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ABSTRACT 

We study the class of P-Complete problems and show 
the following: 

i) for any constant e > 0 there is a P-complete 
problem for which an e-approximate solution can 
be found in linear time 

ii) there exist P-Complete problems for which lin­
ear time approximate solutions that get closer 
and closer to the optimal (with increasing 
problem size) can be found 

iii) there exist P-Complete problems for which the 
approximation problems are also P-Complete. 
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1. INTRODUCTION 

Our notion of P-Complete corresponds to the one 
used in [6]. This can easily be seen to be equivalent 
to that of Cook [2]. A problem, L , will be said to 
be P-Complete iff the following holds: L can be 
solved in polynomial deterministic time iff the class 
of nondeterministic polynomial time languages is the 
same as deterministic polynomial time languages 
(i.e. P = NP) .  Knuth [5] suggests the terminology 
NP-Complete. However, his notion of "completeness" is 
that of Karp [4]. Since the equivalence or non­
equivalence of the two notions is not known, we will 
use the term NP-Complete for problems that can be 
shown complete with Karp's definition and P-Complete 
for those which require the definition of [6]. The 
reader unfamiliar with P-Complete problems is referred 
to [4] and [6]. All problems that are NP-Complet e 
( i.e. complete under Karp's definitions) are also 
P-Complete [2 and 6]. The reverse is unknown. Since 
it appears that P � NP, the P-Complete 
problems probably have no polynomial solution. Many 
of these problems, especially the optimisation 
problems, are of practical significance. Often. as in 
the case of the Knapsack problem [7], approximate 
solutions (i.e. feasible solutions that are guaranteed 
to be 'reasonably' close to the optimal) would be 
acceptable so long as they can be obtained 'quickly' 
(e. g. by an O(nk) algorithm for small k) . Johnson 
[3] and Sahni [7] have studied some P-Complete prob­
lems with respect to obtaining 'good' (i.e. poly­
nomial) approximate algorithms. (For·our purposes, 
an algorithm for a maximization problem WillAte said 
to be f(n) -approximate (f.(n) < 1) iff I F* - F < f(n) 

F* 
-

for all n (F* is the maximum value of the objective 
function and F the approximation to the maximum, we 
assume F*>O» . For a more formal definition see [7] . )  
However, interesting questions like: 

a) are there polynomial time approximation algor­
ithms for all P-Complete problems (note that the 
problems in [4J are stated as language 
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recognition problems and in order to speak of 
approximate solutions we shall have to convert 
them to optimisation problems. Thus, the clique 
problem of [4 J will become the max clique prob­
lem) and 

b) are there P-Complete problems for which one can 
obtain solutions arbitrarily close to the 
optimal in polynomial time (the algorithms of [7] 
can get to within 11k of the optimal in O(nk) 
time, here we present problems for which one can 
get to within 11k in O(n) time, where n is the 
space to describe the problem) , remain open. 

In this paper, we shall attempt to answer these 
questions. 

The following problems known to be NP-Complete (see 
Karp [4 J) shall be used in the reductions: 

i) Partition: Given s integers (c
l

,c2, • • •  ,cs
) is 

there a subset I�{1,2, • • •  ,s} such 
that E c = E c 

heI h htI h 

ii) Cut: Given an undirected graph G(N,A) , 
weighting function w : A + Z, positive 
integer W, is there a set SeN such that 

E w{u,v} > W 
{u,v}eA 

-

ues 
vts 

iii) Sum of Subsets: Given n+l positive integers 
(r

l
,r2, • • •  r

n
,m) , is there a 

subset of the r. 's that sums 
to m. � 

The problems we shall use to answer the questions 
posed earlier are: 

a) k-Partition: Given n integers rl,r2, • • •  rn and 

an integer k � 2, are there 
disjoint subsets I

l
,I2, • . •  ,Ik k such that 0 I

i {1,2, • • •  n} and 
i=l 

(The Partition problem i) above 
is then just the 2-Partition 
problem.) 

b) k-Cut: Given and undirected graph G = (N,A), 
integer k � 2, weighting function 
w :  A + Z, positive integer W, are 
there disjoint sets S

l
,S2" ." S

k 
such 

k 
that 0 S

i 
= N and l: w(u,v) � W. 

i=l {u,v}gA 
ueSi 
ueSj 
;i.�j 

(The Cut problem ii) above is just the 
2-Cut problem. ) 



b' ) Find disjoint sets, Si 1 � i � k, 

such that L!:J s, = N 
i=l l 

is maximised. 

and l: w{u,v} 
{u,v}EA 

UESi 
VES, 

J 
ifj 

c) [n/J -Partition: same as a) except that the 
number ..pf disjoint subsets is 
nowin/kl , k � 2. 

d) fn/J Cut: same as b) except the nu�e� of 
disjoint subsets is now I n/kl , k � 2. 

d') ;/kl -Maxcut: same as b') with k replaced by 

2. COMPLETENESS PROOFS AND APPROXIMATIONS 

W e  begin by showing that problems a-d of the intro­
duction are P-Complete. 

Lemma 2.1 
(I) The following problems are NP-COMPLETE 

a) k-Partition 
b) k-Cut 
c) Inlkl-Partition 
d) jU/kl -Cut 

(II) k-MaxCut and fn/kl -MaxCut are P-Complete. 
Proof 

We have to show that i) if P=NP then a)-d) can be 
solved in polynomial time and ii) if a)-d) can be 
solved in polynomial time then the class of P-Complete 
problems is polynomial solvable (this can be shown by 
reducing any known P-Complete problem to a)-d». 

i) is trivial. so we shall only show ii). 
ii) Partition a k-Partition. For any Partition 

probleIl (cl,c2 •••• cs) define a k-Partition problem 
(rl,r2,,···,rs+k_2) where 

1 < i < S 

s + 1 < i < s + k - 2 
(we may assume that l:c, is even as otherwise the 
partition problem cleafly has no solution). Now, 
l:ri = kp and the k-Partition problem has a solution 
iff the corresponding Partition problem has one. 
k-Partition g k-Cut 

If the given k-Partition problem is (rl, • . . •  r ) 
define the corresponding k-MaxCut problem to be n 

G = (N,A) with N = (1,2 •••• n) • 
A = {{i.j} liEN. jEN, if;t 
w({i,j}) = r, r, l J 

and W = (k-l) (l:rl,) 2 
2k 

(Note, we may again assume k divides l:r, . )  
l 

Clearly, there is a k-Cut > W iff (rl,r2 •• . •  ,rn) has 
a k-partition. 

lThe k-MaxCut problem is a generalisation of the 
'grouping of ordering data' problem studied in [1). 
[lJ restricts the sets Si to be sequential. i.e • •  if 
i,jES,Q, 

and i < j then i+1.i+2, . . . •  j-J ES,Q,' [1] 
presents an O(kn2) dynamic programming "algorithm for 
this. 
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Partition a f/kl -Partition. We prove this only for 
k 2. From the partition problem (c .c2 •••• • c ). 
s > 3. construct the following rn/� lpartitionsproble� 

r, c, 1 < i < S l l - -

r, p s + 1 < i < n 
l 

n = 2(s-2) 
P l:c./2 (if l:c, odd then there is no partition) 

l l 
Clearly, the partition problem has "a solution iff the 
r/� -Partition problem has one. 

fn/kl -Partition a rn/f] - MaxCut. 
is similar to that for k-Partition 
from I and the techniques of [5]. 

The proof for this 
k-Cut II follows 

• 
We note that the proofs used in Lemma 1 are minor 

extensions of the ones used in Karp [4] . The (n-k)­
Partition and (n-k)-MaxCut problems are polynomial. 
We next prese� an approximation algorithm for the 
k-MaxCut and aln/kl-MaxCut problems. Consider the 
algorithm MAXCUT below: (Intuitively. this algorithm 
begins by placing one vertex of G into each of the ,Q, 
sets S, 1 < i < ,Q,; The remaining n-,Q, vertices are 
examin�d o�e at a time. Examination of a vertex, j, 
involves determining the set S, 1 < i <,Q, for which 

l: w{m,j} is minimal. Vertexl j is then inserted/ 
mES, l 
assigned to this set.) 

Algorithm MAXCUT (,Q"G) 
comment. ,Q, •• • number of disjoint sets. S, • into 

l 
which the vertices, N = (1,2, . ••• n), of the graph 

G(N,A) are to be partitioned.SOL ••• the value of the 
vertex partitioning obtained,w{i.j} ••• weight of the 
edge {i.j} . SET(i) • • •  the set to which vertex i 
has been assigned (SET(i) = 0 for all vertices not yet 
assigned to a set). WT(i) ••• used to compute 

l: w{m.j} , 1 � i � ,Q, 
mESi 

This algorithm assumes that the graph G(N,A) is pre� 
sented as n lists vl.v2, ••• ,v . Each list v, contains 
all the edges, {i,j}EA , that �re adjacent tol vertex i. 
No assumption is made on the order in which these edges 
appear in the list. end comment 

� [InitialiseJ If,Q, > n then do -- -

otherwise 

� [process 

SOL + l: w{i,j} 
{i,j }EA 

1< i< n Si + {i} 
S, + !3 l 

n+l < i < ,Q, 
Stop 
end; 

Set S, 
l 

+ i I 

WT(i) + 0 

< i < ,Q, 
1 < i �,Q" 

SET (i) + i 1 < i < ,Q, 
SET (i) + 0 .Q, + 1 < i 
SOL + l: w{ i,j} 

{i.j}EA 
l�i<j�,Q, 

j + ,Q, + 1 
edge list of vertex jJ 

< n 

for each edge {j,m} on the edge list of vertex 
j do 

if SET(m) f 0 then WT(SET(m» + WT(SET(m» + - w{j ,m} 
end 



d. + degree of vertex j = # of edges adjacent to 
J vertex j 

� [find the set for which L w{j,m} is minimal] 
mESi 

look at WT(a) 1 < a < min{d.+l,�} and determine i 
such that WT(i) is minimal Jin this range. (Note 
that if d. + 1 � � then at least one of WT(a) 
1 < a < dJ + 1 must be 0 and minimal. For - - j 
d. + 1 > � all WT(a) are looked at and the minimal J -
found.) 

� [assign vertex j to set Si] 
SET(j) + i 

� [update SOL and reset WT] 
for each edge {j,m}EA for which SET(m) � 0 do 
if SET(m) � i then SOL + SOL + w{j,m} 
WT(SET(m» +-0--end 

Step 6lnext vertex] j + j+l , 
if j � n then .&2. .!.£ step 2 

otherwise terminate algorithm 
• 

Lemma 2.2 
The time complexity of algorithm MAXCUT is O(�+n+e) 

on a random access machine (n is the number of verti­
ces, e the number of edges and � the number of groups 
into which the vertices are to be partitioned). 
Proof 

Step 
1 

Time Per Execution Total Time 

• 

2 

3 

4 

O(n+e + �) 
o (d.) J 
O(dj + 1) 

0(1) 
5 0 (d.) J 
6 0 (1) 

Hence total time 

Lemma 2.3 

O(n+e + �) 
o (e) 

O(e + n) 

o (n) 
O(e) 

O(n) 
O(n + e + �)  

Algorithm MAXCUT is  a l/k - approximate algorithm 
for the k-MaxCut problem. 
Proof 

If n � k then MAXCUT generates the optimal solution 
value. 
Define the internal weight of the set Si to be 

l; w{u,v}. UT-V 
k 

Then the total internal weight (TIW) = L internal 
i=l 

weight (S.). The external weight (EW) L w{u,v} 
1. U,V 

UES. 
1. VESj 

ilj 
In � when vertex j is assigned to set i either 
WT(i) = 0 (corresponding to d. < �) or J 
WT(i) � L WT(m)/k . 

l<m<k 
i.e. if the total internal weight increases by WT(i) 
then the external weight increases by at least 
(k-l)WT(i). Consequently, at termination, TIW < EW/ 
(k-l) (note that SOL = EW). But, the optimal value 
of the solution < TIW + EW. Let F* be the optimal. 
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EW = SOL is the approximation obtained by MAXCUT. The 
worst case occurs when TIW approaches EW�-l). Hence 
I F* ;*

SOL I < l/k. 

• The next two theorems establish the existence of 
P-Complete problems for which linear time approximate 
solutions, that are exceedingly close to the optimal 
solution value, can be obtained. I.e., there are 
P-Complete problems that can "almost" be solved in 
linear time. In this sense, then, these problems are 
the simplest P-Complete problems. 
Theorem 2.1 

For any constant c, 0 < C < 1, there esists a P­
Complete problem for which an c-approximate solution 
may be obtained in linear time. 
Proof 

Let k be an integer such the l/k � c. From Lemma 
2.1, the k-MaxCut problem is P-Complete. From Lemmas 
2.2 and 2.3 it follows that an c-approximate solution 
to this P-Complete Problem may be obtained in linear 
time. 

• 
Theorem 2.2 

There exists a P-Complete problem and a linear time 
f(n)-approximate algorithm with the property that 
fen) + 0 as n +00, i.e. the approximate solutions get 
increasingly accurate as n increases. 
Proof 
---yrom Lemmas 2.1, 2.2 and 2.3 it follows that 
is a linear time l/P/� -ap�roximate algorithm 
the P-Complete problem: rn/kl -MaxCut. 

there 
for 

• 
We conclude this section by establishing the exis­

tence of a P-Complete problem for which the approxima­
tion problem is also P-Complete. 
Theorem 2.3 

There is a P-Complete problem that has a polynomial 
time c-approximate (0 < C < 1) algorithm iff P= NP. 
Proof 
---yrom any sum of subset problem (r ,r , • • •  r ,m) 
construct the following Knapsack typ� ptoblem� 

n 
max k LO. + 0n+l 1 1. 

n 
subject to: L wioi + wn+lon+l 1 

m • • •  K! 

where w. = r. 
1. 1. 

l< i< n + l  

1 � i � n and wn+l = m. Clearly, 
P-Complete. The maximum (i.e. F*) is either 1 
(corresponding to ° . = 0 1 <i < n and ° = 1) 

1. - - n+l 

Kl is 

or it 
is �k. Also F* � k iff the sum of subset problem has 
a solution. Assume. there is a 8-approximate algorithm 
for this problem. Let F be the value (i.e. the 
approximate solution value) yielded by this algorithm. 
Then I F*

F: FI � E. All solutions approximating F*=l 

have value 1 - E < F < 1 + 8. While solutions 
approximating F* > k have value k(1-8) < F. By 
choosing k suitably large, we can make these two 
ranges disjoint. Hence, form a knowledge of F one 
can determine whether or not the sum of subsets 
problem has a solution. Consequently, the c-approx­
imation problem for K! is also P-Complete • 

• 

3. OTHER P-COMPLETE APPROXIMATION PROBLEMS 

In this section we look at some other P-Complete 
problems and show that they have a polynomial time 



approximate algorithm iff P = NP. This would then 
imply that if P f NP, then any polynomial time approx­
imation algorithm for these problems, heuristic or 
otherwise, must produce arbitrarily bad approximations 
on some inputs. The problems we look at are: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 
(vii) 

Travelling Salesman: Given an undirected 
(directed) completel graph G(N,A) and a weight­
ing function w: A + Z find the shortest cycle 
containing each vertex exactly once. (The 
length of a cycle is the sum of the weights of 
the edges in the cycle.) 
Undirected Edge Disjoint Cycle Cover: Given an 
undirected graph G(N,A) find the minimum number 
of edge disjoint cycles needed to cover all the 
vertices of N (i.e. minimum number of cycles 
such that each vertex of G is on at least one 
cycle) 
Directed Edge Disjoint Cycle Cover: Same as 
(ii) except that G is now a directed graph. 
Undirected Vertex Disjoint Cycle Cover: This 
problem is the same as (ii) except that now, 
the cycles are constrained to be vertex dis­
joint. 
Directed Vertex Disjoint Cycle Cover: Same as 
(iv) except that G is now a directed graph. 
0-1 Integer Programming with one constraint. 
Multicommodity Network Flows: We are given a 
transportation network [6J with source sl and 
sink s2' The arcs of the network are labeled 
correspondin g to the commodities that can be 
transported along them. Such a network is said 
to have a flow f if f f units 0 f each commodity 
can be transported from source to sink. The 
problem here is to maximize f. 

In order to prove some of our results we shall use 
the following known P-Complete problems: 
a) Hamiltonian Cycle: Given an undirected (directed) 

graph G(N,A) does it have a cycle containing each 
vertex exactly once, [4] . 

b) Multicommodity Flows: Given the transportation 
network of (vii) above does it have a flow of f = 1  
[6 ]. 

Before continuing, it is necessary to generalize 
our definition of approximation algorithm to include 
minimization problems. 
Definition 3.1 

An algorithm will be said to be an £-approximate 
algorithm for a problem Pl iff either (i) Pl is a 
maximization problem and 

IF*
F

-
* ;1 < £ 0<£< 1 

or (ii) Pl is a minimization problem and 

I F*
F: FI < 

� 
£ > 0 

where F* is the optimal solution (assumed> 0) and F is 
the approximate solution obtained. 
Theorem 3.1 

The £-approximation problem for (i) - (vii) above 
is P-Complete. 
Proof 

For each of the problems(i) - (vii), it is easy to 
see that if P = NP then the £-approximation problem 

lA graph G(N,A) is said to be Complete iff for every 
pair of vertices u,v£N ufv the edge (u,v)£A. 
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is polynomially solvable (as the exact solutions would 
then be obtainable in polynomial time). Consequently, 
we concern ourselves only with showing that if there is 
a polynomial time approximation algorithm for any of 
the problems listed above then P = NP. Our approach is 
to seperate feasible solutions to a given problem in 
such a way that from a knowledge of the approximate 
solution one can solve exactly a known P-Complete prob­
lem. 

(i) Hamiltonian Cycle a £-approximate Travelling 
Salesman 

Let G(N,A) be any graph. Construct the graph Gl (V$) 
such that V = N and E = {(u,v) lu,v£v}. Define the 
weighting function w: E+Z to be w{u,v}={l if (u,v)£A 

k otherwise. 
Let n = INI. For k > 1, the Travelling Salesman 

problem on Gl has a solution of length n iff G has a 
�:�!�O�i�n

+CY�l� ·l.
Ot�;r:�s�ho:!� �o�u�i��)n

t
�h:A,

h
��: 

only solutions approximating a solution with value n 
(if there was a Hamiltonian cycle in Gl) also have 
length n. Consequently, if the £-approximate solution 
has length �(l+£)n then it must be of length. n. If it 
has length >(1+£) n then G has no Hamiltonian cycle. 

(ii) - (v) The proofs for (ii) - (v) are similar. We 
outline the proof for (iv) 
Undirected Hamiltonian Cycle a £-approximate Disjoint 
Cycle Cover 

Given an Undirected graph G(N,A) construct k copies 
G. (N . ,A.) of this graph. Pick a vertex vEN. Let � � � d ul,u2, • • •  ,u be the vertices adjacent to v in G (i.e. 
(ui,v)£ A 1 < i < d). Define H.(V.,E.) to be the 

- k J k J J j graph with Vj = i�lNi and Ej i�l AiU {(ul ' vi+l) I 
1 � i < kJ U {(ua, vl)} 

Clearly, if G has a Hamiltonian Cycle then, for some j, 
H. has a cycle cover containing exactly one cycle (as 

J for some j (v,uj) are adjacent in the Hamiltonian cycle 
and using the images of the edges of this cycle in the 
subgraphs G. (except for the images of the edge 

. � . 
(v,uJ», together with the edges (uJ

i,v. 1)11 < i < k} . � -

U {u�, vl) one obtains a Hamiltonian cycle for Ej). 
If G has no Hamiltonian cycle, then the subgraphs Gi 
each require at least two disjoint cycles to cover 
their nodes. Consequently, the disjoint cycle cover 
for j contains at least k+l cycles, 1 < j < k. For any 
£, one may choose a suitable k such that from the 
approximate solutions to H. 1 < j < k one can decide 
whether or not G has a Hamflto;ian-cycle (i.e. choose 
k > (HE) . 

Note that the above proof also works for the case of 
edge disjoint cycle covers. 

(vi) Just consider the reduction: 
Sum of Subsets a £-approximate 0-1 Integer 
Programming 

ie min 1 + k(m - l:wioi) 
subject to l:wioi < m -

° . = 0 or 1 
� 

(The minimum = 1 iff there is a subset with sum m 
otherwise the minimum is � 1 + k) 

(vii) Multicommodity flows a £-approximate Multi­
commodity Flows 
In [6] it was shown that multicommodity flows 
with f = 1 was P-Complete. Given a multi­
commodity network N as in [6J we construct k 



copies of it and put them in parallel. Another network 
with a flow f = 1 is also coupled to the network as in 
figure 3.1. 

Source F-----"'--+--=----l 

network with 
multiconunod­
ity 
flow = 1 

N 

N 

Figure 3.1 

Sink 

Clearly, the multiconunodity network of figure 3.1 
has a flow of k + 1 iff N has a flow of 1. If N does 
not have a flow of 1 then the maximum flow in the net­
work of figure 3.1 is 1. Hence the approximation 
problem for multiconunodity flows is P-Complete • 

• 

4. CONCLUSION 

We have answered some existence problems concern­
ing approximation algorithms for P-Complete problems. 
Our results show that all P-Complete problems are not 
equally hard. Some are harder than others in the 
sense that some P-Complete problems can 'almost' be 
solved in linear time while for others, the problem 
of determining even an E-approximate solution is 
P-Complete. In terms of computational difficulty 
of the approximation problem, we have exhibited the 
simplest and the hardest P-Complete problems. We 
note that some of our results could have been obtained 
using "padding" techniques. Further, padding tech­
niques also lead to such results as a) there are P­
Complete problems with an O(n) average computing time 
and b) there are P-Complete problems with a sub­
exponential (e.g. 0(2fn» worst case computing time. 
However, it remains open whether a) and b) are true 
for any "natural" P-Co··.plete problem, such as those of 
[4] and [6]. 
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