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ABSTRACT

‘We present a new algorithm for the switch-box routing problem under the two-overlap
wiring model. An instance of this problem is given by a rectangle R, and a set N of
nets each formed by two terminal points located on the boundary of R. The objective is
to interconnect the points in each net by a set of wires inside R on k layers that satisfy
the constraints in the two-overlap wiring model. In this wiring model at most two wires
may be assigned to the same track or column unit segment in all the layers. Given any
two-overlap wirable instance, our algorithm adds at most two tracks and two columns
and wires it in seven layers. The time complexity for our algorithm is O(n) when the
set of n terminal points is initially ordered.

Keywords: Switch-box routing, two-overlap, efficient algorithms, layer assignment.

1. Introduction

Channel routing (CR) and swilch-boz routing (SBR) are fundamental detailed
routing problems in computer-aided design of VLSI layout systems. An SBR prob-
lemn instance consists of a rectangle R and a set of signal nets, N = {n1,n2,... ,nn},
where the n;’s are mutually disjoint sets of terminal points located on the boundary
of rectangle R. The objective is to construct a wiring in R, whenever one exists.
In the CR problem the terminal points are located on two opposite sides of R, and
the objective is to construct a minimum channel width wiring.

The CR and SBR problems under the non-overlap wiring models such as the
Manhattan model and the knock-knee model have been extensively studied. It is well
known that the general CR and SBR problems under these two models are N P-
complete.)? Many heuristic algorithms for the Manhattan mode CR problems have
been proposed.?%56.789 Baker’s et al. algorithm? is the only one known to have a
provably good performance with respect to the channel width. There are no known
algorithms to determine routability of the Manhattan mode SBR problem. The only
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known Manhattan mode SBR algorithms are heuristic algorithms.!® Several special
Manhattan mode CR and SBR problems have been investigated. The CR and SBR
problems are called compatible, if there is at most one terminal point along each
grid line. The compatible CR can be solved efficiently under the Manhattan routing
model using the algorithm developed by Hashimoto and Stevens.!! Gonzalez and
Zheng!? developed an efficient algorithm for two-layer wiring of any two-terminal-
net compatible SBR problem routable under the Manhattan model. The algorithm
stretches the layout introducing a fixed number of tracks and columns.

Unlike Manhattan mode wire layouts, which can be wired in two layers, most
knock-knee mode wire layouts require more than two layers; however, problem
instances that cannot be routed under that model become routable under the knock-
knee wiring model. The two-terminal net knock-knee mode CR problem can be
solved efficiently by Frank’s algorithm,'® and improved algorithms have been pre-
sented in several papers.}%1%16:17 Approximation algorithms for the multiterminal-
net knock-knee mode CR problem have been investigated.!®161® Gao and
Kaufmann’s algorithm®® has the smallest approximation bound, and when incor-
porated with Weiners-Lummer’s layer assignment strategy,!® a three layer wiring
can be generated. Knock-knee mode two-terminal net SBR algorithms had been
developed.!®?% The currently best knock-knee mode multiterminal-net SBR algo-
rithms reduce the multiterminal net SBR problems into two-terminal net SBR
problems by vertically and horizontally stretching the layout.?%2! For multilayer
wiring the fundamental result is an efficient algorithm to wire in four layers any
non-overlapped wire layout.2?

The non-overlap wiring models prohibit wire segments in different layers to
overlap in parallel (i.e., in at least one unit segment). The reason for restricting
wires from overlapping is the undesired capacitance introduced by the overlap of
two wires. Current VLSI technology allows overlap of metal layers. As the ra-
tio gates/chip increases, more layers are needed for the wiring. Therefore, wiring
models that allow wire overlap are becoming more popular.

In the past few years, the CR and SBR problems under the wire overlap model
received considerable attention. Several different wire overlap wiring models have
been considered. These models differ in the restrictions on the length of wire over-
laps, the number of layers in which wires can overlap, or the number of separation
layers between any two overlapped wire segments. Most of the previous wire overlap
mode routing algorithms are for the CR problem,?324:25,26,27,28,29,30,31 Tp contrast,
the investigation on wire overlap mode SBR problem has been limited.?

In this paper we present a new algorithm for the two-overlap SBR problem. An
instance of the SBR problem consists of a rectangle R and a set N = {ny, na, ...,
nm} of m two-terminal nets, each formed by two terminal points on the boundary
of R. Every grid point on the boundary of R has at most one terminal point. The
objective is to connect the two terminal points in each net by introducing a set
of wires inside R in k layers that satisfy the constraints in the two-overlap wiring
model. In this model there are at most two wire segments assigned to the same
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track or column unit segment in all the layers. The best known two-overlap rout-
ing algorithms are given in Refs. 27, 32. The algorithm by Cong et al.?” wires
in four layers any multiterminal net CR problem using [d/2] + 2 tracks. Kauf-
mann’s algorithm®? generates a nine-layer two-overlap wiring for any two-terminal
net routable SBR problem. For multiterminal net SBR problems Kaufmann3? de-
veloped an algorithm that generates nineteen-layer layouts. The wirings generated
by Kaufmann’s algorithms have the property that all the wire segments in each
layer are either vertical or horizontal, but not both.

We present an algorithm that given any two-overlap routable SBR problem,
adds at most two tracks and two columns, and wires it in seven layers. When the
set of n terminal points is initially ordered, the time complexity for our algorithm
is O(n). The layouts generated by our algorithm have the property that all the
wire segments in each layer are either vertical or horizontal, but not both. Most
of the vias introduced by our algorithm join wires in adjacent layers. The rest of
the vias join wires in adjacent horizontal layers, and are located along two columns.
Our algorithm can be generalized to solve the multiterminal-net SBR problem by
transforming each multiterminal net into several two-terminal nets and stretching
the layout.20:2

2. Preliminaries

Rectangle R is partitioned by a uniform grid L with h tracks (horizontal lines)
and w columns (vertical lines). The intersection of a track and a column, or a track
or a column with R is referred to as a grid point. An edge is a horizontal or vertical
line segment that joins two adjacent grid points, and a grid edge is an edge that
does not overlap with R. Each grid point at the boundary of R (excluding the
corners of R) contains at most one terminal point. Let N = {ny,ns,... ,n,n} be a
partition of the set of terminal points into two-element sets called nets. Figure 1
gives a problem instance with A = w = 5 and m = 10.

gt
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Fig. 1. A problem instance.

A k-layer wiring consists of k identical copies Ly, Ly, ... , Ly of the grid L inside
R, where L; is above L;41. We refer to L; as layer i. A k-layer layout for an SBR
problem instance (denoted by I = (R, N)), is characterized by two mappings: wire
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layout and layer assignment of the wire segments. A wire layout maps each net n;
in N to a wire W;, which is a connected subgraph of L including both terminal
points of net n;. We refer to the set of wires W = {Wy, Wa, ... , W, } as layout of
I = (R,N). We say that W is an l-layout if at most [ wire segments in W share any
grid edge of L, and a I-layout is also called a planar layout. The layer assignment
associates each wire segment on a grid edge e of L to its corresponding grid edge
¢ in a layer L;, 1 < i < k, in such a way that if two wire segments of wire W;
incident at a grid point p are assigned to layers 4; and iz (i; < é3), then no other
wire segment of a wire W; (i # j) incident at point p is assigned to a layer I, for all
i1 <1< i3. When i1 < iz, we say that wire W; has a via from layer i; to layer is at
point p. There could be several (disjoint) vias at the same grid point p when there
are four or more layers, since more than one wire may be incident at grid point p.
In what follows we refer to a horizontal (vertical) wire segment as an hw-segment
(vu-segment).

A track or column is said to be empiy if there are no terminal points at its
intersection with R. Each track and column in a 2-layout consists of two slots, and
wire segments may be assigned to either slot. The corresponding track or column slot
for a terminal point are the track or column slots where the terminal point is located.
The corresponding track and/or column slots for ¢ net are the corresponding track
and/or column slots for the terminal points of the net.

The bottom, top, left and right sides of R are labeled b, ¢, | and r, respectively.
The set of nets N is partitioned into groups Ny:, Nys, Nip, Niz, Nit, Ner, Nip,
Nu, Ny, and Nj,., where Ngy, for @,y € {t,b,], 7}, represent the set of nets with
one terminal located on side z of R and the other terminal located on side y of
R. The net labeled ¢ in Fig. 1 is in the i'* class defined above. A net is type
TB if all its terminal points are located on the top and/or bottom sides of R
(Net, Nuv, Nop); it is type LR if all its terminal points are located on the left and/or
right sides of R (Nu, Nir, Nyr); and it is type neighbor if its terminal points are
located on two adjacent sides of R (Ny¢, Ny, Niz, Nip). Let Npp = Ny U Ny U Ny,
Nig = NyUNLUN;,, and Nyy = Ny UNp UNg U N, A net is called a trivial
net if both of its terminal points are located on the same track or column. The
natural bend number of a netis the number of bends in a wire with least number of
bends connecting the two points of the net. For example, the natural bend number
of trivial nets is zero, for nets in Nyy is one and for non-trivial nets in Nrp is
two. The natural bend number of a problem instance is the sum of the natural bend
numbers of all its nets. The natural bend number of the problem instance in Fig. 1
is 16.

We say that net n; spans over the vertical (horizontal) line lif net n; contains
a terminal point on each side of line !. The density of line {is the number of nets
that span over line I. In Fig. 1, each vertical or horizontal non-grid line ! that
partitions R has density 3. The vertical (horizontal) density, Dy(N) (Dx(N)) is
defined as the maximum density of any vertical (horizontal) non-grid line. The
problem instance given in Fig. 1 has D,(N) = 3 and Dy(N) = 3. Obviously, if for
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problem instance J = (R, N) either D,(N) > 2h or Dy(N) > 2w, then there is
no two-overlap wiring of the nets N in R. Therefore, necessary conditions for the
existence of a wiring of N inside R are D,(N)} < 2h and Dy(N) < 2w. It is not
known whether or not these conditions are sufficient for the existence of a wiring of
N in R. In what follows we “corrupt” our notation and say that a problem instance
is routable if Dy(N) < 2h and D,(N) < 2w. Note that under this corrupted
notation we might be calling some problem instances routable even though they
are unroutable. It is interesting to note that any problem instance with A = w is
routable. This fact follows from Lemma 1 where we establish a relationship between
h, w, D, and Dy,.

Lemma 1. For problem instance I = (R, N),

(i) tfh<w then Dy(N) < 2w;
(i1) if h > w then Dy(N) < 2h; and
(#1) if h = w then DR(N) < 2w and D,(N) < 2h.

Proof. Since the proof of the three parts is similar, we only prove (i). The only
nets that can contribute to Dy (N) are the nets in Ny, N g, and Nyy. Each of these
nets contributes at most one to Dy(N). Therefore, Dy (N) < |Nup|+{NLr|+|Nnn|.
Since each of these nets consist of two terminal points located on the boundary of R,
there is at most one terminal point at each grid point in R (excluding the corners
of R), and h < w, it must be that 2|Nu| + 2|Npr| + 2|Nny| € 2k + 2w < 4w.
Therefore, Dy (N} < 2w. O

For problem instances that are not routable, one may introduce additional tracks
or columns until it becomes routable. Hereafter we assume without loss of generality
that A < w. Given a routable problem instance I = (R, N), our algorithm extends
the rectangle with at most two additional tracks and two columns, and constructs
a T-layer two-overlap wiring. Our procedure for constructing 2-layouts is similar
to the one that constructs a planar layout for the SBR compatible net problem.!?
However, the layer assignment strategy in this paper is much more complex, and the
underlying wiring models are quite different. We should also point out that the 2-
layout constructed by our routing procedure, and our layer assignment strategy are
different from the ones given in Ref. 32. The wires in the 2-layouts constructed by
the algorithm in Ref. 32 do not have a minimum number of bends. In our 2-layouts
at least two-thirds of the nets are connected by wires with a number of bends equal
to the natural bend number of the net. The remaining nets (at most one-third) are
connected by wires with a number of bends that exceeds by two the natural bend
number of the net. There are problem instances (Fig. 2) for which there does not
exist a 2-layout in which more than 66% of the nets are connected by wires with
a number of bends equal to the natural bend number of the net. We should point
out that constructing a 2-layout is simple, the difficulty arises in constructing a
2-layout that is seven-layer wirable. It is worth noting that four layers are normally
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required for wiring a planar layout.?? One would expect that for 2-layouts eight
layers are required. In general this might be true, but for the specific 2-layouts that
we construct, only seven layers are required.

3. Routing Algorithm

We present procedure ROUTE that for any two-terminal-net two-overlap
routable SBR problem instance constructs a 2-layout. Because of some special
properties the 2-layouts are wirable in only seven layers (Sec. 4). Procedure ROUTE
constructs a 2-layout by executing the following procedures: extension (EXT),
trivial net routing (ROUTE-TN), neighbor net routing (ROUTE-NN), routing
LR nets and a subset of TB nets (ROUTE-LRTB and ROUTE-LR), and rout-
ing the remaining problem (ROUTE-REM ). First we outline the basic steps of our
procedures and justify some of their critical steps. Then we formally define our
procedures.

The problem instance is given by I = (R, N), where R is a rectangle with & (w)
interior tracks (columns) and N is the set of m two-terminal nets. Remember that
we assume instance ] is routable and A < w. In procedure EXT, one additional
empty track is introduced next to the top boundary. The slots in this track are
labeled ¢ and /. All of the trivial nets are routed (ROUTE-TN) in the obvious
way in their corresponding track or column slots. In the neighbor net routing
step (ROUTE-NN), each neighbor net is connected by an “L” shaped wire in its
corresponding track and column slots.

Procedure ROUTE-LRTB routes a subset of nets that includes either all TB, or
all LR nets. At each iteration in ROUTE-LRTB, two unrouted nets are selected, a
TB net and an LR net. Then the two nets are routed in their corresponding track
and column slots, and in certain cases in the track slot labeled . Procedure ROUTE-
LRTB terminates when either all LR or all TB nets have been routed. Rectangle
R is vertically stretched by introducing two new grid lines without terminal points
nor vertical wires, and in some cases R is also stretched horizontally. In procedure
ROUTE-LR, each unrouted LR net (if any) is routed in a distinct column slot and
in its corresponding track slots.

At this point one may expect that the routing of the remaining nets is straight-
forward. Unfortunately, this is not the case. Consider the problem instance in
Fig. 2(a). After routing nets 1 through 4, it is impossible to wire both nets a and
b. However, the problem instance can be wired by re-routing a net and introducing
two additional bends (see the following procedure). By introducing additional nets,
as suggested by Fig. 2(b), we can generate problem instances in which at most 66%
of the nets are connected by wires with a number of bends equal to the natural bend
number. Qur algorithm must backtrack before a 2-layout may be generated for all
possible problem instances. The reason why we do not backtrack to the beginning
of the algorithm is that the resulting problem at this point is in general significantly
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Fig. 2. Problem instances for which we must backtrack.

simpler than the original problem. The following procedure removes a set of wires,
and then generates a 2-layout.

If all nets have been routed, then procedure ROUTE terminates; otherwise, we
execute procedure ROUTE-REM. The procedure begins by removing wire segments
inside a rectangle that includes all tracks in R, and a set of adjacent columns in
E. The resulting problem is referred to by I’ = (R, N'). The set of nets N' is
partitioned into runs, such that the vertical denmsity of each run is one, and the
total number of runs is equal to the vertical density of the unrouted nets. At each
iteration we route all nets in one or two runs. The 2-layout for this new problem plus
the previously introduced wire segments (that were not deleted at the beginning of
this procedure) form the 2-layout which is the output of procedure ROUTE.

Let us explain in detail algorithm ROUTE when invoked with problem instance
I = (R,N). We use the example given in Fig. 3 to illustrate our algorithm. By
convention h < w and instance I is routable, i.e., Dy(N) < 2w and Dy(N) < 2h.
In Subsection 3.1, we introduce our notation, and in Subsection 3.2 we present our
procedure for routing trivial and neighbor nets. Procedures ROUTE-LRTB and
ROUTE-LR are explained in Subsection 3.3, and Subsection 3.4 explains proce-
dure ROUTE-REM. Finally, in Subsection 3.5 we establish our main result for this
Section.
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Fig. 3. Problem instance I = (R, N).

3.1. Notation

Procedure EXT introduces an empty track between the top side of R and the
topmost track. For convenience we shall not modify the value of h, so actually,
after this iteration the number of tracks is not h, but & + 1. The track slots in
this new empty track are labeled ¢ and #. All track and column slots are labeled
available for routing, except for track slot ¢ which is labeled reserved, and track slot
# which is labeled unavailable for routing. We uniquely match each terminal point
from an unrouted net with one of its corresponding track or column slots that is
available. For trivial nets, only one of its terminal points is matched with a track
or column slot. From the initial conditions we know that a matching is always
possible. Hereafter, an available track or column slot is said to be either matched
with a terminal point from an unrouted net, or not-matched. Once a set of nets
is routed in an available track or column slot, the slot is relabeled unavailable or
reserved.

Let mats (macs) represent the number of matched available track (column) slots,
and let nmats (nmacs) the number of not-matched available track (column) slots.
A trivial net whose terminal points are located on the top and bottom side of R
is called a c-trivial net. Let Trp be the set of c-trivial nets, let u(Trp) be the
set of unrouted c-trivial nets, and let |u(Trg)| denote the number of unrouted c-
trivial nets. In Lemma 2 we establish that some important properties hold just
after labeling the tracks. These invariants are needed to establish correctness of
our algorithm. For example, inequality (i) below will be used to show that there is
enough space to route the remaining set of unrouted nets.

Lemma 2. Just after the track and column slots are labeled, the following
statements hold.
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(i) mats + |w(Trp)| < macs + 2nmacs.

(it} Each terminal point from the unrouted LR (TB) nets is uniquely maiched
with one of ils corresponding available {rack (column) slots, except for
terminal points from trivial nets, in which case, only one of the terminal
potnts is matched.

(iii) Track slot ¢ does not contain wires.

(iv) Each non-grid verlical line iniersects the hw-segments from each nel at
most once.

Proof. The proof for (ii) is straightforward, and (iil) and (iv) hold because
there are no wires. Let us now prove (i). Since each neighbor and c-trivial net
is matched with one colurnn slot, each non-trivial 7B net is matched with two
column slots, and Trp C Nrp, we know that macs = |Nyy| + 2|N7g| — |Tra|.
By definition, nmacs = 2w — macs. Combining the two expressions we know that
macs + 2nmacs = 4w — |Nyn| — 2|Nrg|+ [Trp|. Since each neighbor net has one
terminal point on the top or bottom side of R, each TB net has two terminals on
the top and bottom side of R, and the total number of terminal points located on
the top and bottom side of R is at most 2w, we know that |[Nyn|+ 2|Nyg| < 2w.
Substituting in the above expression we know that macs+ 2nmacs > 2w+ ]TTB].
Since w > h and 2h > mats, we know that macs + 2nmacs > mats + [Trg|.

Just after the track and column slots are labeled, |Trp| is equal to |[u(Trg))|.
Substituting in the above inequality, we obtain (i). Therefore, (i)-(iv) hold just
after the track and column slots are labeled. (]

3.2. Trivial and Neighbor Net Routing

Each trivial net is routed by ROUTE-TN in the obvious way in the track or
column slot matched with one of its terminal points. Each track or column slot
involved in the routing of the trivial net is labeled unavailable. Therefore, in each
iteration of ROUTE-TN either one net in u(Trp) is deleted or mats decreases by
one, and macs decreases by at most one. The value of u(Trp) is zero when procedure
ROUTE-TN terminates. We claim that (i)—(iv) in Lemma 3 hold when procedure
ROUTE-TN terminates. '

Lemma 3. Stetement (i)-(iv) in Lemma 2 hold when procedure ROUTE-TN
terminates.

Proof. The proof is omitted since it is straightforward. ]

Next we apply procedure ROUTE-NN, to route the set of neighbor nets. At each
iteration we select a neighbor net, and route it by an “L” shaped wire. Then, we
label the track and column slots maiched with the net’s terminal points unavailable.
Therefore, just after each iteration mats and macs decrease by one. Figure 4 shows
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our example after procedures EXT, ROUTE-TN, and ROUTE-NN are executed.
Note that in this example there are no trivial nets.

Lemma 4. Statement (i)—(iv) in Lemma 2 hold just after procedure ROUTE-
NN terminates.

Proof. The proof is omitted since it is straightforward. O
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Fig. 4. Our example after introducing the new track and routing all neighbor nets.

3.3. Procedures ROUTE-LRTB and ROUTE-LR

We apply procedure ROUTE-LRTB which iterates until either all LR or all TB
nets have been routed. Then, procedure ROUTE-LR routes all the unrouted LR
nets (if any). Let us formally define each of these procedures.

Procedure ROUTE-LRTB iterates until all LR or all T'B nets have been routed.
At the beginning of the first iteration we define a window G inside R, and at the
end of each iteration G is updated. Window G is the smallest rectangle inside R
such that all terminal points from the unrouted LR (TB) nets can be horizontally
(vertically) projected to its boundary. Project terminal points from unrouted LR
and TB nets to their nearest points in G. We say that a corner of G is doubly-
covered if two terminal points were projected to it. Let left (right) represent the
z-coordinate value of the left (right) boundary of G.

Two unrouted nets (one from LR and one from TB) are routed at a time. The
specific nets to be routed at each iteration depend on whether there are doubly-
covered corners in G. '

Case 1: There is a doubly-covered corner in G.
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Assume that the doubly-covered corner is located on the bottom-right corner of
G and that t is above (; the other cases are treated similarly. If the rightmost
available column is on the right boundary of the rectangle G, then Fig. 5 shows
the actions performed in this case. Qur “visual” notation is defined as follows. A
dotted line represents a track or column slot that is marked unavailable at this step;
the dashed line represents the reserved track slot ¢; and a solid thick line represents
a net routed at this step. In this case a knock-knee is introduced. Figure 5 does not
show all the wires introduced for the two nets (the missing part of the wires only
occupy part of the dotted track or column slot up to where it ends). On the other
hand, if the rightmost available column is to the right of rectangle G, then the LR
net is routed in that column. As a result of this, that column is labeled unavailable,
and the column on the right boundary of G is labeled noi-maiched available.

Fig. 5. Wires introduced for Case 1.

Case 2: There are no doubly-covered corners in G.

The two Subcases 2(a) and 2(b) that arise are shown in Figs. 6(a) and (b),
respectively. The line segments intersecting the boundary of R show the locations
where the terminal points from unrouted nets were projected to the corners of G.

Fig. 6. There is no doubly-covered comer in G.

Assume without loss of generality that ¢ is above G. If Case (a) ((b)) applies
and the rightmost (leftmost) available column is on the right (left) boundary of
G, then the wire segments introduced in this case are shown in Fig. 7(a) ((b)) and
corresponds to the case shown in Fig. 6(a) ((b)). After the iteration the dotted-
dashed line represents the new reserved track slot ¢, and the previous track slot ¢
becomes unavailable. On the other hand, if Case (a) ((b)) applies and the rightmost
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(leftmost) available column is to the right (left) of rectangle G, then the LR net is
routed in that column. As a result of this, that column is labeled unavailable, and
the column on the right (left) boundary of G is labeled not-matched available.

new t : new t

(a) (b)
Fig. 7. Wires introduced in Case 2 when t is above G.

Clearly, at each iteration mats and macs decrease by exactly two. At the end
of the iteration, the track labeled ¢ is not matched with a terminal point from an
unrouted net, and track ¢ does not have a wire from column left to column right
(left and right are defined with respect to the G at the end of the iteration). The
above process is repeated as long as there are unrouted LR and TB nets. Procedure
ROUTE-LRTB terminates when there remain no unrouted 7B or LR nets.

Figure 8 shows the wires introduced in our example by procedure ROUTE-
LRTB, but for clarity does not show the wires introduced during the previous steps.
In all our figures we use a solid dot on the boundary of R to indicate the location
of an unavailable track or column slot (in this case the track or column slot was
unavailable when procedure ROUTE-LRTB began). Similarly, an X represents a
nol-malched available track or column slot. In our example, procedure ROUTE-
LRTB performs the following steps:

1. Rectangle G is defined. Nets 28 and 15 are wired from the bottom-right
corner of G (Case 1), and G is updated.

2. Nets 24 and 16 are wired (Case 2(a)). ‘Track slot ¢ is now the track
slot matched with the bottommost terminal point from net 16, and G is
updated.

3. Nets 7 and 14 are wired from the bottom-left corner of G (Case 1), and
G is updated.

4. Nets 2 and 20 are wired from the top-left corner of G {Case 1), and G is
updated.

5. Nets 8 and 13 are wired from the bottom-left corner of G (Case 1}, and
G is updated.

In Lemma 5, we establish that five statements (including statements (i)-(iv) of
Lemma 4) hold at the beginning of each iteration of procedure ROUTE-LRTB, and
when procedure ROUTE-LRTB terminates.
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Fig. 8. Wires introduced by procedure ROUTE-LRTB.

Lemma 5. Statements (i)—(v) hold ai the beginning of each ileralion of
ROUTE-LRTB, and when procedure ROUTE-LRTB terminates.

(i) mats < macs + 2nmacs.

(i) Each terminal point from unrouled LR (TB) nets is uniquely matched with
one of ils corresponding available track (column) slot.

(ii2) Track slott is not in a track inside G and il does not contain hw-segments
from column left to column right.

(iv) Each vertical line that intersecis the open interval from column left 1o
column right inlersects the hw-segments from each net at most once.

(v) All the terminal points from unrouled LR (TB) nets can be horizontally
(vertically) projected to the boundary of G.

Proof. By Lemma 4 and the definition of G, we know that statements (i)—(v)
hold at the beginning of procedure ROUTE-LRTB. It is simple to show that if (i)-
(v) hold at the beginning of an iteration, they also hold at the end of the iteration.
Thus, the lemma follows by induction. O

Figure 9 shows all the wires introduced in our example by procedure ROUTE-
LRTB. If all nets have been routed, then let left (right) be the left (right) boundary of
last rectangle G defined in ROUTE-LRTB; unless no rectangle G was ever defined,
in which case left and right are adjacent columns in the middle of rectangle R.
If there remain only 7B unrouted nets, then let left (right) denote the leftmost
(rightmost) column where a terminal point from an unrouted 7B net is located,
unless such a column contains the vw-segment of an LR net, in which case, left
(right) is set to the column immediately to its right (left). On the other hand,
if there remain only LR unrouted nets, let left (right) be the leftmost (rightmost)
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column that is available. Rectangle R is stretched by introducing two vertical grid
lines (without terminal points nor vertical wires) between columns lefi-1 (right)
and lefl (right+1). The horizontal wires intersecting these columns are stretched
and preserve the previous connectivity. The values of leff and right are updated
to point to these new columns. Rectangle R’ includes all tracks, and columns
left,left+1,...,right in R. In Sec. 4 it will be evident why we have introduced
the two additional columns. If all the nets have been routed then we proceed to the
layer assignment phase (Sec. 4). On the other hand, if all the LR nets have been
routed, we apply procedure ROUTE-REM; otherwise we apply procedure ROUTE-
LR. These procedures are defined below.

28 1 2 3 4 5 22962722 6 7 8 9 1011 4 24
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24 7 8 10 9 12 21 2526 231918 1117 5 2 3 28
Fig. 9. All wires introduced after ROUTE-LR.

In procedure ROUTE-LR we toute all the remaining unrouted LR nets. In
our example, all LR nets have been routed (see Fig. 8), so procedure ROUTE-LR
does not introduce new wires. Let us now consider the case when there remain
unrouted LR nets. Each unrouted LR net is routed in the two track slots matched
with its terminal points, and in a nof-maiched available column slot. An Ny (N,
or N;r) net is routed in the leftmost (rightmost) not-matched available column
slot. By Lemma 5(i) we know that at least one such column slot exists for each
of the remaining unrouted LR nets. The track and column slots involved in the
routing of each of these nets are labeled unavailable. At the end of procedure
ROUTE-LR, rectangle G is redefined as a single grid point inside the previous G.
In Lemma 6 we establish some important properties of the wiring generated by
procedure ROUTE-LR.

Lemma 6. Statements (1)-(v) hold at the beginning of procedure ROUTE-LR,
and just afier procedure ROUTE-LR terminates.
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Proof. By Lemma 5 it follows that (i)-(v) hold at the beginning of procedure
ROUTE-LR. From the above discussion, we know that if (i)~(v) hold at the begin-
ning of procedure ROUTE-LR, then they also hold when procedure ROUTE-LR
terminates. O

3.4. Procedure ROUTE-REM

As mentioned before, we must backtrack in order to be able to route the remain-
ing nets. Let us now define the remaining problem, which is considerably simpler
to route than the original problem. From the previous procedures we know that the
only unrouted nets are T'B nets. The remaining problem, which we shall refer to
as I' = (R, N'), is defined by deleting some of the previously introduced wire seg-
ments. Specifically, all the hw-segments segments located on a track from column
left to column right, and all the vu-segments from column lefi+1 to column right-1
are deleted. In our example, columns lefi+1 and right-1 contain terminal points of
routed nets. In general, this may not be true. We claim that at most one terminal
point in this column could belong to an unrouted 7B net. In this case, we introduce
a new horizontal track at the bottom of the rectangle, and ' will be one of the track
slots in the bottom track. The other slot in the bottom track, and the old track
slot t/, are used for wire segments that connect the unrouted terminal points to the
boundary of R/, without introducing any segments inside R/. Figure 10 shows the
remaining wires after applying this step to the 2-layout given in Fig. 9.
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Fig. 10. Remaining wires.

It is important to remember that rectangle R’ includes all tracks in R, and the
columns left, left +1,... ,right. The terminal points in R’ consist of all the ter-
minal points from previously unrouted nets plus new terminal points located at the
intersection of the boundary of R’ with a deleted wire (these points of intersection
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are labeled with the name of the corresponding net). For R, we have a set N’ of two
terminal nets. Figure 11 shows the rectangle R’ for our example. Note that there
may be more than one terminal point at the intersection of a track with the left or
right boundary of R'. However, if this is the case, at least one of them belongs to a
trivial net, i.e., the corresponding point on the opposite side of R has the same la-
bel, and either the track has two trivial nets, or one trivial net and at most another
terminal point that belongs to an unrouted net in N'. It is simple to show that
the set N’ of nets can be partitioned into N4 g, Ny, and trivial N7 nets. This
simplifies considerably the routing problem, and is the main reason why one should
not eliminate the first few steps in our procedure. Note that each of the nets of N’
may not be of the same type as in N. Figure 11 shows the problem I'=(R,N")
generated for our example, and Lemma 7 establishes that I’ is routable.

3 4 5 22962722 6 7 8 9 1011 4
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Fig. 11. Problem instance I’ for our example.

Lemma 7. Problem instance I' constructed at the beginning of procedure
ROUTE-REM is roulable, i.e. the horizontal and vertical densilies of problem
instance I' satisfy the necessary conditions for routabslily.

Proof. The proof follows from Lemma 6, and the discussion in the previous
paragraph. O

The final layout consists of the remaining wires in K (those not deleted at
the beginning of this step) plus the wires introduced inside R’ by ROUTE-REM.
The remaining problem consists of introducing a set of wires inside R’ to connect the
nets in N’. This is a restricted version of the original problem, with the possible
exception that there could be two terminal points on a track at the intersection
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with the left or right boundary of R’. However, at least one of those two terminal
points belongs to a trivial net in N . All the column and track slots are labeled
available, except for track slot ¢’ which is labeled reserved. Each terminal point from
an unrouted net (except for trivial N}, nets in which case only one of its terminal
points) is uniquely matched to one of its corresponding track or column slots. Tt is
simple to show that a matching is always possible. Hereafter, an available track or
column slot is said to be either matched with a terminal point from an unrouted
net or not-matched.

Procedure ROUTE-REM begins by routing the trivial Ni g and the trivial Njg
nets. Each of these nets is routed in the obvious way in the available track or column
slot matched with one of its terminal points, and such a slot is relabeled unavailable.
Figure 12 shows our example after routing trivial nets. In our example there are no
trivial N g nets.

3. 4 522262722 6 7 8 9 1011 4
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Fig. 12. Wiring trivial nets.

Note that each time a trivial N7 p (N p) net is routed, the vertical (horizontal)
density of the unrouted nets, and the number of matched available track (columns)
slots, decreases by one. Therefore, if problem instance I’ was routable, then the
resulting problem is also routable. The resulting problem for our example is shown
in Fig. 13. Remember that a solid dot indicates the location of an unavailable track
or column slot, and an X indicates the location of a not-matched available track or
column slot.

Procedure ROUTE-REM groups the unrouted nets into sets called runs, which
are constructed as follows. Initially, all unrouted nets are marked as unvisited. The
nets in the first run are identified first, then the ones in the second run, and so
forth. We identify the nets in the i** run as follows. The first net in the i** run is
an unvisited net whose leftmost terminal point has the smallest x-coordinate value
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Fig. 13. Resulting problem after wiring trivial nets.

(in case of ties select any one of them). For k = 2,3,..., the k** net in the
run is an unvisited net whose leftmost terminal has the smallest x-coordinate value,
and such value is greater than or equal to the x-coordinate value of the rightmost
terminal of the (k — 1) net in the it* run. Once all the nets in the i** run have
been identified, we mark them as visited and proceed to find the (i + 1)st run. This
process is repeated until all unrouted nets are marked visited. Lemma 8 establishes
an important property of runs.

Lemma 8. The number of runs identified by procedure ROUTE-REM s less
than or equal to the number of available track slots.

Proof. Thé proof follows from Lemma 7, the fact that each run has density
one, and the fact that the vertical density of the runs is equal to the number of
TUnS. a

Depending on the number of neighbor nets in a run, the run is called a 05 run,
al, runor a2, run. In our example, procedure ROUTE-REM identifies the runs
given in Table 1. Since our example is small, most runs consist of only one net;
however, in general, runs may contain several nets.

Procedure ROUTE-REM then applies the following three rules (in any order)
until all runs are routed, or the rules do not apply. Later on we show how to route
the remaining runs (if any).

(a) An unrouted 1, runis routed in the track slot matched with its neighbor
net, and in the column slots matched with the nets in the run. These
column and track slots are labeled unavailable.
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Table 1. Runs for our example.

Runs

l Type

On 3,4,5,9,10

1n 2,6,7 8,12, 17, 18-11, 19

2n 21-22-23, 25-26-27

(b) If the two track slots maiched with the neighbor nets in an unrouted 2,
run belong to the same track, then route the 2, run in one of these track
slots and in the column slots matched with the nets in the run. Label
all of these column and track slots unavaileble. The unused track slot
maiched with the neighbor nets in the run becomes a not-matched (but,
still available) track slot.

(c) When there is a not-malched available track slot, and an unrouted 0, run,
route an unrouted 0, run in the not-maiched available track slot, and in
the column slots maiched with the nets in the run. Label all of these
column and track slots unavailable.

The wiring generated by applying the above three rules to our example is given
in Fig. 14. Note that rule (b) is not applied in this example.

After procedure ROUTE-REM applies these three rules as many times as pos-
sible, the only remaining unrouted runs (if any) are 0,, and 2,, runs. The unrouted
nets in our example are given in Fig. 15. We claim that the remaining unrouted
runs satisfy the conditions of Lemma 9.
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Fig. 14. Wiring of the runs.
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Fig. 15. Wiring of the runs.

Lemma 9.

1. After every application of rules (a)-(c), the number of unrouted runs is
less than or equal to the number of available track slols.

2. After procedure ROUTE-REM applies rules (a)-(c) as many times as pos-
sible, the number of unrouted O, runs is less than or equal {o the number
of unrouted 2, runs.

Proof. The proof follows from Lemma 8 and the fact that each time we apply
rules (a)—(c), the vertical density of the unrouted nets, the number of runs, and the
number of available track slots decreases by one. O

Now procedure ROUTE-REM routes a subset of the unrouted 2,, runs, and all
the unrouted 0,, runs. The procedure iterates as long as there are unrouted 0, runs.
At the beginning of each iteration G’ is defined as the smallest rectangle inside R
such that all the terminal points located on the left and right boundary of R' from
the neighbor nets in the unrouted 2, runs can be horizontally projected to it; and
all the terminal points from the nets in the unrouted 0, runs can be vertically
projected to it. Now project each of these terminal points to their nearest point in
. A corner in G’ is called a doubly-covered corner of G/ if two of the previously
identified terminal points were projected to that corner. Procedure ROUTE-REM
routes all the nets in a 0, and in a 2, run. The specific runs routed depend on
whether there is a doubly-covered corner in G'.

Case 1: There is a doubly-covered corner in G'.

Assume without loss of generality that the top-left corner of G’ is a doubly-
covered corner, since the other cases can be treated similarly. The 0, and 2, run



#E -

Switch-Boz Routing Under the Two-Overlap Wiring Model 285

containing the terminal points projected to the top-left corner of G are routed at
this iteration. Figure 16(a) shows the case when no knock-knees are introduced
in track p; Figure 16(b) shows the case when our procedure does not introduce a
three-bend wire, but introduces a knock-knee in track p; and Fig. 16(c) shows the
case when our procedure introduces a three-bend wire and a knock-knee in track p-
The routing is in the track slots matched to the terminal points of the two neighbor
nets in the 2, run. The columns slots involved in the routing of these nets are those
that are matched to the terminal points of the nets in the two runs. All of these
U

slots are labeled unavailable at the end of the iteration.
) W LU U Tﬁ U J
m q m q
(a) (b) (c)

o
o

S

Fig. 16. Wiring for. Case 1.

Case 2: There are no doubly-covered corners in G’.

The two cases are depicted in Fig. 17. The line segments intersecting the
boundary of R indicate the terminal points from the previously identified nets pro-
jected to corners of . Assume without loss of generality that track ¢ is located
above G

(a) (b)
Fig. 17. There is no doubly-covered corner in G'.

If the case given in Fig. 17(a) ((b)) holds, we route the 2,, run that includes
the net whose terminal point was projected to the top-left (top-right) corner of G/,
and the 0, run that includes the net whose terminal point was projected to the
top-right (top-left) corner of G'. In this case, track slot ' is used for routing, but
after this step, label ¢/ is assigned to track slot q. The specific routing is shown in
Figs. 18(a)~(b). Here we only show the case when a neighbor net is connected by a
three-bend wire.
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Fig. 18. Wiring for Case 2.

The above process is repeated until all the 0, runs have been routed. In our
example the runs 21-22-23, and 5 are routed as in Case 1. Figure 19 shows the
wiring of the above two runs. If all the nets have been routed, then procedure
ROUTE-REM and ROUTE terminate. Otherwise, each of the remaining 2, runs is
routed in the track slots maiched to the neighbor nets in the run, and in the column
slots matched to the nets in the run. All of these column and track slots are labeled
unavailable. For our example, the remaining run 25-26-27 is routed using the track
slots maiched with the nets 25 and 27, the neighbor nets in the run. Figure 20 shows
the wiring of the run 25-26-27. Procedures ROUTE-REM and ROUTE terminate
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7 23
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Fig. 19. Wiring of the runs after routing all On runs.
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Fig. 20. Wiring of the remaining 2, runs.

when all runs are routed. In Lemma 10 we establish that ROUTE-REM generates
a 2-layout for I’ and in Theorem 1, we establish that procedure RQUTE constructs
a 2-layout for 7.

Lemma 10. Procedure ROUTE-REM routes problem insiance I’.

Proof. The proof follows from Lemmas 7-9 and the fact that the last two loops
in ROUTE-REM route the remaining 0,, and 2,, runs. [}

3.5. Summary

Theorem 1. Procedure ROUTE construcis a 2-layout for any two-overlap
routable instance I = (R, N) of the SBR problem by adding a! most two iracks
and two columns in R. The time complexily of procedure ROUTE is O(n), when
the set of n terminal points is initially ordered.

Proof. It is simple to show that all steps in procedure ROUTE can be imple-
mented in O(n) time, if the set of terminal points is initially ordered. The remaining
part of the proof follows from Lemmas 2-6 and Lemma 10. O

Figures 21 and 22 illustrate the final wiring of the problems I’ and I of our
example.
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Fig. 21. Final wiring for the problem I'.
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Fig. 22. Final wiring for the problem I.

4. Layer Assignment

The layer assignment phase comprises of assigning each wire segment to a layer
in such a way that at each grid point no two wire segments and/or vias from different
nets share a grid point in the same layer. The seven layers available for wiring are
arranged from top to bottom in VHVHVHYV order, where a layer is denoted V (H)
if it has vursegments (hu-segments) only. The three layers for the hu-segments are
labeled a, b, and c; the layers for the vursegments are labeled 1, 2, 3, and 4; and
the layers are arranged from top to bottomn, in the order 1, a, 2, b, 3, ¢, and 4. The
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layer assignment of the wire segments introduced by procedures ROUTE-LRTB
and ROUTE-LR inside R’ is explained in Subsection (4.1). In Subsection (4.2)
we explain our procedure for layer assignment of the wire segments introduced by
.procedure ROUTE-REM for the problem instance I' = (R', N'), and in Subsection
(4.3) we explain the layer assignment for the wire segments introduced by procedures
ROUTE-LRTB outside R'. For any particular problem instance, we perform the
layer assignment of Subsections (4.1) and (4.3), or (4.2) and (4.3).

4.1. Layer Assignment for Wires Introduced by ROUTE-LRTB
and ROUTE-LR Inside R’

Let us now consider the layer assignment of the wires, W', introduced by the
procedures ROUTE-LRTB and ROUTE-LR inside R'. If the first (last) column has
a vu-segment of an LR net which was introduced by ROUTE-LRTB, then we ignore
that column when performing the layer assignment in this Subsection. Once the
layer assignment of the remaining wires in R’ is performed, the layer assignment
for these columns is straightforward. This process greatly simplifies our notation.
We begin by establishing in Lemma 11 some important properties of the wires
introduced by procedures ROUTE-LRTB and ROUTE-LR inside R'. Then, we
present our algorithm for the layer assignment.

Lemma 11. The 2-layout consiructed by procedures ROUTE-LRTB and
ROUTE-LR inside R' satisfies the following properties.

1. Each wire consists of al most three segments. There are al most lwo
hw-segments, and at most {wo vw-segments in each wire.

2. Each track (column) has hw-segments (vw-segments) from at most {wo
nets.

Proof. The proof is straightforward and is therefore omitted. O

Our procedure begins by assigning to three layers all the huw-segments, and
then to four layers all the vursegments. The hw-segments are assigned to layers
by constructing a multigraph, and then coloring the edges of the multigraph. The
vw-segments are assigned by considering each column at a time.

We construct a multigraph G/ from the 2-layout constructed by procedures
ROUTE-LRTBand ROUTE-LR inside R'. Each track in the 2-layout is represented
by a vertex in the multigraph Gw. For each net with huw-segments assigned to the
tracks represented by vertices v and w there is a distinct edge between vertices v
and w. Note that there may be multiple edges between a pair of vertices in the
graph. Since each net has at most two hu-segments in different tracks, and there
are at most two hu-segments from two different nets in any track (Lemma 11), there
can be at most two edges incident at any vertex in Gw, and for each net there is
at most one edge in Gw:.



290 T. F. Gonzalez et al.

A coloration of the edges of the multigraph is a function that assigns one of
three colors (a,b,c) to each edge of the multigraph so that all edges incident on a
vertex are colored differently. Since each node is of degree at most two, Gy can
be colored in linear time (with respect to the number of nodes and edges) with the
three colors. Each color corresponds to a horizontal layer, so the hw-segments of
the net represented by an edge colored i is assigned to the layer i. The hursegments
of the remaining nets are assigned to horizontal layers in such a way that no two
wire segments that overlap in a track are assigned to the same layer. By Lemma 11
we know that this is always possible.

The layer assignment for the vu-segments is performed by scanning the columns
from right to left. In each column, the general rule for vertical layer assignment is
that each vu-segment is assigned to a layer adjacent to the horizontal layer assigned
to its adjacent hAw-segment(s). Since all the hu-segments in a wire are assigned to one
layer, the vuw-segment can be assigned to one of two different layers. By Lemma 11,
we know that each column has at most two vw-segments, and since there are two
vertical layers adjacent to any horizontal layer, we know that this assignment is
always possible. We formalize our results in Lemma 12.

Lemma 12. Our procedure generales a seven-layer assignment for all the wire
segments iniroduced by procedures ROUTE-LRTB and ROUTE-LR inside R' in
O(n) time.

Proof. The proof follows from the above discussion and Lemma 11. O

4.2. Layer Assignment for Wires Introduced by ROUTE-REM Inside R’

Before discussing our layer assignment strategy for the wire segments introduced
by ROUTE-REM in R', we define some useful terms, and prove properties of such
2-layout. In the 2-layout for problem instance I‘, constructed by the algorithm in
Sec. 3, each neighbor net is either wired by an L shaped wire or by a monotone
HVHYV wire (i.e., a wire consisting of a horizontal segment attached to the left or
right boundary, followed by a vertical segment, a horizontal segment and a vertical
segment; and with the property that any vertical or horizontal non-grid line inter-
sects the wire at most once). In the former case the net is called an L-net, and
in the latter case it is called a swilching nel (s-net). Note that our definitions of
an L-net and an s-net are particular to a given 2-layout, i.e., the net which is an
s-net in a 2-layout may not be so in another 2-layout. An s-net with a terminal
point located on the left (right) boundary is called an Ls-net (Rs-net). The track
(column) where an s-net switches from one column (track) to the next is called an
s-track (s-column). The other track (column) where an Ls-net is routed is called
the beginning track or b-track (ending column or e-column), and for an Rs-net it
is called the ending track or e-track (beginning column or b-column). An Rs-net is
said to be an RBs-net (RTs-net), if it has a terminal located on the bottom (top)
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Fig. 23. s-net.

boundary. We define LBs-nets and LTs-nets similarly. Figure 23 illustrates the
above definitions for an s-net.

An L-net with a terminal point located on the left (right) boundary of R’ is
called an LL-net (RL-net). The track where an LL-net (RL-net) is routed is called
the beginning track or b-track (ending track or e-track) and the column where an LL-
net (RL-net) is routed is called the ending column or e-column (beginning column
or b-column). Remember that these definitions are particular to a given 2-layout.
The leftmost (rightmost) column with a terminal point from a net in the set Nip
is called the beginning column or b-column (ending column or e-column) of the net.
Let us now establish some important properties for the 2-layouts constructed by

ROUTE-REM.

Lemma 13. The 2-layout constructed by procedure ROUTE-REM salisfies the
following nine properties.

1. The s-column of an Ls-net (Rs-net) is the b-column (e-column) of a non-
netghbor nel uniguely associated with the s-net. The vertical wires of these
lwo nets may overlap in af most one point in this column (i.e., they may
form e knock-knee at that point).

2. Each column has vw-segments from al most two s-nets. In particular, if it
18 the s-column of {wo s-nets, then both are Rs-nels, or both are Ls-nets.

3. If a column is the s-column of two Rs-nels, then one is an RTs-net, and
the other is an RBs-nel. Furihermore, the e-track of the RBs-net is above
the e-track of the RTs-net.

4. The s-track of an Ls-net (Rs-net) is the e-track (b-track) of an RL-nel
(LL-net) uniquely associated with the s-nel. The horizontal wires of these
two nets may overlap in af most one point in this track (i.e., they may
Jorm e knock-knee at that point).

5. Each track has hw-segments from at most two s-nels.

. Ech grid point has at most one knock-knee.

7. Procedure ROUTE-REM introduces vw-segmenis in each column al most
twice, and each lime either one or two wire segmenis are added. When

Y
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two segments are added in a single operation, then at most one of them
belongs to an s-net.

8. If a column has a trivial net, then the column does not have any other
vw-segments.

9. The nets associated with two s-nets with the same s-column, do not over-
lap with each other in that column.

Proof. Proof of (1): When procedure ROUTE-REM introduces an s-net, the
switching takes place in order to accommodate the start of a net in the 0, run at
the s-column (see Fig. 16(c)), or to set up a new empty horizontal track that is
necessary for the next step of the routing algorithm (see Fig. 18). Thus there is
a net uniquely associated with the s-net that starts (ends) in the s-column of an
Ls-net (Rs-net). Furthermore, by construction, we know that the two nets may
overlap in at most one point in the s-column.

Proof of (2): Since the s-column of every s-net is the b-column or e-column of
a non-neighbor net uniquely associated with the s-net (1), we associate the terminal
point of the non-neighbor net located in the s-column with the s-net. By definition
of an s-net, the b-column or e-column of an s-net has a terminal point from the
s-net. Therefore, each of the two columns where an s-net is routed has a terminal
point uniquely associated with the s-net. Since there are at most two terminal
points in each column, it must be that there are vw-segments from at most two
s-nets in a column.

When an Rs-net (Ls-net) is introduced by procedure ROUTE-REM, it is intro-
duced on the right (left) side of the current rectangle G'. In order for an Rs-net
and an Ls-net to have the same s-column, the column should be the right side of a
rectangle G, and the left side of another rectangle G’. But, since each new rectan-
gle G is enclosed by the previous rectangle, and G’ is never a single line segment,
an Rs-net and an Ls-net cannot have the same s-column.

Proof of (3): From (1), we know that for each s-net there is a distinct net with
a terminal point in the s-column of the s-net. Since there is at most one terminal
point on the top and bottom ends of a column, the two Rs-nets with the same
s-column must be an RTsnet and an RBsnet.

An RTsnet (RBsnet) is introduced by procedure ROUTE-REM, when the dou-
bly covered corner is located on the bottom (top) right corner of the rectangle G'.
Since each time an s-net is introduced, the new rectangle G’ is enclosed within
the previous rectangle G’, it must be that the e-track of the RBsnet is above the
e-track of the RTs-net.

Proof of (4): When procedure ROUTE-REM introduces an Ls-net (Rs-net),
the s-track of the Ls-net (Rs-net) is the e-track (b-track) of an RL-net (LL-net)
[see Figs. 16(c) and 18] uniquely associated with the Ls-net (Rs-net). Furthermore,
the hw-segments of the two nets may overlap in at most one point in this track.

Proof of (5): Since the s-track of every s-net is the b-track or e-track of an
L-net uniquely associated with the s-net (4), we associate the terminal point of
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the L-net located in the s-track with the s-net. By the definition of an s-net, the
b-track or e-track of an s-net has a terminal point from the s-net. Therefore, each
of the two tracks where an s-net is routed has a terminal point uniquely associated
with the s-net. Since there are at most two terminal points in each track, there are
hu-segments from at most two s-nets in any track.

Proof of (6): Whenever procedure ROUTE-REM introduces a knock-knee at
point p, at least one of the terminal points in that column belongs to the nets that
form the knock-knee. Since each column has at most two terminal points, it must
be that if p has two knock-knees, then the two terminals in that column belong
to distinct nets, one from each knock-knee. Suppose that procedure ROUTE-REM
introduces two knock-knees at grid point p. Let G" be the rectangle G’ in procedure
ROUTE-REM when the first knock-knee was introduced at grid point p. If p is not
a corner of G“, then we know that when the knock-knee was introduced at p, both
the terminal points in the column of p belong to the nets in the knock-knee. Since
every time a knock-knee is introduced by procedure ROUTE-REM at point p, at
least one terminal point in column p belongs to the nets in the knock-knee, it cannot
be that another knock-knee can be introduced at p. A contradiction, hence it must
be that p was introduced at a corner ¢ of G . Assume that c is the top-left corner of
G”. In this case, the terminal points “closest” to corner ¢ (i.e., the one exactly above
and exactly to the left of ¢) belong to the nets in the knock-knee. By arguments
similar to the ones above, we know that the next knock-knee at p is introduced at
a corner ¢ of a new rectangle G' (which we call new G”). Since the terminal point
“closest” to corner ¢’ belongs to one of the nets whose wires form the knock-knee,
it must be that ¢ is the bottom-right corner of G". Since at each iteration the new
G’ is within the previous G, we know that the new G must be a single point. But
then, no knock-knee is introduced. A contradiction. Hence each grid point contains
at most one knock-knee. This completes the proof of (6).

Proof of (7)—(9): The proof of (7) is straightforward. Every time procedure
ROUTE-REM introduces a vw-segment, it also routes a net with a terminal point
in that column. Therefore, if a column has a trivial net, then the column does
not have any other vu-segments, and statement (8) holds. Statement (9) follows
directly from (3). This completes the proof of (7)~(9) and the lemma. G

Our layer assignment procedure for the wire segments introduced by procedure
ROUTE-REM for I' begins by assigning to three layers all the hu-segments and then
to four layers all the vursegments. One can easily assign all the hursegments to three
layers by considering each track at a time. However, this arbitrary assignment may
not always lead to a feasible assignment of the vw-segments. In order to be able
to generate quickly the vertical layer assignment, our horizontal layer assignment
must satisfy some special properties. To perform the layer assignment of the huw-
segments, we partition the set of s-nets in N’ into four classes, such that the fourth
class is a subset of the Rs-nets. Then the hw-segments of all the nets in N’ are
assigned to layers a, b, and ¢, in such a way that all hu-segments of each net are
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assigned to the same layer, except for nets in the fourth class. The hw-segments of
each fourth class Rs-net are assigned to layers a and b, or ¢ and b. The vu-segments
are assigned to layers 1, 2, 3, or 4 by scanning the columns from left to right. The
general vertical layer assignment rule is as follows: each vw-segment is assigned to
a layer adjacent to the horizontal layer(s) where its adjacent hu-segment(s) have
been assigned.

4.2.1. Horizontal layer assignment

Before we present our horizontal layer assignment procedure H LA, we discuss
our subprocedure that partitions the s-nets in N’ into four classes, such that the
fourth class contains only Rs-nets. This procedure begins by partitioning the hw-
segments in each track into three groups; next, it constructs a multigraph, and then
colors the edges in the multigraph with four colors. Let us now discuss these two
steps in detail.

Since each grid edge contains at most two wire segments, and there is at most one
knock-knee at each grid point (Lemma 13(6)), we know that all Aw-segments in each
track can be partitioned into three groups, such that the wire segments assigned
to the same group do not overlap (not even at a single point). Furthermore, the
partitioning of the segments is generated in linear time by scanning the track from
left to right. Later on we may slightly modify this partition. Since an s-net has two
hu-segments in different tracks, its hw-segments belong to groups in two different
tracks. Obviously, the hw-segments of two s-nets assigned to a common track, may
either belong to the same group or not.

Next, we construct a multigraph Gy from the 2-layout W' of I’ generated
by procedure ROUTE-REM. Each track in the 2-layout is represented by a vertex
in the multigraph Gyy:. For each s-met with hw-segments assigned to the tracks
represented by vertices v and w there is a distinct edge between vertices v and
w. Note that there may be multiple edges between a pair of vertices in the graph.
Since each s-net has two hw-segments in different tracks, and there are at most
two hursegments from two different s-nets in any track (Lemma 13(5)), there can
be at most two edges incident at any vertex in G/, and for each s-net there is
exactly one edge in Gyr. The vertex corresponding to a track is labeled d if the
hu-segments from two s-nets assigned to this track are in different groups (in the
partitioning of the hu-segments in this track); otherwise, it is labeled s. Note that
every vertex is labeled.

By Lemma 13(5) we know that the degree of each vertex is at most two. There-
fore, the connected components of a multigraph Gy are either chains each with at
least one vertex (Fig. 24(a)), or cycles (Fig. 24(b)). The tracks (s-nets) associated
with a connected component of a multigraph are the tracks (s-nets) represented
by the vertices (edges) in the component. The nets associated with a connected
component are all of those nets with a hu-segment located on a track associated
with the component.
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®

Fig. 24. Multigraph Gy

In order to wire our layout in seven layers we need to treat separately the
components formed by a cycle with exactly one vertex labeled d. These cycles are
called single-d cycles. What we would like to establish is that just before the first
Rs-net in the single-d cycle was introduced by ROUTE-REM, the topmost and
bottommost tracks represented by the vertices in the single-d cycle had at most one
hw-segment from the s-nets in the cycle. We call this property the ordering property.
In general one cannot prove that every single-d cycle satisfies the ordering property;
however, in what follows we shall modify slightly the previously generated partitions
of the horizontal tracks so that all the resulting single-d cycles in the multigraph
satisfy the ordering property and the track partition is valid.

For each single-d cycle that does not satisfy the ordering property we perform
the following operations. By definition the number of s-nets in the cycle must be
at least two. If the first or second s-net routed by ROUTE-REM is an Rs-net,
then it is simple to see that it satisfies the ordering property. So let us consider the
remaining case, i.e., the first two s-nets in the single-d cycle routed by ROUTE-
REM are Ls-nets. Let 2 and y be these two s-nets, and assume net z was routed
by ROUTE-REM before net y. One of these nets is an LBs-net and the other is
an LTsnet, as otherwise the component does not form a cycle. Suppose that the
s-track of one of these two nets is the b-track of the other. If the s-columns of nets
z and y are the same, then either the two b-tracks are labeled d, in which case the
cycle is not a single-d cycle; or the horizontal wire segment in the b-track of one
of these nets overlaps with at most one other hw-segment and the track is labeled
s, in which case the wire can be assigned to a different group in the partition of
that track and the new cycle has two vertices labeled d. If the s-columns of z and
y are different, then the s-column of z is to the left of the s-column of y. It is
simple to verify that the hw-segment of net z located in its b-track overlaps with at
most another horizontal segment and can be reassigned in the partitioning of the
segments in that track so that the new cycle has either zero or two vertices labeled
d. In some cases the segment just to the right of the segment reassigned may also
need to be reassigned. So we need to consider only the case when the s-tracks of
these s-nets (z and y) is not the same as the b-track of the other, and one of these
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s-nets is an LBs-net and the other is an LTs-net. Since the two b-tracks have only
one wire from the s-nets in the cycle, there must be at least three s-nets in the
cycle. If the next s-net from the simple-d cycle routed by ROUTE —~ REM is an
Ls-net, then its b-track must be different than the b-tracks of = and y. Since the
remaining s-nets in the cycle will only be introduced inside the G’ at this point,
it then follows that the component does not form a cycle. So this third net must
be an Rs-net, and by the above discussion the simple-d cycle satisfies the ordering
property. Therefore, after performing the above transformations all the single-d
cycles in the resulting multigraph satisfy the ordering property.

A coloration of the edges of the multigraph is a function that assigns one of
four colors to each edge of the multigraph so that each edge is labeled with one of
the first three colors, and for each degree-two vertex labeled s (d) the two edges
incident to it are colored identically (differently). The only exceptions to this rule
are the single-d cycles, in which case one of the edges representing an Rs-net is
labeled with the fourth color and the vertices labeled s adjacent to this edge do not
need to satisfy the property that their edges are colored with the same color.

Let us now outline our procedure to color the edges of the multigraph with four
colors. First, each chain is transformed into a cycle by adding two (dummy) vertices
labeled d adjacent to each other, and each one adjacent to one of the end vertices
in the chain. After this operation all the components are cycles and each cycle has
at least one vertex labeled d. Each non single-d cycle is transformed as follows.
Each path from v to w with all vertices labeled s except for v and w is replaced
by a single edge adjacent to v and w (all nodes labeled 5 in the path are deleted).
As a result of this, all these cycles have at least two vertices and all their vertices
are labeled d. It is simple to show that these cycles can be easily colored with
the first three colors. The edges in the original components corresponding to these
cycles are colored with the same color as the edge that replaced them. The dummy
vertices and edges are then deleted. The cycles with exactly one vertex labeled d are
colored differently. First we find the Rs-net with the rightmost s-column amongst
all the Rs-nets represented by the edges in the cycle. The edge corresponding to
this Rs-net is assigned the fourth color. Relabel the vertices adjacent to this edge
d and color the other edges in the cycle by the procedure used for the case when
the cycle is not a single-d cycle.

We classify the s-nets by assigning all s-nets corresponding to edges colored i to
the i** class. Procedure HLA for the layer assignment of the hursegments based on
this classification of the s-nets is defined below.

procedure HLA
Partition the hursegments in each track into three groups;
Construct the multigraph Gw:;
Modify slightly the partition as described earlier so that all the remaining
single-d cycles in the resulting multigraph G satisfy the ordering property;
Color the edges of the multigraph edges using the procedure discussed above.
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Assign the s-nets represented by edges colored i to the i** class.
while there are unassigned hu-segments of fourth class s-nets do
k « rightmost s-column of a fourth class s-net with an unassigned hw-segment.
/* In Lemma 14(1) we prove that all the hw-segments of fourth class nets whose
s-column is column k have not been assigned. */
Let n! be a fourth class s-net with its s-column in column k;
Let C be the component of n.
Let n}, be the net associated with n!. /* the net identified in Lemma 13(1) */
/* Net nf is represented by an edge in Gw- that is part of a single-d cycle. */
/* In what follows we assign to layers the hAursegments of a subset of nets that
includes n} and possibly n!,, depending on the vu-segments in column k. */
There are two cases depending on the vu-segments in column k.
Case 1: The only vursegments in column k belong to nets n;’ and n},.

Assign the hw-segments of n} in the s-track (e-track) to layer a (b).

Map the first three colors to the layers consistent with the assignment of n’.

Assign to layers the hw-segments of the remaining s-nets associated with
component C. The assignment must be consistent with the above mapping.

For each track t associated with component C, assign to layers the remaining
hu-segments. The assignment must be consistent with the assignment defined
so far and the previously constructed grouping (first step) for track ¢.

/* Note that the hw-segment of net n}, might not be assigned. */

Case 2: There are three or four vu-segments in column k.

Let n;- be the other s-net with vw-segments in column k, unless there are no
other s-nets with this property in which case n; is the net other than
n, and n}, with vwsegment in column k.

If the hu-segment(s) of n; has not been assigned, and if n} is not an s-net whose
vu-segment overlaps (in more than one point) with that of n!, in column &,
then Assign the hw-segment of net n} to layer b, unless nf is a fourth class

s-net in which case assign the hu-segments of ng in the e-track and s-track
to layers b and c, respectively.

Let C’ be the component where n} belongs.

Assign all the hursegments in all tracks in C’ as in Case 1.

If the hu-segments of nj have not been assigned, or have been assigned to either
assigned to either layer b or ¢, then execute the steps of Case 1.

Otherwise, execute the steps of Case 1, but the huw-segments of n! are assigned
to layers ¢ and b rather than to layers a and b.
end while
for each component C with an unassigned hw-segments in one of its tracks do
/* In Lemma 14(2) we show that all the hw-segments of the nets associated
with component C are not assigned. */
Let M be any mapping of the first three colors to the horizontal layers.
Proceed as in Case 1 to assign to layers all the hAu-segments of the nets in C.
end for
end of procedure HLA
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Figure 25 illustrates the layer assignment of the hw-segments of the wires in
the routing layout for I’ given in Fig. 21. Lemma 14 establishes the correctness of
procedure HLA, and Lemma 15 establishes some important properties which we
use to show that the vertical layer assignment is feasible.
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Fig. 25. Layer assignment of all hw-segments.

Lemma 14.

(a) At the beginning of each iteration of the while-loop and the for-loop of pro-
cedure HLA, and at the end of procedure HLA, the following statements
hold.

1. There is a vertical line | thal partitions R’ into two reclangles such that
all the hw-segments of the fourth class s-nels in the right (left) rectangle
have been assigned (not been assigned) to layers. Furthermore, at the
beginning of the it" iteration of the while-loop, the right rectangle of R
defined by l includes only the rightmost i — 1 s-columns of fourth class
nets.

2. FEither all or none of the hw-segmenis of nets associated with a compo-
nent have been assigned to layers.

(b) At the end of the while-loop of procedure HLA, (1) holds with the right
rectangle being the entire rectangle R’.

(c) At the end of the procedure HLA, all the hw-segments of W' have been
assigned to layers.

Proof. Clearly (a) holds at the beginning of the while-loop. Let us now show
that if (a) holds at the beginning of the while-loop, then it holds at the end of the
loop. At each iteration we assign all the hw-segments in the tracks associated with
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the components that include the fourth class nets with their s-column in column
k and possibly those in another component. All the components whose tracks are
assigned in this iteration include at least one net with a vu-segment in column k.
By construction each component has at most one fourth class net. Therefore, to
complete the proof we need to show that the components assigned in this iteration
either include a fourth class net with its s-column in column &, or do not include
a fourth class net. Suppose this is false. Suppose that component C assigned in
this iteration has a fourth class net with its s-column to the left of column &. This
component must include net n} which is not an s-net. Net n; was introduced by
ROURE — REM when some s-net z in C was routed. Since the vw-segments of
7 and n{, overlap in column k and both of this nets have a terminal point at
that column, it must be that the track with a terminal point from net z is above
(below) the e track of n! when z has a terminal point on the bottom (top) side of
R'. It cannot be that z is an Rs-net, as otherwise its s-column would be to the
right of column k. So z is an Ls-net. Since the cycle satisfies the ordering property
it must be that when the first Rs-net in the cycle is routed by ROUTE-REM, there
is only one wire segment in the b-track of net # from the s-nets in €. Since C
forms a cycle, such a track must contain two hw-segments from the s-nets in the
cycle. So this Rs-net is introduced before n}, or the component is not a cycle. A
contradiction. Therefore (a) holds at the end of the first loop of procedure HLA.
Since (a) holds at each iteration, (b) holds. The proof for (c) is straight forward
and thus omitted. O

nets n

4.2.2. Vertical layer assignment

First, in Lemma 15, we establish some properties of the horizontal layer assign-
ment generated by procedure HL A, which are used in the vertical layer assignment
procedure.

Lemma 15. The following statements hold after procedure HLA.

1. Each column has wires from al most {wo s-nels that belong to the fourth
class.

2. The hw-segments of each fourth class net are assigned 1o layers a and b,
orc andb.

3. Any three hw-segmenls of three distinct nets adjacent o three vw-segments
that overlap at a grid point, have not been assigned to the same layer.

Proof. By Lemma 13(2) and the fact that each net represented by a vertex
colored with the fourth color is an Rs-net, we know that there can be no more
than two s-nets in any column. Therefore, statement (1) holds. From procedure
HLA, we know that the hw-segments of each net from the fourth class are assigned
to layers a and b (or ¢ and b). Therefore, statement (2) holds. When three v
segments overlap at a grid point, two of these vursegments belong to two nets that
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form a knock-knee at that grid point. By procedure HLA, the two hw-segments
that form the knock-knee are assigned to different layers. If both nets that form
the knock-knee do not belong to the fourth class, then clearly statement (3) holds.
Otherwise, at most one of them is a fourth class s-net. From Case 2 of procedure
HLA, we know that three hu-segments of these three nets have not been assigned
to the same layer. Therefore, statement (3) holds. O

Next, we explain the layer assignment of the vu-segments (procedure VLA). As
mentioned before, the vursegments are assigned to one of four layers, and the layer
assignment is performed by scanning the columns from left to right. In each column,
the general rule for vertical layer assignment is: each vw-segment is assigned to a
layer adjacent to each horizontal layer assigned to its adjacent hw-segment(s). For
example, if the hw-segments of a net are assigned to layers a and b, then the vu-
segment adjacent to both of these segments is assigned to layer 2. On the other
hand, if the hwsegment(s) is (are) assigned to layer a, then the vu-segment can
be assigned to layer 1 or layer 2. In what follows, we show that there is a feasible
layer assignment consistent with this general rule, and that such assignment can
be generated quickly. A feasible assignment is one that satisfies the multilayer
wiring conditions given in Sec. 2. There are three cases depending on the number
of vursegments in the column.

Case 1: There are at most two vu~segments in the column.

Each vu-segment is assigned to a layer by following the general rule together with
the restriction that both segments are assigned to different layers. Since there are at
most two vu-segments of two nets, at most one belongs to an s-net (Lemma 13(7)).
Therefore, a feasible assignment exists.

Case 2: There are three vu-segments in the column.

Each vu-segment is assigned to a layer by following the general rule together
with the restriction that no two segments that overlap are assigned to the same
layer. By Lemma 15(3), we know that no three hw-segments of distinct nets that
are adjacent to vursegments that overlap at a grid point are assigned to the same
layer. If one of the vu-segments belongs to a fourth class net, then it is assigned to
layer 2 (3) if the hursegments of the fourth class net are assigned to layers ¢ and
b (c and b). One can easily show that the remaining vu-segments can be assigned
to layers as per the general rule. On the other hand, it is simple to show that a
feasible assignment exists if not all the hu-segments adjacent to the vu-segments in
this column are assigned to the same layer. Otherwise, we know that no two of them
are part of a knock-knee in this column. Assume without loss of generality that all
the hu-segments adjacent to the vursegments are assigned to a. Since there is at
most a two-overlap, it must be that at least two of the three vw-segments do not
overlap. These wire segments are assigned to layer 1, and the third is assigned to
layer 2. Therefore, a feasible assignment consistent with our rules exists. Figure 26
shows the layer assignment of the leftmost three columns of the 2-layout of Fig. 21,
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Fig. 26. Layer assignment for wire segments of three columns.

the first two of which are assigned as described in Case 1, and the third column is
assigned as described in Case 2.

Case 3: There are four vursegments in the column.

Each vwrsegment is assigned to a layer by following the general rule together
with the restriction that no two segments that overlap are assigned to the same
layer. By Lemma 15(3), we know that no three hw-segments of distinct nets that
are adjacent to vu-segments that overlap at a grid point are assigned to the same
layer. This implies that all vursegments in this column that are adjacent to hw-
segments assigned to the same layer can be partitioned into two groups, each of
which can be assigned to one of the vertical layers adjacent to the horizontal layer.
Hence we can assign the vw-segments to layers adjacent to the horizontal layers
where the hw-segments adjacent to these vu-segments are assigned, i.e., the vertical
layer assignment is consistent with the general vertical layer assignment rule.

By Lemma 13(7), these three cases include all possibilities of the number of vu-
segments in a non-empty column. The above process is repeated until all non-empty
columns have been considered, at which point procedure VLA terminates.

From the above procedures we know that all the vu-segments (hu-segments)
were assigned to the layers 1, 2, 3, and 4 (a, b, and ¢). Figure 27 illustrates the
layer assignment of all the nets for the layout for problem I' given in Fig. 21.

Lemma 16. Procedures HLA and VLA generale a feasible seven-layer assign-
ment for all the wire segments in R' in O(n) time.
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Fig. 27. Layer assignment of problem I'.

Proof. It is simple to show that all the steps in procedures HLA and VLA can
be implemented to take O(n) time. The remaining part of the proof follows from
Lemmas 13, 14, 15, and the discussion before this lemma. ]

4.3. Layer Assignment for Wires Introduced by ROUTE-LRTB Outside R'

Let us now consider the layer assignment for the wire segments introduced by
ROUTE-LRTB outside R'. We consider only the wire segments located to the left
of the leftmost vertical stretching line, since the wire segments to the right of the
rightmost stretching line can be handled similarly. We shall refer to this rectangle
as R'. Before we present our layer assignment strategy, we define some terms,
and prove some properties of the 2-layouts generated by ROUTE-LRTB in R".
It is important to note that the additional column is needed in order for the hw-
segments to change layers. If this column is not introduced, then it is impossible to
perform the layering without making major changes to the layer assignment of R'.
To convince yourself of this fact try to wire the column with nets 1 and 7 in Fig. 28
without allowing a change of layers in the layer assignment of R'.

Procedure ROUTE-LRTB introduces wires in R with at most three wire seg-
ments, of which at most two are hw-segments and at most two are vertical (Lemma
17). A net is called an s-net if it contains three wire segments in R", and two of
them are horizontal. Note that our definition of an s-net is particular to a given
2-layout, i.e., the net which is an s-net in a 2-layout may not be so in another 2-
layout. When ROUTE-LRTB in R routes an s-net, it is because the s-net includes
a terminal point on the left boundary of R", and which is located on the track
corresponding to the upper or lower boundaries of rectangle . The tracks where
an s-net has its hu-segments are called the b-track and the e-track. The b-track is
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the one that includes the above terminal point. The s-column of an s-net is the
column where the s-net has its vu-segment. The corner of the wire for an s-net in
its b-track is marked upper (lower) if the b-track is the track corresponding to the
upper (lower) boundary of G. A t-net associated with an s-net is a net connected
by a vertical-horizontal wire or a vertical-horizontal-vertical wire, whose leftmost
terminal point is in the s-column of the s-net, and whose hw-segments are not in
any of the interior tracks of the rectangle G defined when the s-net was introduced.

Our layer assignment procedure begins by assigning the hAuw-segments intersecting
the stretched column to layers @ or ¢. This assignment should be consistent with
the layer assignment generated in Subsections (4.1) and (4.2). We shall refer to
this assignment as a tentative assignment. This assigninent may change (i.e. a
~ could become b or ¢ could become b, but not both) and eventually becomes the
final assignment. Then, the procedure performs the layer assignment of all the
remaining wire segments while scanning the columns in R from right to left. At
each column, we define an upper track and a lower track. At the rightmost column
of the rectangle R”, the upper (lower) track is one of the interior tracks of the
last rectangle GG defined in procedure ROUTE-LRTB. In case the last G has only
two tracks, then the upper and lower tracks are a hypothetical track between the
two tracks of the rectangle G. At column k, the upper track is the topmost track
where the marked upper corner of an s-net with s-column k is located, unless there
are no such nets in which case the upper track is the same as the upper track of
column & + 1 (i.e., the previous column). The lower track is defined similarly. All
the hw-segments with a point to the right of column k, and between (inclusive) the
upper and lower tracks of column k + 1 have the final assignment. The remaining
hu-segments have a temporary assignment. Then, at each iteration we make a final
assignment of all the Aw-segments in the tracks between (inclusive) the upper and
lower tracks of the current column, with a point to the right of the current column.
All the hw-segments assigned to layers in the temporary assignment are assigned to
layers a or ¢. One of these assignments may change to b. Therefore, whenever we
make a temporary assignment we should make sure that it is possible to change it
to b. Before we present our procedure, we establish some properties of the 2-layout
generated by ROUTE-LRTB in R

Lemma 17. The 2-layout consiructed by procedure ROUTE-LRTB in R sat-
isfies the following properties.

1. Each wire consists of at most three segmenis. There are al most {wo
hw-segments and el most two vw-segments in each wire.

2. Each wire with two horizonial segmenis is an s-net and il has a terminal
point on the left boundary of rectangle R". In the s-column of an s-net
there could be a vw-segment of a t-net. Either these two nels form a
knock-knee or their vw-segments do not overlap.

3. At most two s-nets have the same s-column.
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4. There are al most two sets of nels with vw-segments in a column. Each
set contains al most two nets, and if there are two nets, then one is an
s-net and the other is a t-nel.

5. If there are two s-nets at a column then the vw-segments of one of the
s-nets may overlap (at more than one point) with the vw-segments of the
t-net associated with the other s-net; however, both nets do not satisfy
this property.

Proof. The proof is straightforward and is therefore omitted. 0

It is simple to show that if there is an s-net with its corner point marked upper
(lower) at a column, then the b-track of the s-net is above (below) the upper (lower)
track in the column immediately to its right. Let us now discuss our procedure to
perform the layer assignment when considering column k. There are three cases
depending on the number of s-nets with vw-segments at column k.

Case 1: There are no s-nets with s-column at column k.

By Lemma 17(4) and the conditions of the case, we know that there are vuw-
segments from at most two nets at column k and neither of the nets is an s-net.
Therefore, the upper (lower) track at column & is equal to the one at column k +1
(i.e. the previous column). Let z and y be the two nets with vw-segments in column
k. In case there is only one net, ignore the operations for net y. If the hursegments
of net z (y) have not been assigned, then assign them to layer a (c) and their vu-
segment in column k to layer 2 (3). Note that this allows us to change them to b
later on, if they are still temporarily assigned. Assign the remaining vw-segments to
layers consistent with the previous assignments. This is always possible since there
are two vertical layers adjacent to every horizontal layer.

Case 2: There is only one s-net with s-column at column k.

By Lemma 17(4) we know that there are vursegments from at most three nets.
By the conditions of the case, we know that there is an s-net and its corresponding
t-net, and another net (z). Assign the hw-segment of the s-net in the b-track to
the same layer as the hw-segment in its e-track, unless it has not been assigned, in
which case both are assigned to layer a or layer c. As a result of this assignment,
a temporary assignment of hu-segments located in the b-track of the s-net may
have to be changed to layer b. Note that after this assignroent, that track will
have its final assignment. If the hw-segment of net & has not been assigned, then
assign it to layer a. Assign its vu-segment to either layer 2 or 3, consistent with
the assignment of its hw—sggment. Now assign the vw-segments of the s and ¢ nets.
This assignment is always possible, since all the hursegments in each of these two
nets have been assigned to the same layer and there are two vertical layers adjacent
to every horizontal layer.

Case 3: There are two s-nets with their s-column at column k.

By Lemma 17(4), we know that there are vursegments from at most four nets,
two pairs of s-t nets. Perform the horizontal layer assignment for each pair, as
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in Case 2. By Lemma 17(5), we know that there is at most one s-net whose vu-
segment overlaps at more than one point with that of the t-net in the other pair.
Let sy be that s-net, unless no such net exists, in which case s; is either of the two
s-nets. Assign the vw-segment of the net s; to layer 2 or 3, depending on the layer
where its hursegment have been assigned. The assignment of the other vwsegments
proceeds as in Case 2.

As mentioned before, the above process is repeated on the other side of rectangle
R'. Figure 28 illustrates how our procedure handles the layer assignment of the first
three columns of R. Cases 3, 2, and 1 arise when considering the third, second, and
first columns of R, respectively. Lemma 18 establishes the main result in this
Section.
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Fig. 28. Layer Assignment of wires introduced by ROUTE-LRTB.

Lemma 18. Our procedure generates a feasible seven-layer assignment for all
the wire segments introduced by ROUTE-LRTB inside R in O(n) time.

Proof. The proof follows from the above discussion and Lemma 17. D

4.4. Complete Layer Assignment

For any particular problem instance, we perform the layer assignment of Sub-
sections (4.1) and (4.3), or (4.2) and (4.3). Figure 29 shows the complete layer
assignment of all the nets for the routing layout of problem I given in Fig. 22.

Theorem 2 establishes our result in this Section, and Theorem 3 establishes the
main result of this paper. ‘

Theorem 2. Qur procedure constructs ¢ seven-layer wiring for any 2-layout
generated by procedure ROUTE. The time complexity of our algorithm is linear
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Fig. 29. Layer assignment.

with respect 1o n, the number of terminal points (if the setl of terminal points is
initially ordered). The 2-layout conlains no more than 1.5v* bends where v* is the
natural bend number for I.

Proof. Procedure ROUTE-REM is the only procedure that connects nets
with wires with a number of bends that exceeds their natural bend number. By
Lemma 13(1) and (4), and procedure ROUTE-REM, we know that for every net
connected by a wire whose number of bends exceeds the natural bend number of
the net, the procedure connects at least two nets by wires with a number of bends
equal to the natural bend number of the nets. One of these wires has one bend
and the other has two bends. Therefore, 1.5v* is an upper bound on the number
of bends introduced by the algorithm. The proof of the time complexity bound is
straightforward. The remaining part of the proof follows from Lemmas 12, 16, and
18. 0

Theorem 3. A seven-layer wiring for any two-terminal-net two-overlap routable
SBR problem can be construcied in O(n) time, if the sel of n terminals is initially
ordered. The layout has at most two extra tracks and two additional columns.

Proof. By Theorems 1 and 2. O

5. Discussions

We presented an algorithm that given any two-overlap routable SBR problem
instance, adds at most two tracks and two columns, and wires it in seven layers.
The time complexity for our algorithm is O(n) when the set of n terminal points is
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initially ordered. The constant associated with the time complexity bound is small.
All the wires in each layer are either vertical or horizontal, but not both. Most of
the vias introduced by our algorithm join wires in adjacent layers. The rest of the
vias join wires in adjacent horizontal layers, and are located along two columns. It
may be possible to perform the wiring in seven layers by adding only one additional
track or column slot; however, such a procedure is extremely complex.

Our algorithm can be generalized to solve the multiterminal-net SBR problem
under the two-overlap, by splitting the multiterminal nets into two-terminal nets and
stretching the layout,?®?! multiterminal nets can be partitioned into two-terminal
nets. By stretching the grid of R, our algorithm can be directly applied to obtain
seven-layer wiring solutions. Our algorithm can be easily adapted to solve the two-
stacked pin two-overlap SBR problem when the set of terminals is compatible. In
this case, the set of terminals is said to be compatible if for each track or column only
one of the endpoints has terminal points. Any multiterminal SBR problem with a
set of compatible terminals can be transformed to a two-stacked pin SBR problem
by duplicating midpoints of a multiterminal net. Our algorithm can be modified
to handle this problem. We have also generalized our algorithm to handle higher
number of overlappings. For brevity, we do not discuss further generalizations of
our algorithm.
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