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(MLC-R) problem consists of finding a corridor of least total length. A corridor is a set of connected
line segments, each of which must lie along the line segments that form the rectangular boundary
and/or the boundary of the rectangles, and must include at least one point from the boundary of every
rectangle and from the rectangular boundary. The MLC-R problem is known to be NP-hard. We
present the first polynomial-time constant ratio approximation algorithm for the MLC-R and MLCk

problems. The MLCk problem is a generalization of the MLC-R problem where the rectangles are
rectilinear c-gons, for c ≤ k and k is a constant. We also present the first polynomial-time constant
ratio approximation algorithm for the Group Traveling Salesperson Problem (GTSP) for a rectangular
boundary partitioned into rectilinear c-gons as in the MLCk problem. Our algorithms are based on
the restriction and relaxation approximation techniques.
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1. Introduction

An instance I of the Minimum-Length Corridor (MLC-R) problem consists of a
pair (F, R), where F is a rectangle partitioned into a set R of rectangles1 (or rooms)
R1, R2, . . . , Rr . A corridor T (I ) for instance I is a set of connected line segments,
each of which lies along the line segments that form F and/or the boundary of the
rooms, and must include at least one point from every room and from rectangle
F . The objective of the MLC-R problem is to construct a corridor of least total
length. It is simple to see that the line segments in an optimal corridor do not form
any loops, that is, no two points have more than one path between them along
an optimal corridor. A generalization of the MLC-R problem where the rooms
are rectilinear polygons is called the MLC problem. The MLC problem becomes
the MLCk problem when every room is a rectilinear c-gon, for c ≤ k and k is a
constant. The MLC problem was initially defined by Naoki Katoh [Demaine and
O’Rourke 2001] and subsequently Eppstein [2001] discussed the MLC-R problem.
Experimental evaluations of several heuristics for the MLC problem are discussed
in Jin and Chong [2003]. The question as to whether or not the decision version of
each of these problems is NP-complete is raised in the preceding three references.
Mitchell [2000] raised the question as to whether or not the Group Steiner Tree
problem (a problem related to the MLC problem) for a set of points in 2D space
has a polynomial-time constant ratio approximation algorithm.

Recently Gonzalez-Gutierrez and Gonzalez [2007b], and independently Bod-
laender et al. [2006], proved that the decision version of the MLC problem is
strongly NP-complete. Gonzalez-Gutierrez and Gonzalez [2007b] also showed
that the decision version of the MLC-R problem is strongly NP-complete as well
as some of its variants. In virtue of these results, attention has shifted to the corre-
sponding approximation problems.

Bodlaender et al. [2006] consider several restricted versions of the MLC problem.
One of these restricted versions of the MLC problem is called the geographic
clustering problem. In this case, there is a square with side length q which can be
enclosed by each room (rectilinear polygon), and the perimeter of each room is
bounded above by c · q, where c ≥ 4 is a constant. Clearly, not all instances of
the MLC-R problem are geographic clustering problem instances. It is not known
whether the decision version of the geometric clustering problem is NP-complete.
A Polynomial-Time Approximation Scheme (PTAS) for the geographic clustering
version of the MLC and related problems is presented in Bodlaender et al. [2006].

Another restricted version of the MLC problem considered in Bodlaender et al.
[2006] is when each room has a size ρi defined as the side length of the smallest
enclosing square of the room, and each room Ri has perimeter at most 4ρi . A room
with this property is said to be a room with square perimeter. A room Ri is called
α-fat if for every square Q whose boundary intersects Ri and its center is inside
Ri , the intersection area of Q and Ri is at least α

4 times the area Q. In general
α ∈ [0, 1]. For square rooms α is equal to one, but for rectangular rooms α tends
to zero. It is not known whether the decision version of the MLC problem, when
all the rooms have square perimeter and are α-fat, is an NP-complete problem;

1 Throughout this article we assume that all the rectangles (and rectilinear polygons) consist only of
horizontal and vertical line edges.
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however, there is a polynomial-time approximation algorithm with approximation
ratio 16

α
− 1 [Bodlaender et al. 2006]. In the case when all the rooms are squares

the approximation ratio is 15. Clearly, 16
α

− 1 is not bounded above by a constant
for the MLC-R.

The Group Steiner Tree (GST) problem may be viewed as a generalization of
the MLC problem. Reich and Widmayer [1990] introduced the GST problem,
motivated by applications in VLSI design. The GST problem, as it is defined
by Reich and Widmayer, consists of a given connected undirected edge-weighted
graph G = (V, E, w), where w : E → R+ is an edge-weight function; a nonempty
set C , C ⊆ V , of terminals; and a partition P = {C1, C2, . . . , Ck} of C . The
objective of the GST problem is to find a tree T (P) = (V ′, E ′), where E ′ ⊆ E and
V ′ ⊆ V , such that at least one terminal from each set Ci is in the tree T (P) and the
total edge-length

∑
e∈E ′ w(e) is minimized. The graph Steiner Tree (ST) problem is

a special case of the GST problem where each set Ci is a single vertex. Karp [1972]
proved that the decision version of the ST problem is NP-complete. Since the GST
problem includes the ST problem, the decision version of the GST problem is
also NP-complete. There is a simple and straightforward reduction from the MLC
problem to the GST problem which can be used to show that any constant ratio
approximation algorithm for the GST problem is a constant ratio approximation
algorithm for the MLC problem.

For an instance of the GST problem in which C is partitioned into k subsets,
Ihler [1991] gives a heuristic which has a performance bound of (k −1) ·opt , where
opt is the value of an optimal solution. Bateman et al. [1997] give the first known
heuristic with a sublinear performance bound of (1 + ln( k

2 )) · √
k · opt . Helvig

et al. [2001] give a polynomial-time O(kε)-approximation algorithm for any fixed
ε > 0. However, neither these approximation algorithms nor other known ones
for the GST problem are constant ratio approximation algorithms for the MLC-R
problem.

Slavik [1997, 1998] and Safra and Schwartz [2006] defined a more general
version of the GST problem where Q = {C1, C2, . . . , Ck} is not necessarily a
partition of C , but each errand i can be performed at any vertex in Ci ⊆ C and
∪i Ci = C , that is, a vertex in C may be in more than one set Ci . This version of
the GST problem is called by Slavik [1997, 1998] the Tree (Errand) Cover (TEC)
problem. The TEC problem is formally defined as follows.
INPUT: A connected undirected edge-weighted graph G = (V, E, w), where
w : E → R+ is an edge-weight function; a nonempty set C , C ⊆ V , of terminals;
and a set Q = {C1, C2, . . . , Ck}, where Ci ⊆ C and ∪i Ci = C .
OUTPUT: A tree T (Q) = (V ′, E ′), where E ′ ⊆ E and V ′ ⊆ V , such that at
least one terminal from each set Ci is in the tree T (Q) and the total edge-length∑

e∈E ′ w(e) is minimized.
Slavik [1997, 1998] developed an approximation algorithm for the TEC prob-

lem with approximation ratio 2ρ, when each errand can be performed in at
most ρ locations. Safra and Schwartz [2006] established inapproximability re-
sults for the 2D version of the TEC problem when each set is connected, but
again, these results do not seem to carry over to the MLC-R problem. The TEC
and GST (as defined earlier) are computationally equivalent problems. The TEC
problem is often referred to as the GST problem. We differentiate between these
problems.
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56:4 A. GONZALEZ-GUTIERREZ AND T. F. GONZALEZ

As we have seen, our problems are restricted versions of more general problems
reported in the literature. However, previous results for those problems do not
establish NP-completeness results, inapproximability results, nor constant ratio
approximation algorithms for our problems.

In this article we present a polynomial-time approximation algorithm for the
MLC-R problem with approximation ratio 30. This is the first constant ratio ap-
proximation algorithm for the MLC-R problem. We also present a polynomial-
time constant ratio approximation algorithm for the MLCk problem, when k is a
constant.

An application for the MLC problem is when laying optical fiber in metropolitan
areas and every block (or set of blocks) is connected through its own gateway
which may be placed anywhere on the boundary of the set of blocks. The objective
is to find a minimum-length corridor interconnecting all the gateways (one for
each set of blocks) in the area. Our problems also have applications in VLSI and
floorplanning when laying wires for clock signals or power, and when laying wires
for an electrical network or optical fibers for data communications. There has been
recent research activity for related problems arising in intelligent transportation
as well as in modern spatial database systems for trip planning queries [Li et al.
2005]. Section 6 discusses our problems under other objective functions.

In Section 2 we discuss preliminary results and define the p-MLC-R problem,
a restricted version of the MLC-R problem, used to approximate the solution of
the MLC-R problem. Then in Section 3 we present our parameterized algorithm
for the p-MLC-R problem. The parameterized algorithm takes in a parameter S
that identifies a subset of boundary points from each rectangle and calls them
critical points. The p-MLC-RS is exactly like the p-MLC-R problem except that
every feasible corridor must include a critical point from each rectangle. Then
Slavik’s approximation algorithm for the TEC problem [Slavik 1997, 1998] is used
to generate a corridor for the p-MLC-RS problem instance. This is the corridor that
our algorithm generates for the p-MLC-R problem instance. When the maximum
number of critical points identified at each rectangle is kS , our corridor has length
at most 2kS times the length of an optimal corridor for the p-MLC-RS problem in-
stance. The approximation ratio for this algorithm depends on the ratio (rS) between
optimal solutions for p-MLC-RS and p-MLC-R problem instances. Therefore, the
approximation ratio for the parameterized algorithm is 2kS · rS . There are many se-
lector functions S for which kS is a constant, for example, the selector function that
identifies from each rectangle its corners as critical points has kS = 4. However,
for some functions the ratio rS cannot be bounded above by a constant. In Section 4
we discuss several simple selector functions for which the parameterized algorithm
is not a constant ratio approximation algorithm for the p-MLC-R problem because
one cannot bound the rS by a constant. These negative results shed some light for
possible design principles that result in constant ratio approximation algorithms.
Two constant ratio approximation algorithms arising from the design principles are
discussed in Section 5. One selector function identifies from each rectangle two
opposite corners and a special point. Special points are defined in Section 4. The
main thrust of the article is Section 5 where we prove that rS is bounded above
by a constant for the preceding selector function. In Section 6 we discuss results
for related problems, conclusions, and open problems. In particular we discuss a
polynomial-time constant ratio approximation algorithm for the MLCk problem
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FIG. 1. Optimal corridor for a p-MLC-R problem instance.

for any constant k. We also discuss our approximation algorithm for the Group
Traveling Salesperson Problem (GTSP) for a rectangle partitioned into rectilinear
c-gons as in the MLCk problem.

2. Preliminaries

Consider the restricted versions of the MLC and MLC-R problems where the input
has additionally an access point p, located on the edges of rectangle F , and the
solution must include this access point p. We call these problems the p-access
point version of the problems or simply the p-MLC and p-MLC-R problems. The
decision version of each of these problems is shown to be NP-complete in Gonzalez-
Gutierrez and Gonzalez [2007b]. An optimal corridor for the p-MLC-R problem
instance given in Figure 1 is represented by the thick line segments. The solution to
any instance of the MLC (respectively, MLC-R) problem can be obtained by finding
a corridor for the p-MLC (respectively, p-MLC-R) problem at each intersection
point p located along the edges of rectangle F , and then selecting the best of these
corridors. Based on this observation we state the following theorem.

THEOREM 2.1. Any polynomial-time constant ratio approximation algorithm
for the p-MLC-R problem is also a polynomial-time constant ratio approximation
algorithm for the MLC-R problem. The approximation ratio is identical for both
algorithms.

PROOF. By the preceding discussion.

A theorem similar to this one can be established for the MLC and related
problems. As a result of Theorem 2.1, we have reduced the MLC-R approximation
problem to the p-MLC-R approximation problem. Hereafter we concentrate our
efforts on the p-MLC-R approximation problem.

It is convenient to transform the geometric representation of the p-MLC-R
problem into the following graph representation. There is a vertex for every distinct
point located at the intersection of two orthogonal line segments representing
the edges of rectangles and the rectangular boundary F . A vertical (respectively,
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FIG. 2. Instance of the p-MLC-R problem.

horizontal) line segment in the instance I of the p-MLC-R problem is called an
edge if it includes exactly two points represented by vertices, and the two points are
the segment’s endpoints. We assume without loss of generality that p is located at a
vertex representing a point located on the rectangular boundary F . Every instance
I of the p-MLC-R problem is represented by the graph G(I ) = (V, E, w), where
the set V of vertices and the set of E of edges is defined earlier, and the weight
of an edge (w(e)) corresponds to the length of the line segment represented by the
edge. In this article we use the geometric and graph representation of the p-MLC-R
problem interchangeably, and mix the two notations. We use V (Ri ) to denote all
the vertices located along the boundary of rectangle Ri . Note that |V (Ri )| ≥ 4 (see
Figure 2 where V (R5) has 9 vertices). We use C(Ri ) to denote the set of vertices
that corresponds to the corners of Ri . Every vertex is a noncorner point of at most
one rectangle (the number of noncorner points of rectangle R5 is five (|V (R5)|−4);
see Figure 2).

The instance of the TEC problem corresponding to the instance (F, R, p) of
the p-MLC-R problem is defined for the (metric) graph G(V, E, w) constructed
from (F, R, p) with an errand Ei for each rectangle Ri located at all the vertices
V (Ri ), plus the errand E0 located at vertex p. Clearly every feasible solution to
the p-MLC-R problem instance is also a feasible solution for the corresponding
TEC problem instance and vice versa. Furthermore, the objective function value of
every feasible solution to both problem instances is identical.

Let I represent any instance of the p-MLC-R problem. Let T (I ) be any corridor
for instance I and t(I ) be its edge-length. Let OPT(I ) be an optimal corridor for
instance I and let opt(I ) be its edge-length. An approach to generate suboptimal
solutions for the p-MLC-R problem instance (F, R, p) is to construct an instance
of the TEC problem and then invoke an approximation algorithm for the TEC
problem instance. The solution generated by the algorithm for the TEC problem
instance is the solution to the p-MLC-R problem instance. Currently one uses
Slavik’s [1997, 1998] approximation algorithm for the TEC problem, which is
based on relaxation techniques. A direct application of this approach to the p-
MLC-R problem generates a corridor whose total edge-length is at most 2ρ ·opt(I ),
where ρ = maxi {|V (Ri )|}. Unfortunately, this simple approach does not result in
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a constant ratio approximation for the p-MLC-R problem since, as we pointed
out before, |V (Ri )| is not bounded above by any constant. In the next section we
discuss our parameterized approximation algorithm which is a refined version of
this approach.

3. Parameterized Algorithm

To establish a constant ratio approximation for the p-MLC-R problem, we need to
refine our previous strategy that uses an approximate solution to the TEC problem.
The idea is to restrict the solution space by limiting in each rectangle Ri the possible
vertices, from which at least one must be part of the corridor. Consider the p-MLC-
RS problem where the selector function S identifies from each rectangle Ri a set of
at most kS of its boundary points from which at least one must be included by every
corridor. The points selected for each rectangle Ri are called the critical points of
Ri . Usually, the kS critical points for each rectangle Ri defined by S include a subset
of its corner points as well as some points with a special connectivity property.
This connectivity property will be defined later on. The objective function of the
p-MLC-RS problem is to find a minimum edge-length corridor that includes for
each rectangle Ri at least one of its critical points.

Given S and an instance I of the p-MLC-R problem, we use IS to denote the
instance of the corresponding p-MLC-RS problem. The instance of the TEC prob-
lem, denoted by JS , is constructed from the instance IS of the p-MLC-RS problem
using the same approach as the one used for the p-MLC-R problem, but limiting
the errands from each rectangle to the critical points of the rectangle. Clearly every
feasible solution to the p-MLC-RS problem instance IS is also a feasible solution
to the instance JS of the TEC problem, and vice versa. Furthermore, the objective
function value of every feasible solution to both problems is identical. Slavik’s al-
gorithm applied to the instance JS of the TEC problem generates a solution T (JS)
from which we construct a corridor T (I ) with edge-length t(I ) for the p-MLC-R
problem. We call our approach the parameterized algorithm Alg(S), where S is
the parameter. Since Slavik’s approximation algorithm is based on relaxation tech-
niques and we apply it to a restricted version of the p-MLC-R problem, we say
that our approximation algorithm is based on restriction and relaxation approxi-
mation techniques. Let OPT(IS) be an optimal corridor for IS and let opt(IS) be its
edge-length. Theorem 3.1 establishes the approximation ratio for our parameter-
ized algorithm Alg(S). It is simple to see that the total edge-length of an optimal
solution of the instance IS , opt(IS), corresponding to the p-MLC-RS problem, is
at least as large as the total edge-length of an optimal solution of the instance I ,
opt(I ), of the p-MLC-R problem. We define the ratio between opt(IS) and opt(I )
as rS (with rS ≥ 1). In other words, one needs to prove that opt(IS) ≤ rS · opt(I )
for every instance I of the p-MLC-R problem, in order to use the following
theorem.

THEOREM 3.1. Parameterized algorithm Alg(S) generates for every instance
I of the p-MLC-R problem a corridor T (I ) of length t(I ) at most 2kS · rS times
opt(I ), provided that opt(IS) ≤ rS · opt(I ).

PROOF. Applying Slavik’s approximation algorithm [Slavik 1997, 1998] we
generate a corridor T (IS) of length t(IS) ≤ 2 · kS · opt(IS). Clearly T (IS) is also a
corridor for I , so the solution generated, T (I ), is simply T (IS). By our assumption,
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opt(IS) ≤ rS · opt(I ). It then follows that the length of the corridor generated by
our parameterized algorithm Alg(S) is t(I ) ≤ 2kS · rS · opt(I ).

For the previous approach to yield a constant ratio approximation algorithm we
need both kS and rS to be bounded above by constants. For example, when S selects
from each rectangle Ri its four corner points, kS is four. However, in order for our
parameterized algorithm Alg(S(4C)), when S(4C) selects the four corners from
each rectangle Ri , to be a constant ratio approximation algorithm for the p-MLC-
R problem, we need to show that opt(IS) ≤ rS · opt(I ), for some rS bounded above
by a constant.

For most selector functions S, proving that opt(IS) ≤ rS·opt(I ), for every instance
I of the p-MLC-R problem, is difficult because we do not have the optimal solutions
at hand. Instead we establish a bound for all corridors. That is, we prove that for
every corridor T (I ) with edge-length t(I ) there is a corridor for IS denoted by
T (IS) with edge-length t(IS) ≤ rS · t(I ). Applying this to T (I ) = OPT(I ) we know
that there is a corridor T (IS) such that t(IS) ≤ rS · opt(I ). Since opt(IS) ≤ t(IS),
we know that opt(IS) ≤ rS · opt(I ).

We discuss several selector functions in the next section. For all of these selector
functions, rS cannot be bounded above by a constant. However, we will identify
some important characteristics of selector functions that will enable us to come up
with one for which rS can be bounded above by a constant (Section 5).

4. Selector Functions

In this section we consider several different basic selector functions S. We show
that incorporating them into our parameterized algorithm Alg(S) does not result in
constant ratio approximations. These facts point us in the direction of a method
for selecting a set of points called special points. Special points will turn out to be
very important when combined with other critical points to generate constant ratio
approximation algorithms (Section 5).

4.1. SELECTING THE FOUR CORNERS. Consider the selector function S(4C)
that identifies from each rectangle Ri its four corners C(Ri ), that is, the four critical
points for Ri are its corner points. Clearly, kS(4C) = 4. We now show that rS(4C)
cannot be bounded above by a constant. Thus the resulting parameterized algorithm
Alg(S(4C)) is not a constant ratio approximation algorithm. To prove this we give
a family of problem instances with parameter j such that rS(4C) is proportional to
j , and j can be made arbitrarily large.

Consider the j-layer family of instances I ( j) of the p-MLC-R problem repre-
sented in Figure 3. The rectangle F has width 4 and height ε << 4. The point p is
the top-right corner of F . The rectangle F is partitioned into j layers of rectangles.
Layer i = 1 is formed by two rectangles of size ( ε

2 − δ) × 2, above three rectangles
with (very tiny) height δ and width 1, 2, and 1, respectively (see the bottom part
of Figure 3). The rectangle in layer 1 with height δ and width 2 is colored gray.
Layer i + 1 consists of two copies of layer i scaled by 50% laid side by side and
placed on top of layer i (see Figure 3). In other words, layer 2 has four rectangles
of size ( ε

4 − δ
2 ) × 1, above two sets of three rectangles each with (very tiny) height

δ
2 and width 1

2 , 1, and 1
2 , respectively. The two rectangles in layer 2 with height
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FIG. 3. Optimal solution OPT(I ( j)) for the family of instances I ( j) of the p-MLC-R problem.

δ
2 and width 1 are colored gray. In general, layer i ≥ 1 has 2i rectangles of size
( ε

2i − δ
2i−1 ) × 4

2i above 2i−1 sets of three rectangles each of (very tiny) height δ
2i−1

and width 1
2i−1 , 1

2i−2 , and 1
2i−1 , respectively. The 2i−1 rectangles in layer i with height

δ
2i−1 and width 1

2i−2 are colored gray.
An optimal solution OPT(I ( j)) of the j-layer family of problem instances I ( j)

is given by the thick black lines in Figure 3. The total edge-length of the optimal
corridor OPT(I ( j)) is given by

opt(I ( j)) = 4+2(ε−δ)+20

(
ε

20
− δ

20

)
+21

(
ε

21
− δ

21

)
+. . .+2 j−1

(
ε

2 j−1
− δ

2 j−1

)
.

Thus, opt(I ( j)) = 4 + ( j + 2)(ε − δ).
It is simple to show that in an optimal solution for instance IS(4C)( j) of the

p-MLC-RS(4C) problem, denoted by OPT(IS(4C)( j)), there must be a segment of
length 1 to connect a corner point of the gray rectangle in layer 1, there must be two
segments of length 1

2 to connect a corner point of the two gray rectangles in layer 2,
and so on. Furthermore all of these segments must be distinct. Therefore, the total
length of OPT(IS(4C)( j)) is opt(IS(4C)( j)) > j and the ratio rS(4C) = opt(IS(4C)( j))

opt(I ( j)) is

greater than j
4+( j+2)(ε−δ) . Making δ and ε approach zero, the ratio is about j

4 , and j
can be made arbitrarily large.

Let S(F4C) be a function that identifies fewer corners than S(4C) for each
rectangle. It is simple to see that by using the same example, our parameterized
algorithm Alg(S(F4C)) has an approximation ratio that cannot be bounded above
by any constant.

4.2. SELECTING k POINTS AT RANDOM. Randomization is a powerful technique
to generate near-optimal solutions to some problems. Lets apply it to restrict the
sets V (Ri ). Consider the selector function S(Rk) that identifies randomly at most
k ≥ 1 critical points among the vertices of each rectangle. If k = 7 the example
given in Figure 3 will have opt(IS(Rk)) = opt(I ( j)) because every rectangle has at
most 7 vertices. Actually, one can show that opt(IS(Rk)) = opt(I ( j)) holds even
when k = 5. However, there is a large set of problem instances for which the
parameterized algorithm Alg(S(Rk)) does not generate solutions with an expected
approximation ratio bounded above by a constant. These instances include the
problem instances given in Figure 3 after stacking k rectangles at every rectangle
on the left and right sides of all the gray rectangles [Gonzalez-Gutierrez and
Gonzalez 2007a].
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4.3. SELECTING A SET OF SPECIAL POINTS. Considering the family of instances
given in Figure 3, the only “good” selector functions S for our parametrized
algorithm are those that include for every gray rectangle its middle point as a
critical point. We call these points special points, and we formally define them
shortly. For the definition of special point, assume that “rectangle” R0, which is
just point p, is included in R, and p is said to be a corner of R0. Depending on the
selector function S, a subset of the corner points C(Ri ) are called the fixed points
F(Ri ) of rectangle Ri . Now, the set of critical points consists of the union of the
disjoint sets of fixed points and special points.

The middle point of each gray rectangle in Figure 3 has the minimum connectivity
distance property. By this we mean, in very general terms, that if given all partial
corridors that do not include a point from rectangle Ri , but include points from
all other rectangles, then a special point of Ri is a vertex in V (Ri ) that is not
in F(Ri ), and the maximum edge-length needed to connect it to each one of the
partial corridors is least possible. Finding special points in this way is in general
time consuming. Also, this definition is not valid for all problem instances as the set
of partial corridors, where every corridor includes vertices from all the rectangles
except from Ri , may be empty. In what follows we define special points precisely
for all problem instances in a way that is computationally easy to identify a set
of special points for each rectangle. Special points are identified using an upper
bound on the connectivity distance.

Given that we have selected a set F(Ri ) of fixed points for each room (rectangle)
Ri , we define a special point as follows. Let u ∈ V (Ri ) and let Tu be a tree of
shortest paths rooted at u to all other vertices (

⋃
j �=i V (R j )) along the edges of

rectangle F and the edges of the rooms. Let SP(u, v) be the length of the (shortest)
path from vertex u to vertex v along Tu . Let FP(u, R j ) be the length of the (shortest)
path from point u ∈ V (Ri ) to the “farthest” vertex of rectangle R j along Tu , for
i �= j , that is,

F P(u, R j ) = maxv∈V (R j ){S P(u, v)|u ∈ V (Ri ), j �= i}.
In other words, the edge-length needed to connect vertex u of room Ri to any
corridor through the connection of room R j is at most FP(u, R j ).

We define the connectivity distance CD(u, R) of vertex u in room Ri as

min j �=i {F P(u, R j )|R j ∈ R}.
If F(Ri ) ⊂ V (Ri ) we define the connectivity distance CD(Ri , R) of room Ri as

minu∈V (Ri )\F(Ri ){C D(u, R)}.
In other words, CD(Ri , R) is the edge-length needed to connect some specific
vertex in V (Ri )\F(Ri ) to any corridor through the connection of another room. The
special point of Ri is a vertex u ∈ V (Ri )\F(Ri ) such that CD(u, R) = CD(Ri , R).
Notice that there may be more than one point satisfying this condition, in which
case we select any of these points as the special point. When F(Ri ) = V (Ri )
then there is no special point. It is important to remember that for the definition of
special point, R0 which is simply p is included in R.

Consider now the selector function S(+) that identifies one special point from
each room Ri . The special point for Ri is referred to as SpPi . In this case, F(Ri ) is
the empty set. For the problem instance given in Figure 3, opt(I ( j)) = opt(IS(+)( j)).
However, as we shall see shortly, this property does not hold in general. Consider the
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FIG. 4. Family of instances I ( j) of the p-MLC-R problem.

j-layer family of instances I ( j) of the p-MLC-R problem given in the Figure 4(a),
where the height h of F is very small compared to its width w . The rectangle F
is partitioned into j layers of rectangles. Each layer is formed by one rectangle
of size w × δ on top of two rectangles, each of size w

2 × δ, where 2 jδ = h. An
optimal solution is represented by the thick black lines in Figure 4(a), and its total
edge-length opt(I ( j)) = w + 2(h − δ). The special point of each gray rectangle
is either its top-right or bottom-right corner. An optimal solution for the instance
IS(+) must include a segment from a rightmost corner of each gray rectangle to the
left- or right-hand side of rectangle F . The total edge-length of the optimal solution
for the instance IS(+) is opt(IS(+)) = j w

2 + h − δ. Making δ and h approach zero,

the ratio opt(IS(+))
opt(I ( j)) is about j

2 , and j can be made arbitrarily large. Therefore, rS(+)

is not bounded above by any constant. Thus, the restriction S(+) does not result in
constant ratio approximations.

The selector function S(K+) consisting of k > 1 special points from each
rectangle does not result in constant ratio approximations. There are many instances
that show that the ratio rS(K+) is not bounded by any constant. These instances
include the problem instances given in Figure 4 after stacking k rectangles at every
rectangle on the right side of each of the gray rectangles [Gonzalez-Gutierrez and
Gonzalez 2007a].

4.4. SELECTING TWO ADJACENT CORNERS AND ONE SPECIAL POINT. The
case for S(2AC+) having as critical points two adjacent corners and a special
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point does not result in a constant ratio approximation, that is, kS(2AC+) is 3, but
rS(2AC+) is not bounded above by a constant. The same family of instances of
the p-MLC-R problem given in the previous subsection can be used to establish
this claim [Gonzalez-Gutierrez and Gonzalez 2007a]. Obviously, the case for S
consisting of one corner and one special point does not result in constant ratio
approximations.

5. Constant Ratio Approximation Algorithms

In this section we present two selector functions that result in constant ratio ap-
proximations for the parameterized algorithm. These approximations turn out to
be the first two polynomial-time constant ratio approximation algorithms for the
p-MLC-R problem and, by Theorem 2.1, for the MLC-R problem.

Our approach is motivated by two facts. First, the family of instances of the
p-MLC-R problem given in Figure 3 suggests the selection of one special point,
if any, from each rectangle Ri . Second, the family of instances of the p-MLC-R
problem discussed in Sections 4.3 and 4.4 suggest the need of at least two opposite
corners of each rectangle Ri .

We have analyzed the two most promising approaches. The first approach con-
sists of the selection of two opposite corners and one special point from each
rectangle Ri . The second one consists of the selection of the four corners and one
special point from each rectangle Ri . Both approaches result in algorithms with
identical approximation ratios. As it turns out, the analysis for the first approach
is considerably easier than the second one. In Section 5.2 we discuss and prove
that the first approach results in a constant ratio approximation. In Section 5.3 we
briefly sketch the analysis for the second approach. In Section 5.1 we define new
terms that are used extensively throughout this section.

5.1. PRELIMINARIES AND DEFINITIONS. Let T (I ) be a corridor for instance I of
the p-MLC-R problem and let S(2OC+) = {TR, BL, SpP} be the selector function
that identifies from each rectangle the top-right and bottom-left corners, and a
special point. Now, overlap the corridor T (I ) with the rectangles in R. All the
rectangles that do not have a critical point along the corridor are called no-critical-
point-exposed rectangles (ncpe rectangles). The remaining rectangles are called
critical-point-exposed rectangles (cpe rectangles). Notice that the definition of the
ncpe rectangles depends on the points selected by the selector function S(2OC+).
Figure 5 shows an instance I of the p-MLC-R problem with a corridor T (I ) and
all the ncpe rectangles defined by using the selector function S(2OC+) (the cpe
rectangles are omitted).

We say that the edges of the ncpe rectangle ni are the line segments consisting
of {BRi } ∪ Pr

i , {BRi } ∪ Pb
i , {TLi } ∪ Pl

i , or {T Li } ∪ Pt
i , where BRi and TLi are the

bottom-right and top-left corners of Ri , respectively; and Pr
i , Pb

i , Pl
i , and Pt

i are
the right, bottom, left, and top side of Ri , respectively. Note that Pr

i , Pb
i , Pl

i , and
Pt

i do not include the corners of Ri .
Let τ be the counterclockwise tour of corridor T (I ). This tour starts at the access

point p moving in the counterclockwise direction with respect to p on the exterior
of F . Then τ traverses the edges of the corridor without “crossing” it and ends again
at the access point p. The tour τ associated to the corridor T (I ) of the instance
I given in Figure 5 is shown in Figure 6. The counterclockwise direction of τ is
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FIG. 5. Corridor T (I ) and ncpe rectangles defined by S(2OC+) = {TR, BL, SpP} for an instance I
of the p-MLC-R problem.

pointed out by the circular arrow at the p-access point. Note that there exists a
clockwise tour that traverses the corridor in the opposite direction of τ .

Consider now the instance I of the p-MLC-R problem given in Figure 7(a),
where τ visits first all the rectangles located below and to the right of T (I ) and
then the ones above and to the left of T (I ). For complex corridors we do not have a
consistent pattern of “below” before “above” or vice versa. For example, rectangle
Ri is visited before rectangle R j by the tour τ of Figure 7(b), which begins on the
top part at the access point p in the counterclockwise direction (as pointed out by
the arrow). The first point where Ri is visited by τ is wi and the first point where
R j is visited by τ is w j . For our instance of Figure 5, the numbers inside the ncpe
rectangles denote the order in which they are visited by the counterclockwise tour
τ given in Figure 6.

Lets mark the tour τ at the first point where each ncpe rectangle is visited for
the first time. The order in which the ncpe rectangles are first visited is called the
canonical order of the ncpe rectangles. Rename the ncpe rectangles according to
this canonical order as VR = {n1, n2, . . . , nq}. For example, in Figure 7(b), n1 is Ri
and n2 is R j . For 1 ≤ i ≤ q, we define the reaching point RPi of the ncpe rectangle
ni as the first point in the ncpe rectangle ni visited by the tour τ ; and the leaving
point LPi of the ncpe rectangle ni as the last point in the ncpe rectangle ni visited
by τ before it visits the reaching point RPi+1 of rectangle ni+1 (see Figure 8). For
convenience we add the points LP0 and RPq+1 which correspond to the access point
p = R0.
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FIG. 6. Counterclockwise tour τ for corridor T (I ).

Let τ (Z1, Z2) be the path along tour τ from the point Z1 to the point Z2, where
Z1, Z2 ∈ {LP0, L P1, . . . , LPq, RP1, . . . , RPq+1} and Z1 appears before Z2 on the
tour τ . For 0 ≤ i ≤ q, let li be the length of the path τ (LPi , RPi+1). Let h j be the
length of the path τ (RP j , LP j ), for 1 ≤ j ≤ q. Figures 7(a) and 8(a) show line
segments of length li and h j for a set of ncpe rectangles.

By using the shortest path along the portion of the corridor T (I ) from LPi to
RPi+1, we define the exit point Xi of ncpe ni and the entry point Yi+1 of ni+1 as
the intersection of the shortest path with the edges of ni and ni+1, respectively. For
convenience we also add the points X0 and Yq+1 which correspond to the access
point p. For i < j we define T (Xi , Y j ) as the shortest path along the corridor T (I )
from the exit point Xi to the entry point Y j , and t(Xi , Y j ) denotes its total edge-
length. It is simple to prove that t(Xi , Yi+1) ≤ li for 0 ≤ i ≤ q, and t(Yi , Xi ) ≤ hi
for 1 ≤ i ≤ q (see Figure 8).

5.2. SELECTING TWO OPPOSITE CORNERS AND ONE SPECIAL POINT. In this
subsection we analyze the parameterized algorithm Alg(S) when each set V (Ri )
is restricted to two opposite corners and one special point by the selector function
S(2OC+). Without loss of generality, we select the top-right and bottom-left
corners as the two opposite corners. Clearly kS(2OC+) = 3, and we will prove later
on that rS(2OC+) = 5. By Theorem 3.1 this results in an approximation ratio 30 for
the parameterized algorithm.

THEOREM 5.1. For every instance I of the p-MLC-R problem, the parame-
terized algorithm Alg(S(2OC+)) generates, in polynomial time with respect to the
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FIG. 7. Two sets of ncpe rectangles and tour τ for corridor T (I ).

total number r of rectangles in the partition of F, a corridor of length at most
30 · opt(I ).

PROOF. By the preceding discussion. The time complexity of the algorithm is
the one for Slavik’s algorithm [Slavik 1997, 1998], which is bounded above by a
polynomial in terms of the number of rectangles.

By applying Theorem 2.1 we know that selecting the best corridor generated
by the parameterized algorithm Alg(S(2OC+)), when executing it with every
point p being a vertex located along the boundary of F , results in a constant
ratio approximation algorithm for the MLC-R problem. We call this algorithm the
general parameterized algorithm ALG(S(2OC+)).
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FIG. 8. Corridor T (I ) and tour τ visiting three ncpe rectangles.

COROLLARY 5.1. The general parameterized algorithm ALG(S(2OC+)) gen-
erates a corridor of length at most 30 · ov(I ) for every instance I of the MLC-R
problem, where ov(I ) is the edge-length of a minimum-length corridor for problem
instance I .

PROOF. By the preceding discussion.

In order to establish our result that the parameterized algorithm with S(2OC+)
is a constant ratio approximation algorithm we need to prove Theorem 5.2. This
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theorem uses Lemma 5.4 where we show that for each ncpe rectangle ni one can
connect one of its critical points to the corridor by adding line segments of length
at most li−1 + hi + li .

THEOREM 5.2. Given any corridor T (I ) of length t(I ) for any instance I of
the p-MLC-R problem, there is a corridor for instance IS(2OC+) of the p-MLC-
RS(2OC+) problem with edge-length t(IS(2OC+)) < 5 · t(I ).

PROOF. By Lemma 5.4, which we establish shortly, the corridor T (I ) can be
extended to reach a critical point of each ncpe rectangle ni by adding a set of line
segments of length at most li−1 + hi−1 + hi . Adding all of these terms we know
that the total length of the line segments that need to be introduced is at most
l0 + ∑q

j=1 h j + 2
∑q−1

j=1 l j + lq < 4t(I ), since
∑q

j=0 l j + ∑q
j=1 h j = |τ | = 2t(I ),

and |τ | represents the total edge-length of τ (see Figure 7(a)). Therefore, the
total length of the additional line segments plus the length of the corridor T is
less than 5t(I ). So the resulting corridor T (IS(2OC+)) has edge-length t(IS(2OC+))
< 5t(I ).

To complete the proof of our claims we need to prove that a critical point of ncpe
rectangle ni can be connected to the corridor by adding line segments of length at
most li−1 +hi + li (Lemma 5.4). The proof of Lemma 5.4 is based on the following
general approach. First we define a special type of turns in paths, which is called an
inversion of direction (or simply iod-subpaths) of a path. Iod-subpaths are vertical
or horizontal. We then define the beam of an iod-subpath as the set of points that
are “visible” from an iod-subpath. A path is said to be type-1 if it has vertical and
horizontal iod-subpaths, otherwise it is said to be type-2. In Lemma 5.1 we establish
that if a path has both vertical and horizontal iod-subpaths, then it has two adjacent
ones whose beams intersect. When this condition holds, we can show that there is
at least one rectangle in R that is completely inside the “region” of the adjacent
iod-subpaths (Lemma 5.2). This property is used to establish that from either end
of the path that includes the adjacent iod-subpaths, or from a point which we call
the bifurcation point to one of the iod-subpaths, there exist rectangles completely
inside the region of the adjacent iod-subpaths. At least one of these rectangles has
its bottom-side (right-side) completely overlapping with the path between the two
adjacent iod-subpaths (Lemma 5.3).

Lemmas 5.1, 5.2, and 5.3 are used to prove Lemmas 5.4, 5.5, 5.6, and 5.8.
The idea behind the proof of Lemma 5.4 is to examine the paths T (Xi−1, Yi ) and
T (Xi−1, Yi+1) neighboring ncpe rectangle ni . These paths will be labeled either
type-1 or type-2 depending on some of their properties. If T (Xi−1, Yi ) (respectively,
T (Xi−1, Yi+1)) is type-1 then in Lemma 5.5 (respectively, Lemma 5.6) we show,
by using Lemma 5.3, that the special point in ni can be connected to the corridor
by adding line segments of length at most li−1 (respectively, li−1 + hi + li ). For
the remaining case, we characterize the form of the type-2 paths T (Xi−1, Yi ) and
T (Xi−1, Yi+1) (Lemma 5.7). Then in Lemma 5.8 we use this characterization to
show that the path T (Yi , Yi+1) is type-1, and we show that the special point of
ni can be connected to the corridor by adding line segments of length at most
li−1 + hi + li .

We need to introduce additional notation and establish preliminaries results
(Lemmas 5.5–5.8) before we formulate Lemmas 5.1–5.4. As we traverse the path
T (Xi , Y j ) from Xi to Y j we identify a sequence of alternating horizontal and
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FIG. 9. Pair of adjacent iod-subpaths.

vertical line segments, s1, s2, . . . , sl , such that the first endpoint of s1 visited is
Xi ; the last endpoint of sk−1 visited coincides with the first endpoint of sk , for
1 < k ≤ l; and the last endpoint of sl visited is Y j . The length of each of these
segments is greater than zero, except when Xi = Y j .

The line segments sk−1 and sk , for 1 < k < l, in path T (Xi , Y j ) are said to be
adjacent. For the path T (Xi , Y j ) we say that the line segment s1 is adjacent to the
edge of ncpe ni where Xi is located if s1 intersects the edge, and s1 and the edge
are perpendicular. We define adjacency for sl and an edge of n j similarly.

An inversion of direction subpath (or iod-subpath) of a path T (Xi , Y j ) and ncpe
rectangles ni and n j , consists of a line segment sk of the path and on each of its two
ends there is either an adjacent edge of ncpe ni or n j , or an adjacent line segment
sk−1 or sk+1; and adjacent line segments and/or portions of the adjacent edges of
ncpe rectangles must be on the same side of sk (i.e., the segments and/or portions
of the edges are on the same side of the line that completely includes sk). The line
segment sk of an iod-subpath is called the central segment and the two adjacent
line segments and/or edges are called the end segments. If the end segments are
vertical then it is a vertical iod-subpath, otherwise it is a horizontal iod-subpath.
Figure 9 shows a vertical (horizontal) iod-subpath labeled pv (ph).

The subpath P ′(pv , ph) between the two iod-subpaths pv and ph of a path
T (Xi , Y j ) consists of all the line segments in the path between the farthest (with
respect to the distance along the path) endpoints of their central line segments (path
from x0 to xk+1 in Figure 9). Two iod-subpaths of a path are said to be adjacent if
the subpath P ′(pv , ph) between them does not contain another iod-subpath.

A vertical iod-subpath pv is said to be to the left of a horizontal iod-subpath
ph if its central segment is completely located to the left of the vertical line that
completely includes the central line segment of ph . A vertical iod-subpath with
portions of its two vertical end segments above its central line segment is called an
up-vertical iod-subpath. If portions of its two vertical end segments are below its
central line segment, the vertical iod-subpath is called down-vertical iod-subpath.
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We define right-horizontal or left-horizontal iod-subpath similarly. The beam of
an iod-subpath consists of all the points visited by the central line segment as we
move it perpendicularly and in the direction of the end segments of the iod-subpath
until it reaches the rectangular boundary F .

We say that point x precedes the point y along a subpath P ′(pv , ph), denoted by
x ≺ y, if x is visited before y when traversing the subpath P ′(pv , ph) from pv to
ph . We now establish a fundamental lemma which will be used extensively in the
proofs of subsequent lemmas.

LEMMA 5.1. If a path (a, b) contains both vertical and horizontal iod-
subpaths, then it contains a vertical iod-subpath adjacent to a horizontal iod-
subpath, and their beams intersect.

PROOF. Suppose we traverse the path from a to b. Since the path contains
vertical and horizontal iod-subpaths, let pfirst

v be the first vertical iod-subpath, and
pfirst

h be the first horizontal iod-subpath. Without loss of generality, assume that
pfirst

v precedes pfirst
h . Let plast

v be the last vertical iod-subpath that precedes pfirst
h .

Assume without loss of generality that plast
v is an up-vertical iod-subpath, and

that as we traverse the path from a to b we will exit plast
v through its right end.

Consider the subpath P ′(plast
v , pfirst

h ). Since there are no iod-subpaths between plast
v

and pfirst
h it must be that as we traverse the path from plast

v to pfirst
h the horizontal

segments are traversed from left to right and the vertical ones are traversed in the
upwards direction, as otherwise there would be a vertical or horizontal iod-subpath
before pfirst

h , which contradicts our earlier assumptions. This means that pfirst
h is a

left-horizontal iod-subpath and the beams of plast
v and pfirst

h intersect.

A pair of adjacent vertical pv and horizontal ph iod-subpaths whose beams
intersect are said to be in canonical form if pv is an up-vertical iod-subpath located
to the left of ph . A proof similar to the one of Lemma 5.1 can be used to show that
as we traverse the subpath P ′(pv , ph) from pv to ph one only moves up and to the
right (see Figure 9). Let L be the leftmost vertical line traced by the beam of pv , and
let T be the topmost horizontal line traced by the beam of ph . The area delineated
by L , P ′(pv , ph) and T is called the region of the canonical iod-subpaths (pv -ph)
and it is specified by r (pv , ph) (see Figure 9).

We say that a rectangle Ri ∈ R is contained by r (pv , ph) if it is completely inside
r (pv , ph). A rectangle Zb ∈ R (Zr ∈ R) is said to be bottom (right) contained if Zb
(Zr ) is contained by r (pv , ph) and its bottom (right) edge is completely contained
by a horizontal (vertical) line segment of the subpath P ′(pv , ph).

Traverse the subpath P ′(pv , ph) from pv to ph . Label the first point x0; label
each corner point visited as c0, x1, c1, x2, . . . , ck−1, xk, ck ; and label the last point
xk+1 (see Figure 9). Let CP = {c0, c1, . . . , ck} and let XP = {x1, x2, . . . , xk}. For
0 ≤ i ≤ k, let Zi ∈ R be the rectangle that has its bottom-right corner on the corner
point ci ∈ CP.

LEMMA 5.2. Given any pair of adjacent vertical (pv) and horizontal (ph)
iod-subpaths in canonical form, there are both a bottom-side contained rectangle
Zb ∈ R and a right-side contained rectangle Zr ∈ R in r (pv , ph).

PROOF. Consider first the case when Z0 has its top-edge above line T . It follows
that Zk has its left edge inside the region r (pv , ph), and Zk is a right-side contained
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FIG. 10. Bottom-side and right-side contained rectangles Zb and Zr .

rectangle (i.e., Zr ). If Zk is bottom-side contained then Zk is both Zb and Zr , and
the lemma follows (see Figure 10(a)).

Otherwise, Zk is not a bottom-side contained rectangle, and its bottom side
extends to the left of the corner point xk (see Figure 10(b)). Let k ′ be the largest
positive integer such that the bottom side of Zl for every l ≤ k ′ is completely
contained by a horizontal segment of P ′(pv , ph). Clearly such an l exists as the
property holds for Z0 but does not for Zk . Since Zk ′+1 extends to the left of the
vertical line with the x-coordinate value of ck ′ , it follows that Zk ′ is in the region
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FIG. 11. Bottom-side and right-side contained rectangles with respect to the points xi ≺ xi+1, where
xi , xi+1 ∈ X P .

r (pv , ph). Thus, Zk ′ is both a right-side and a bottom-side contained rectangle (see
Figure 10(b)). Therefore both types of contained rectangles exist in r (pv , ph).

Similar arguments can be used for the case when the top-edge of Z0 is not above
line T .

LEMMA 5.3. For a pair of adjacent vertical (pv) and horizontal (ph) iod-
subpaths in canonical form, and two points xi ≺ xi+1 along P ′(pv , ph), where
xi , xi+1 ∈ X P, there exist both a bottom-side contained rectangle Zb and a right-
side contained rectangle Zr either: (a) along the path from pv to xi+1, or (b) along
the path from xi to ph. Furthermore, these rectangles have their bottom-right
corner point coincide with a point in C P.

PROOF. Consider the corner point ci ∈ C P such that xi ≺ ci ≺ xi+1. It is
easy to see that if Zi has its top and left edges bounded by horizontal and vertical
lines overlapping the points xi+1 and xi , respectively, then Zi is vertically and
horizontally contained, and it is along both paths from pv to xi+1 and from xi
to ph (see Figure 11(a)). Assume now that the top edge of rectangle Zi is above
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the horizontal line overlapping the point xi+1. It then follows that the right edge
of rectangle Zi and the path from xi+1 to ph produce an up iod-subpath2 (see
Figure 11(b)). Therefore, both horizontal and vertical iod-subpaths exist along the
path from xi+1 to ph . By Lemma 5.2 we know that there exist both a bottom-side
and a right-side contained rectangles. Furthermore, these rectangles are on the path
from xi+1 to ph and consequently on the path from xi to ph . Therefore the lemma
follows. The remaining case is when the left edge of rectangle Zi is on the left side
of the vertical line overlapping the point xi (see Figure 11(c)). Similar arguments
to the previous case can be used to show that there exist both horizontally and
vertically contained rectangles on the path from pv to xi and consequently on the
path from pv to xi+1, and the lemma follows.

Consider the ncpe rectangles ni−1, ni , and ni+1. By reflexion (with respect to the
axis x , and y intersecting the central point of ni ) and rotations (of 90, 180, and 270
degrees with respect to the axis that is perpendicular to the plane passing through
the central point of ni ), we know that we only need to consider the case when the
exit point Xi−1 either belongs to Pr

i−1 or is the BRi−1 corner. Therefore, in what
follows when we consider a path starting at Xi−1, we assume that Xi−1 is located
at Pr

i−1 ∪ BRi−1. A path is said to be type-1 if it contains vertical and horizontal
iod-subpaths, and type-2 otherwise.

To establish our main result in Theorem 5.2 we need to prove Lemma 5.4.

LEMMA 5.4. For 1 ≤ i ≤ q, it is possible to connect at least one of the critical
points of every ncpe rectangle ni ∈ VR to the corridor, by adding line segments of
length at most li−1 + hi + li .

PROOF. By definition of special points, CD(SpP1, R) = C D(n1, R) ≤ l0, and
CD(SpPq, R) = C D(nq, R) ≤ lq . Therefore, joining SpP1 (SpPq) to its nearest
point in the corridor requires line segments of length at most l0 (respectively,
lq).

Now consider each ncpe rectangle ni for 2 ≤ i ≤ q − 1. The paths T (Xi−1, Yi )
and T (Xi−1, Yi+1) by our previous definitions are either type-1 or type-2. When
T (Xi−1, Yi ) (T (Xi−1, Yi+1)) is type-1, we establish in Lemma 5.5 (Lemma 5.6,
respectively) shortly that ncpe rectangle ni can be joined to the corridor by con-
necting one of its critical points to the nearest point in the corridor by adding
line segments of length at most li−1 + hi + li . The remaining case is when both
T (Xi−1, Yi ) and T (Xi−1, Yi+1) are type-2. In this case we characterize in Lemma
5.7 the path T (Xi−1, Y j ) for j ∈ {i, i + 1} and then we use this characterization in
Lemma 5.8 to prove that rectangle ni can be joined to the corridor by connecting
its critical points to the nearest point in the corridor by adding line segments of
length at most li−1 + hi + li . The proof of the lemma follows from Lemmas 5.5,
5.6, and 5.8 given next.

Let us now proceed with Lemmas 5.5, 5.6, and 5.8 needed for the proof of
Lemma 5.4.

2 Note that since Zi is not an ncpe, the right edge of Zi and the path from xi+1 to ph is not technically
an iod-subpath. However, iod-subpaths may also be defined with cpe rectangles and have the same
properties which are needed to prove the lemma.
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FIG. 12. Type-1 path T (Xi−1, Yi ).

LEMMA 5.5. If path T (Xi−1, Yi ) is type-1, then a critical point of ni can be
connected to the corridor by adding line segments of length at most li−1.

PROOF. By assumption Xi−1 is located at Pr
i−1 ∪ {BRi−1}. Since path

T (Xi−1, Yi ) is type-1 then by Lemma 5.1 we know it has a pair of adjacent ver-
tical and horizontal iod-subpaths (pv and ph) whose beams intersect and are in
canonical form. By Lemma 5.2, the region r (pv , ph) has a bottom-side contained
rectangle Zb ∈ R and a right-side contained rectangle Zr ∈ R (see Figure 12).
We define FPc(xi , Z j ) as the length of the path along a restricted set c of edges
from xi to the farthest point in rectangle Z j . Let c be the restricted set of edges
T (Xi−1, Yi ) plus the bottom edge of Zr . By definition FP(Yi , Zr ) ≤ FPc(Yi , Zr ).
By projecting the bottom edge of Zr to the corridor T (Xi−1, Yi ), we know that
FPc(Yi , Zr ) ≤ t(Xi−1, Yi ) and t(Xi−1, Yi ) ≤ li−1, as we established earlier in pre-
vious section. Therefore, FP(Yi , Zr ) ≤ li−1. By the definition of a special point, the
special point of ni can be connected to its closest point of the corridor by segments
of length at most FP(Yi , Zr ) ≤ li−1 (see Figure 12).

LEMMA 5.6. If path T (Xi−1, Yi+1) is type-1, then a critical point in ni can be
connected to the corridor by adding line segments of length at most li−1 + hi + li .

PROOF. Let X be a point along the path T (Xi−1, Yi ) that is the bifurcation
point of the paths T (Xi−1, Yi+1) and T (Xi−1, Yi ). Since T (Xi−1, Yi+1) is type-1,
then applying similar arguments as in the proof of Lemma 5.5, we know that the
path T (Xi−1, Yi+1) has a pair of adjacent vertical and horizontal iod-subpaths (pv
and ph) whose beams intersect. By Lemma 5.2, the region r (pv , ph) has both
a bottom-side contained rectangle Zb ∈ R and a right-side contained rectangle
Zr ∈ R (see Figures 13 and 14). If the bifurcation point X is located in the portion
of the path T (Xi−1, Yi+1) that is not included in the path from x0 to xk+1, then a
proof similar to the one for Lemma 5.5 can be used to show that the special point of
ni can be connected to its closest point in the corridor by segments of length at most
FP(Xi , Zb) ≤ li (Figure 13), or FP(Xi , Zr ) ≤ li−1 (Figure 14). Otherwise, X is in
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FIG. 13. Type-1 path T (Xi−1, Yi+1): X is on the left side of subpath P ′(pv , ph).

FIG. 14. Type-1 path T (Xi−1, Yi+1): X is on the right side of subpath P ′(pv , ph).

the path from x0 to xk+1. Suppose that the bifurcation point X is in between x j and
x j+1 in XP. By Lemma 5.2 we know that there are both a bottom-side contained
rectangle Zb ∈ R and a right-side contained rectangle Zr ∈ R in the path from x0
to x j+1, or in the path from x j to xk+1. If there is a bottom-side contained rectangle
Zb (Zr ) whose bottom-side (right-side) is between a pair of corners c j+1, . . . , ck
(c0, . . . , c j−1), then arguments similar to the ones for Lemma 5.5 can be used to
show that FP(Xi , Zb) ≤ li (FP(Xi , Zr ) ≤ li−1), and therefore the special point of
ni can be connected to its closest point in the corridor by a set of line segments of
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FIG. 15. Type-1 path T (Xi−1, Yi+1): X is along the subpath P ′(pv , ph).

length at most FP(Xi , Zb) ≤ li (FP(Xi , Zr ) ≤ li−1). One can show that the only
remaining case is when the rectangle Z j (the one with bottom-right corner at c j )
is both a bottom-side and right-side contained rectangle. In this case we can easily
show that FP(Xi , α) is at most li + hi + li+1, where α is any point (as indicated
in Figure 15) along the edges of Z j where the corridor reaches it. Therefore the
special point of ni can be connected to its closest point in the corridor by a set of
line segments of length at most FP(Xi , Z j ) ≤ li−1 + hi + li (see Figure 15). This
concludes the proof of the lemma.

Consider the case when both T (Xi−1, Yi ) and T (Xi−1, Yi+1) are type-2 paths.
Before we prove Lemma 5.8, we need to characterize type-2 paths and establish
some important properties. Since both T (Xi−1, Yi ) and T (Xi−1, Yi+1) are type-2
paths, then path T (Xi−1, Y j ), for j ∈ {i, i + 1}, does not have both a vertical and
a horizontal iod-subpath. A path is said to be type-V , type-H , or type-N when it
has only vertical iod-subpaths, only horizontal iod-subpaths, or no iod-subpaths,
respectively. A type-V path is said to be type-VMR if traversing each segment of
the path from Xi−1 to Y j takes us up, down, or right. A type-H path is said to be
type-HMD if traversing each segment of the path from Xi−1 to Y j takes us left,
right, or down. A type-N path is said to be type-ND if traversing each segment of
the path from Xi−1 to Y j takes us right or down, and Xi−1 �= Y j ; and type-ND1, if
Xi−1 = Y j .

LEMMA 5.7. A type-2 path T (Xi−1, Y j ), for j ∈ {i, i + 1}, is of one of the
following forms:
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(1) Path T (Xi−1, Y j ) is type-VMR, Xi−1 ∈ Pr
i−1 ∪ {BRi−1} and the entry point

Y j ∈ Pl
j ∪ {TL j }.

(2) Path T (Xi−1, Y j ) is type-HMD, Xi−1 = B Ri−1, and the entry point Y j ∈
Pt

j ∪ {TL j }.
(3) Path T (Xi−1, Y j ) is type-ND, Xi−1 = B Ri−1 and the entry point Y j = TL j .
(4) Path T (Xi−1, Y j ) is type-ND1, consists of only one point, Xi−1 = Y j and

Xi−1 ∈ Pr
i−1 ∪ {BRi−1}, and Y j ∈ Pl

j ∪ {TL j }.
PROOF. By assumption Xi−1 is located at Pr

i−1 ∪ {BRi−1}. There are four cases
depending on the type of the path T (Xi−1, Y j ).

Case 1. Path T (Xi−1, Y j ) is type-V .
By definition the path has vertical iod-subpaths. While traversing the path from

Xi−1 to Y j , if a horizontal segment is traversed in the left direction, then there will
be a horizontal iod-subpath contradicting that T (Xi−1, Y j ) is a type-2 path. So as
we traverse T (Xi−1, Y j ) from Xi−1, horizontal segments are traversed from left to
right and the vertical segments are traversed in either direction. So the alternatives
for Y j are from Pl

j ∪ Pt
j ∪ Pb

j ∪ {TL j , BR j }. However, if Y j ∈ Pt
j ∪ Pb

j ∪ {BR j },
then there is a horizontal iod-subpath, contradicting that the path T (Xi−1, Y j ) is
type-2. It must then be that Y j ∈ Pl

j ∪ {TL j }. Therefore, the path T (Xi−1, Y j ) is
type-VMR (see Figure 16(a)3).

Case 2. Path T (Xi−1, Y j ) is type-H .
Since the path has at least one horizontal iod-subpath and the path is type-2, it

must be that Xi−1 = BRi−1 and as we traverse the path T (Xi−1, Y j ) from Xi−1 to
Y j , all its vertical segments are traversed in the downward direction. The horizontal
segments of T (Xi−1, Y j ) are traversed in either direction. So the alternatives are
that Y j is located in Pt

j ∪ Pl
j ∪ Pr

j ∪{TL j , BR j }. However, if Y j ∈ Pl
j ∪ Pr

j ∪{BR j },
then there is also a vertical iod-subpath, contradicting that T (Xi−1, Y j ) is type-2.
It must then be that Y j ∈ Pt

j ∪ {T L j }, and the path T (Xi−1, Y j ) is type-HMD (see
Figure 16(b)).

Case 3. Path T (Xi−1, Y j ) is type-N and Xi−1 �= Y j .
Since the path has no iod-subpaths, it must be that Xi−1 = BRi−1, and as

we traverse the path T (Xi−1, Y j ) from Xi−1 to Y j , all its vertical segments are
traversed in the downward direction. It cannot be that a horizontal line segment
of T (Xi−1, Y j ) is traversed from right to left because that would mean there is
a horizontal iod-subpath, contradicting that T (Xi−1, Y j ) is a type-N path. Thus,
as we traverse the path T (Xi−1, Y j ) from Xi−1 to Y j , the segments are tra-
versed in the downward and rightward direction. If Y j ∈ Pt

j ∪ Pl
j , a horizontal

or vertical iod-subpath is formed, contradicting that T (Xi−1, Y j ) is type-N. It
must then be that Y j = TL j . Therefore, the path T (Xi−1, Y j ) is type-ND (see
Figure 16(c)).

3 Thick edges and filled circles in the corners of ncpes indicate valid connection points between the
corridor T (Xi−1, Y j ) and the ncpe rectangles. Unfilled circles in the corners of ncpes indicate invalid
connection points between the corridor T (Xi−1, Y j ) and ncpes (because of the definition of ncpe
rectangles).
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FIG. 16. Possible path types for T (Xi−1, Y j ).

Case 4. Path T (Xi−1, Y j ) is type-N and Xi−1 = Y j .
If Xi−1 ∈ Pr

i−1 ∪ {BRi−1} then Y j ∈ Pl
j ∪ {TL j }, and if Xi−1 = BRi−1 then

Y j = TL j . So the path is type-ND1 (see Figure 16(d)).

LEMMA 5.8. If paths T (Xi−1, Yi ) and T (Xi−1, Yi+1) are type-2, then a critical
point of ni can be connected to the corridor by adding line segments of length at
most li−1 + hi + li .

PROOF. By assumption Xi−1 is located at Pr
i−1 ∪ {BRi−1}. Since paths

T (Xi−1, Yi ) and T (Xi−1, Yi+1) are type-2 then by Lemma 5.7 they can only
be type VMR, HMD, ND, or ND1. On the path T (Xi−1, Yi+1), let X be the

ACM Transactions on Algorithms, Vol. 6, No. 3, Article 56, Publication date: June 2010.



56:28 A. GONZALEZ-GUTIERREZ AND T. F. GONZALEZ

FIG. 17. Connection of ncpe rectangle ni along the path T (Xi−1, Yi+1) of type-VMR: (a)-(c) X =
Yi = TLi , (d)-(e) X = Yi ∈ Pl

i .

FIG. 18. Bifurcation point X of paths T (Xi−1, Yi+1) and T (Xi−1, Yi ), both of type-VMR.

bifurcation point where the paths T (Xi−1, Yi ) and T (Xi−1, Yi+1) break into two
(see Figures 13, 14, and 15), or where T (Xi−1, Yi ) ends (i.e., X = Yi ) or where
T (Xi−1, Yi+1) ends (i.e., X = Yi+1). We will show that the path T (Yi , Yi+1) is
type-1. There are four cases depending on the type of the path T (Xi−1, X ).

Case 1. Path T (Xi−1, X ) is type-VMR. Clearly, both T (Xi−1, Yi ) and
T (Xi−1, Yi+1) are also type-VMR paths. Therefore, the paths T (X, Yi ) and
T (X, Yi+1) are type-VMR, type-ND, or type-ND1. There are three cases depend-
ing on X : (a) X = Yi , (b) X = Yi+1, and (c) X �= Yi and X �= Yi+1. For case
(a) (X = Yi ) when Yi = T Li the first two4 (or three) segments of T (X, Yi+1)
form a horizontal iod-subpath with Pt

i (see Figure 17(a)–(c)). When Yi ∈ Pl
i the

first two (or four) segments of T (X, Yi+1) form a horizontal iod-subpath with Pt
i

(see Figure 17(d)–(e)). Applying similar arguments for case (b) (X = Yi+1), we
know that T (X, Yi ) has a horizontal iod-subpath. For case (c) (when X �= Yi
and X �= Yi+1), the first two segments of T (X, Yi ) and the first two segments of
T (X, Yi+1) form a horizontal iod-subpath in T (Yi , Yi+1) (see the three cases in
Figure 18). Thus, if T (X, Yi ) or the T (X, Yi+1) is a type-VMR path and there exists

4 In the proof of this lemma we state that there are several segments in a path. We do not give a proof
of this because it is straightforward when we use the edge of the ncpe rectangle at the end of the path.
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FIG. 19. Bifurcation point X of paths T (Xi−1, Yi+1) and T (Xi−1, Yi ), both of type-ND.

FIG. 20. Connection of ncpe rectangle ni along the path T (Xi−1, Yi+1) of type-HMD: (a)-(c) X =
Yi = TLi , (d)-(e) X = Yi ∈ Pt

i .

a horizontal iod-subpath in T (Yi , Yi+1), then the path T (Yi , Yi+1) is type-1. On
the other hand, since X �= Yi and X �= Yi+1, it must be that both T (X, Yi ) and
T (X, Yi+1) are type-ND. The two segments in the path T (X, Yi ) and the first two
segments in the path T (X, Yi+1) form a horizontal and vertical iod-subpaths (see
Figure 19). Therefore path T (Yi , Yi+1) is type-1.

Case 2. Path T (Xi−1, X ) is type-HMD. Clearly, both T (Xi−1, Yi ) and T (Xi−1, Yi+1)
are type-HMD. Therefore, the paths T (X, Yi ) and T (X, Yi+1) are type-HMD, type-
ND, or type-ND1. There are three cases depending on X : (a) X = Yi , (b) X = Yi+1,
and (c) X �= Yi and X �= Yi+1. For case (a) (X = Yi ) when Yi = T Li the first two
or three segments of T (X, Yi+1) form a vertical iod-subpath with Pl

i (see Figure
20(a)–(c)). When Yi ∈ Pt

i , the first three or four segments of T (X, Yi+1) form also
a vertical iod-subpath with Pl

i (see Figure 20(d)–(e)). Applying similar arguments
for case (b) (X = Yi+1), we know that T (X, Yi ) has a vertical iod-subpath. For
case (c) (when X �= Yi and X �= Yi+1), the first two segments of T (X, Yi ) and the
first two segments of T (X, Yi+1) form a vertical iod-subpath in T (Yi , Yi+1) (see the
three cases in Figure 21). Thus, if T (X, Yi ) or T (X, Yi+1) is a path of type-HMD
and there exists a vertical iod-subpath in T (Yi , Yi+1), then the path T (Yi , Yi+1) is
type-1. On the other hand, since X �= Yi and X �= Yi+1 it must be that both T (X, Yi )
and T (X, Yi+1) are type-ND. The first two segments in path T (X, Yi ) and the first
two segments in path T (X, Yi+1) form a vertical and horizontal iod-subpaths (see
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FIG. 21. Bifurcation point X of paths T (Xi−1, Yi+1) and T (Xi−1, Yi ), both of type-HMD.

Figure 19). Thus T (Yi , Yi+1) has a vertical and horizontal iod-subpaths and there-
fore it is type-1.

Case 3. Path T (Xi−1, X ) is type-ND. Then the paths T (Xi−1, Yi ) and
T (Xi−1, Yi+1) are types VMR, HMD, or ND. Therefore, paths T (X, Yi ) and
T (X, Yi+1) are types VMR, HMD, ND, or ND1. If one of these paths is type-
VMR and the other is type-HMD, then clearly, T (Yi , Yi+1) has a vertical and
horizontal iod-subpaths and it is type-1. So both paths T (X, Yi ) and T (X, Yi+1) are
VMR, ND, or one is ND1; or they both are HMD, ND, or one is ND1. In either
case, arguments similar to the ones for Cases 1 and 2 can be used to establish that
the path T (Yi , Yi+1) is type-1.

Case 4. Path T (Xi−1, X ) is type-ND1. Since ni is visited after ni−1 but before
ni+1, one can show that Xi−1 = X = Yi . Since these two ncpe rectangles share a
point, it must be that at least one of the rectangles has a corner point at point X .
But this corner point cannot be the TR or BL corner as otherwise ni−1 or ni would
not be an ncpe rectangle. So it has to be that one corner point is a TL corner or it
is a BR corner. Since Xi−1 ∈ Pr

i−1 ∪ {BRi−1}, then Xi ∈ Pt
i or Xi = TLi . In either

case, it must be that the path T (X, Yi+1) is type-VMR, containing a vertical iod-
subpath. But a horizontal iod-subpath is formed by the top-edge of ni . Therefore
path T (Yi , Yi+1) is type-1.

In all the cases, there exist both horizontal and vertical iod-subpaths along the
path T (Yi , Yi+1). Now, by Lemmas 5.1, 5.2, and 5.3 we know that there exist both
bottom-side and right-side contained rectangles along T (Yi , Yi+1). Using arguments
similar to those of Lemma 5.5 and the fact that T (Yi , Yi+1) is type-1, one can prove
that a critical point of ni can be connected to the corridor by adding line segments
of length at most li−1 + hi + li . This completes the proof of the lemma.

5.3. SELECTING THE FOUR CORNERS AND ONE SPECIAL POINT. The critical
points in S(4C+) for each rectangle Ri ∈ R are its four corners and a special
point. For this case kS(4C+) = 5 and we can show that rS(4C+) = 3. Therefore, the
approximation ratio of the parametrized algorithm is 30 as in the case of S(2OC+).

We now briefly discuss our proof strategy to show that given any corridor T (I )
there is a corridor T (IS(4C+)) such that t(IS(4C+)) ≤ 3 · t(I ). As in the case of
S(2OC+), given any corridor T (I ) we identify all the ncpe rectangles and establish
an ordering (n1, n2, . . . , nq) between them. Assume there exists at least one ncpe
rectangle (q ≥ 1), otherwise t(IS(4C+)) = t(I ) and the result follows. For each ncpe
we find a shortest path from one of its critical points to the corridor T (I ). We then
select this path to connect a critical point to the corridor T (I ). Clearly after deleting
some edges to remove any cycle that may have been created, corridor T (I ) plus a
subset of these connections give a corridor T (IS(4C+)). Next we need to show that
the sum of the length of the segments introduced is at most 2 · t(I ). This is the part
that is more complex than the one for the selector function S(2OC+).
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FIG. 22. Region types.

We characterize the region between every pair of adjacent ncpe rectangles. The
region between two adjacent ncpe rectangles is said to be of type 0, 1 or 2 (see
Figure 22). The region between ncpe rectangles ni and ni+1 is type-2 (see Figure
22(a)), if the distance along the corridor between ni and ni+1, which we call in
Section 5.1 li , is larger than the edge-length needed to connect both a critical
point from ni and one from ni+1 to the corridor. This is the most desirable case.
If this were to be the case for every pair of adjacent ncpe rectangles the proof of
the approximation ratio would be simple to establish (in fact we would even be
able to establish a better ratio). However, this is not always the case. The region
between ncpe ni and ni+1 is type-1 (see Figure 22(b)), if li is larger than the
edge-length needed to connect either a critical point from ni to the corridor, or
one from ni+1 to the corridor, but not both. If this were the case for every pair
of adjacent ncpe rectangles the proof would also be simple. The main problem
is when the region between ncpe ni and ni+1 is type-0 (see Figure 22(c)). In
this case, the edge-length needed to connect a critical point of either ni or ni+1
cannot be bounded above by li . This is where the proof is complex because we
need to consider a sequence of ncpe rectangles, not just three as in the previous
subsection.

Now suppose that there is a sequence of type-0 adjacent ncpe rectangles as
shown in Figure 23. The connection of the first ncpe rectangle n1 to the corridor
has already been accounted for in l0. Now we need to charge the connection of a
critical point of each ncpe rectangles n2, . . . , n9 to the corridor. The connection
for the ncpe n2 is charged to the horizontal distance from ncpe n1 to ncpe n2, and
the vertical distance from ncpe n2 to ncpe n3 because one can show that the area
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FIG. 23. Sequence of adjacent regions type-0.

includes at least one rectangle already connected to the corridor. Similarly, the
cost of connecting ncpe n3 can be charged to the horizontal distance from ncpe n2
to ncpe n3 and the vertical distance from ncpe n3 to ncpe n4. And so forth until
ncpe n9, where its connection is charged to the corridor after it because there is a
rectangle inside the box in the center of Figure 23.

Other complex cases are given in Figure 24(a)–(b) which indicate how to deal
with the sequence of adjacent rectangles of types 001000 and sequence 00111. By
the sequence Y1Y2 . . . Yk we mean that the first pair of ncpe rectangles is type Y1
and the second pair is type Y2, and so on. There are more critical cases that need
to be considered. It is possible to characterize all sequences that need to be solved,
but it is quite complex. That is why we only present the analysis for the selector
function S(2OC+), which is significantly simpler.

We claim without stating any further details that the approximation ratio of the
parameterized algorithm Alg(S(4C+)) is 30.

6. Additional Results and Discussion

Our approximation algorithm is based on restriction and relaxation techniques. The
analysis of our approximation algorithm applies (with the same time complexity
and approximation ratio) when the boundary of the MLC-R problem is a rectilinear
polygon rather than the rectangle F , or when the problem is to find a tree that is
not necessary joined to the boundary of F .

Our approximation algorithm can also be adapted to the MLCk problem, but
the approximation ratio depends on k. When k is bounded above by a constant,
the algorithm is a constant ratio approximation algorithm. The selector function
S(C+), which includes all the corner points plus other points (defined later on),
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FIG. 24. Assignment of regions between adjacent ncpe rectangles.

and a special point of each rectilinear polygon Ri ∈ R, is more complex. The
idea is to introduce for each rectilinear polygon Ri the least number of horizontal
line segments (all of which are completely inside Ri ) that partition the interior of
Ri into rectangles (see Figure 25). All the corners of these rectangles are on the
boundary of Ri and are the fixed points for Ri . Then we add a special point for
Ri . The total number of critical points for each Ri is at most 3

2 k − 1. Therefore,
kS(C+) = 3

2 k − 1.
We now need to determine rS(C+). The process follows the same lines as the

one for the MLC-R problem. The only difference is when considering the ncpes.
Instead of selecting for each ncpe ni the rectilinear polygon, we just take the
rectangle that the tour intersects first. So the set of ncpes are simply rectangles with
four fixed points. The special point is for the whole rectilinear polygon. We claim
that our analysis for the MLC-R problem also applies for this case. Nonetheless,
it can be simplified since each rectangle includes at least four critical points and
we are just interested in establishing a constant approximation ratio (rather than
a minimal one). Note that the special point is part of only one rectangle. But
since it is associated with the rectilinear polygon, that is enough to carry through
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FIG. 25. Partition of polygon Ri into rectangles by introducing horizontal line segments completely
inside Ri .

our analysis and show that rS(C+) = 5. The approximation bound is therefore
2kS(C+) · rS(C+) = 2 · ( 3

2 k − 1) · 5 = 15k − 10. For k bounded above by a constant,
the approximation ratio is a constant. Note that with a more careful introduction of
critical points we can decrease the approximation ratio. For example, we just need
the bottom-left and top-right corner of each rectangle. But at this point we are only
interested in showing that our approximation algorithm takes polynomial time and
it is a constant ratio approximation algorithm for the MLCk problem.

We have adapted our algorithm (with the same constant ratio) to restricted
versions of the MLC problem, but so far we have not been able to adapt it to
all cases. The existence of a constant ratio approximation algorithm for the MLC
problem remains a challenging open problem. An equally challenging problem
is to develop approximation algorithm for the MLC-R problem with a significant
smaller approximation ratio, for example two.

An interesting open problem is to develop a constant ratio approximation algo-
rithm for the version of the MLC-R problem when not all the rectangles in R need
to access the corridor. This corresponds to the “Steiner” version of the problem,
rather than the “spanning tree” version of the problem which we call the MLC-R
problem. Our analysis does not seem to apply for this case.

When we restrict the MLC-R problem to S(2OC+) or S(4C+), we use Slavik’s
algorithm for the TEC problem to generate a suboptimal solution for the MLC-R
problem instance. This is the most time-consuming part of our procedures. The first
open question is about the development of a faster approximation algorithm for the
MLC-R problem restricted by S(2OC+) or S(4C+). The second open question
has to do with the development of an algorithm for those problems with a smaller
approximation ratio or even one that generates an optimal solution. But since the
MLC-R problem is NP-hard when restricted by S(2OC+) or S(4C+), it is unlikely
one can find an efficient algorithm for its solution. The NP-hardness proof follows
the same lines as the one in Gonzalez-Gutierrez and Gonzalez [2007b], but we
need to do some modifications to show that the the MLC-R restricted to S(2OC+)
(S(4C+)) (i.e., every rectangle must intersect the corridor at a critical point defined
by S(2OC+) (respectively, S(4C+))) is NP-hard.
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The MLC problem (and all its subproblems) can be easily solved in polynomial
time when the objective function is to find a tree such that the maximum length of
the path from the root to a leaf is least possible. A class of interesting open problems
are ones with dual-criteria objective functions, that is, minimize the maximum path
length and minimize the total corridor edge-length. Our algorithm and analysis also
hold for the case when each edge in the graph G(V, E, w) constructed from the
instance (F, R, p) of p-MLC-R problem has an arbitrary weight function rather
than the weight being the distance between the two vertices. For example, the weight
of an edge might be zero so in our application for fiber optics means that a fiber
already exists along the edge. One may also add edges to the graph (constructed
from the instance (F, R, p)) with arbitrary weights that represent points connected
directly by existing fiber in our application. Our results will also carry to this
version of the problem.

A related problem studied by Slavik [1997, 1998] is the Errand Scheduling
(ES) problem. In this case the problem is to find a shortest partial tour visiting
a subset of vertices of the given metric graph G such that at least one vertex in
Ci ⊂ C is in the partial tour, where Ci is associated with the errand i . When each
vertex represents a unique errand, the ES problem is an instance of the well-known
Traveling Salesperson Problem (TSP). Therefore the ES problem is NP-hard. The
ES problem has also been referred to as the group TSP (g-TSP). Slavik [1997, 1998]
shows that the ES problem restricted to metric graphs problem can be approximated
to within 3ρ

2 when each errand can be performed in at most ρ nodes. Another
interesting problem is the group-TSP problem when restricted to rectangles as in
the case of the of the MLC-R problem, which we call the rectangular group-TSP.
In this version of the TSP one may visit the same edge or vertex more than once.

We claim that the same approach that we use for the MLC-R problem can also be
adapted to the rectangular group-TSP. It is simple to show that the selector functions
that do not generate constant ratio approximations for the MLC-R problem do not
generate constant ratio approximations for the rectangular group-TSP. However
the parameterized algorithms using the selector function S(2OC+) also generates
a constant ratio approximation to the group-TSP. In fact we can just use the tour
of the corridor (traversing each edge twice) as the solution to the rectangular TSP
problem. The approximation ratio in this case will be 60 times the length of an
optimal tour. However there is a better algorithm for this case. Instead of using
Slavik’s approximation algorithm for the TEC problem, we use the one for the
ES problem [Slavik 1997, 1998] in the parameterized algorithm. This results in an
algorithm with approximation ratio 3

2 · kS(2OC+) · rS(2OC+), where kS(2OC+) = 3 and
rS(2OC+) = 5, which is 22.5 for the rectangular group-TSP.

The same type of approach used for the MLCk can be used for the rectilinear
c-gon group-TSP (c ≤ k), resulting in a polynomial-time constant ratio approxima-
tion. For brevity we do not discuss additional results. Approximation algorithms
for other versions of the group-TSP problem are discussed in Bodlaender et al.
[2006].
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