would then
imply that if P f NP, then any polynomial time approx­
imation algorithm for these problems, heuristic or
otherwise, must produce arbitrarily bad approximations
on some inputs. The problems we look at are:

(i)

(ii)

(iii)

(iv)

(v)

(vi)
(vii)

Travelling Salesman: Given an undirected
(directed) completel graph G(N,A) and a weight­
ing function w: A + Z find the shortest cycle
containing each vertex exactly once. (The
length of a cycle is the sum of the weights of
the edges in the cycle.)
Undirected Edge Disjoint Cycle Cover: Given an
undirected graph G(N,A) find the minimum number
of edge disjoint cycles needed to cover all the
vertices of N (i.e. minimum number of cycles
such that each vertex of G is on at least one
cycle)
Directed Edge Disjoint Cycle Cover: Same as
(ii) except that G is now a directed graph.
Undirected Vertex Disjoint Cycle Cover: This
problem is the same as (ii) except that now,
the cycles are constrained to be vertex dis­
joint.
Directed Vertex Disjoint Cycle Cover: Same as
(iv) except that G is now a directed graph.
0-1 Integer Programming with one constraint.
Multicommodity Network Flows: We are given a
transportation network [6J with source sl and
sink s2' The arcs of the network are labeled
correspondin g to the commodities that can be
transported along them. Such a network is said
to have a flow f if f f units 0 f each commodity
can be transported from source to sink. The
problem here is to maximize f.

In order to prove some of our results we shall use
the following known P-Complete problems:
a) Hamiltonian Cycle: Given an undirected (directed)

graph G(N,A) does it have a cycle containing each
vertex exactly once, [4] .

b) Multicommodity Flows: Given the transportation
network of (vii) above does it have a flow of f = 1
[6].

Before continuing, it is necessary to generalize
our definition of approximation algorithm to include
minimization problems.
Definition 3.1

An algorithm will be said to be an £-approximate
algorithm for a problem Pl iff either (i) Pl is a
maximization problem and

IF*
F

-
* ;1 < £ 0<£< 1

or (ii) Pl is a minimization problem and

I F*
F: FI <

�
£ > 0

where F* is the optimal solution (assumed> 0) and F is
the approximate solution obtained.
Theorem 3.1

The £-approximation problem for (i) - (vii) above
is P-Complete.
Proof

For each of the problems(i) - (vii), it is easy to
see that if P = NP then the £-approximation problem

lA graph G(N,A) is said to be Complete iff for every
pair of vertices u,v£N ufv the edge (u,v)£A.

31

is polynomially solvable (as the exact solutions would
then be obtainable in polynomial time). Consequently,
we concern ourselves only with showing that if there is
a polynomial time approximation algorithm for any of
the problems listed above then P = NP. Our approach is
to seperate feasible solutions to a given problem in
such a way that from a knowledge of the approximate
solution one can solve exactly a known P-Complete prob­
lem.

(i) Hamiltonian Cycle a £-approximate Travelling
Salesman

Let G(N,A) be any graph. Construct the graph Gl (V$)
such that V = N and E = {(u,v) lu,v£v}. Define the
weighting function w: E+Z to be w{u,v}={l if (u,v)£A

k otherwise.
Let n = INI. For k > 1, the Travelling Salesman

problem on Gl has a solution of length n iff G has a
�:�!�O�i�n

+CY�l� ·l.
Ot�;r:�s�ho:!� �o�u�i��)n

t
�h:A,

h
��:

only solutions approximating a solution with value n
(if there was a Hamiltonian cycle in Gl) also have
length n. Consequently, if the £-approximate solution
has length �(l+£)n then it must be of length. n. If it
has length >(1+£) n then G has no Hamiltonian cycle.

(ii) - (v) The proofs for (ii) - (v) are similar. We
outline the proof for (iv)
Undirected Hamiltonian Cycle a £-approximate Disjoint
Cycle Cover

Given an Undirected graph G(N,A) construct k copies
G. (N . ,A.) of this graph. Pick a vertex vEN. Let � � � d ul,u2, • • • ,u be the vertices adjacent to v in G (i.e.
(ui,v)£ A 1 < i < d). Define H.(V.,E.) to be the

- k J k J J j graph with Vj = i�lNi and Ej i�l AiU {(ul ' vi+l) I
1 � i < kJ U {(ua, vl)}

Clearly, if G has a Hamiltonian Cycle then, for some j,
H. has a cycle cover containing exactly one cycle (as

J for some j (v,uj) are adjacent in the Hamiltonian cycle
and using the images of the edges of this cycle in the
subgraphs G. (except for the images of the edge

. � .
(v,uJ», together with the edges (uJ

i,v. 1)11 < i < k} . � -

U {u�, vl) one obtains a Hamiltonian cycle for Ej).
If G has no Hamiltonian cycle, then the subgraphs Gi
each require at least two disjoint cycles to cover
their nodes. Consequently, the disjoint cycle cover
for j contains at least k+l cycles, 1 < j < k. For any
£, one may choose a suitable k such that from the
approximate solutions to H. 1 < j < k one can decide
whether or not G has a Hamflto;ian-cycle (i.e. choose
k > (HE) .

Note that the above proof also works for the case of
edge disjoint cycle covers.

(vi) Just consider the reduction:
Sum of Subsets a £-approximate 0-1 Integer
Programming

ie min 1 + k(m - l:wioi)
subject to l:wioi < m -

° . = 0 or 1
�

(The minimum = 1 iff there is a subset with sum m
otherwise the minimum is � 1 + k)

(vii) Multicommodity flows a £-approximate Multi­
commodity Flows
In [6] it was shown that multicommodity flows
with f = 1 was P-Complete. Given a multi­
commodity network N as in [6J we construct k

copies of it and put them in parallel. Another network
with a flow f = 1 is also coupled to the network as in
figure 3.1.

Source F-----"'--+--=----l

network with
multiconunod­
ity
flow = 1

N

N

Figure 3.1

Sink

Clearly, the multiconunodity network of figure 3.1
has a flow of k + 1 iff N has a flow of 1. If N does
not have a flow of 1 then the maximum flow in the net­
work of figure 3.1 is 1. Hence the approximation
problem for multiconunodity flows is P-Complete •

•

4. CONCLUSION

We have answered some existence problems concern­
ing approximation algorithms for P-Complete problems.
Our results show that all P-Complete problems are not
equally hard. Some are harder than others in the
sense that some P-Complete problems can 'almost' be
solved in linear time while for others, the problem
of determining even an E-approximate solution is
P-Complete. In terms of computational difficulty
of the approximation problem, we have exhibited the
simplest and the hardest P-Complete problems. We
note that some of our results could have been obtained
using "padding" techniques. Further, padding tech­
niques also lead to such results as a) there are P­
Complete problems with an O(n) average computing time
and b) there are P-Complete problems with a sub­
exponential (e.g. 0(2fn» worst case computing time.
However, it remains open whether a) and b) are true
for any "natural" P-Co··.plete problem, such as those of
[4] and [6].

REFERENCES

[lJ Bodin, L. D. "A Grap\l Theoretic Approach to the
Grouping of Ordering Data", Networks, 2, 1972,
pp. 307-310.

[2J Cook, S. A., "The Complexity of Theorem-Proving
Procedures", Conference Record of Third ACM
Symposium on Theory of Computing, pp. 151-158,
1970.

[3J Johnson, D. "Approximation Algorithms for Com­
binatorial Problems", Conference Record of Fifth
ACM Symposium on Theory of Computing, 1973.

[4J Karp, R. M. ,"Reducibility Among Combinatorial
Problems", in Complexity of Computer Computations,
R.E. Miller and J.W. Thatcher, eds., Plenum
Press, N.Y., 1972, pp. 85-1 04.

32

[5J Knuth, D. E., "A Terminological Proposal" SI:;ACT
News, Jan. 1974, Vol. 6, No. 1, pp. 12-18. See
also SIGACT News, April, 1974.

[6] Sahni, S., "Computationally Related Problems", to
appear in SICOMP.

[7 J Sahni, S., "Approximate Algorithms for the 0/1
Kanpsack Problem",to appear in JACM.

