
Minimizing Total Completion Time on Uniform Machines

with Deadline Constraints

TEOFILO F. GONZALEZ

University of California, Santa Barbara, Santa Barbara, CA

JOSEPH Y.-T. LEUNG

New Jersey Institute of Technology, Newark, NJ

AND

MICHAEL PINEDO

Stern School of Business, New York University, New York, NY

Abstract. Consider n independent jobs and m uniform machines in parallel. Each job has a processing
requirement and a deadline. All jobs are available for processing at time t = 0. Job j must complete
its processing before or at its deadline and preemptions are allowed. A set of jobs is said to be feasible
if there exists a schedule that meets all the deadlines. We present a polynomial-time algorithm that
given a feasible set of jobs, constructs a schedule that minimizes the total completion time

∑
C j . In

the classical α | β | γ scheduling notation, this problem is referred to as Qm | prmt, d̄ j | ∑
C j . It is

well known that a generalization of this problem with regard to its machine environment results in an
NP-hard problem.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Sequencing and scheduling; G.2.1 [Discrete Mathematics]:
Combinatorics—Combinatorial algorithms

General Terms: Algorithms, Theory, Performance

Additional Key Words and Phrases: Mean flow time, uniform machines, deadline constraints,
polynomial-time algorithms

The work of J. Y.-T. Leung and M. Pinedo was supported in part by the National Science Foundation
(NSF) Grants DMI-0300156 and DMI-0245603, respectively.
Authors’ addresses: T. F. Gonzalez, Department of Computer Science, University of Califor-
nia, Santa Barbara, Santa Barbara, CA 93106, e-mail: teo@cs.ucsb.edu; J. Y.-T. Leung, De-
partment of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, e-mail:
leung@oak.njit.edu; M. Pinedo, Stern School of Business, New York University, New York, NY
10012, e-mail: mpinedo@stern.nyu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1549-6325/06/0100-0095 $5.00

ACM Transactions on Algorithms, Vol. 2, No. 1, January 2006, pp. 95–115.

96 T. F. GONZALEZ ET AL.

1. Introduction

Consider m uniform machines in parallel and n jobs. Machine i has speed vi ,
and v1 ≤ v2 ≤ · · · ≤ vm . Job j has a processing requirement p j and deadline
d̄ j . Preemptions are allowed, i.e., the processing of any job may be interrupted at
any time and resumed immediately on another machine or at a later time on the
same machine or on another machine. Jobs may be preempted any number of times.
However, a job cannot be processed simultaneously on two or more machines. If job
j is processed only on machine i , then the time it spends on machine i is p j/vi . All
jobs are available for processing at time t = 0 and job j must complete its processing
before or at its deadline d̄ j . A set of jobs is said to be feasible if there exists a
schedule that meets all its deadlines; such a schedule is called a feasible schedule.
Given a feasible set of jobs, our objective is to find a schedule that minimizes the
total completion time

∑
C j . In the 3-field notation α | β | γ introduced by Graham

et al. [1979], this problem is referred to as Qm | prmt, d̄ j | ∑
C j .

The special case with m machines and n jobs without deadlines, that is, d̄ j = ∞
for all j , can be solved via the preemptive rule which at any point in time assigns
the job with the smallest remaining processing requirement to the fastest machine.
This rule, which in the literature has been referred to as the SRPT-FM rule, will
always generate a schedule with minimum

∑
C j (see Pinedo [2002]).

Leung and Pinedo [2003] developed for the special case with m identical ma-
chines in parallel, that is, Pm | prmt, d̄ j | ∑

C j , a polynomial-time algorithm
that works in O(mn3 log(mn)) time. Gonzalez [1978] and McCormick and Pinedo
[1995] developed a polynomial-time algorithm for the special case with machines
that have different speeds but where all jobs have a common deadline, that is,
Qm | prmt, d̄ j = d̄ | ∑

C j . As we will see later, the scheduling problem be-
comes more complex when the machines have different speeds and the jobs have
different deadlines. Sitters [2001] showed that the more general problem with un-
related machines, that is, Rm | prmt, d̄ j | ∑

C j is strongly NP-hard, even when
the jobs have no deadline; that is, d̄ j = ∞ for all j . One problem still remains
open, namely Qm | prmt, d̄ j | ∑

C j . Cho and Sahni [1980] developed an efficient
feasibility procedure for this problem that can be used to discard infeasible problem
instances. Therefore, one may assume without loss of generality that the input to
any procedure is a problem instance with at least one feasible schedule.

In this article, we provide a polynomial-time algorithm for Qm | prmt, d̄ j |∑
C j . The algorithmic framework we present is somewhat similar to the frame-

work adopted by Leung and Pinedo [2003] for the case of identical machines. Their
framework is based on two procedures, namely the Scheduling Procedure (SP) and
the Job-Ordering Procedure (JOP). The framework in this article with uniform
machines also consists of two procedures. However, the SP procedure in this ar-
ticle is significantly more complex than the corresponding procedure for identical
machines. The main reason is that in the case of identical machines scheduling
decisions can be made by considering only a subset of the jobs, whereas in the
case of uniform machines one needs to consider all jobs. The proof of correctness
for the identical machine problem involves a triple interchange argument, whereas
the one in this article is more complex and requires what we in what follows
refer to as a massive interchange argument. Our job-ordering procedure for uni-
form machines is similar to the one developed by Leung and Pinedo for identical
machines.

Minimizing Total Completion Time on Uniform Machines 97

This article is organized as follows: In the next section, we outline the framework
for the polynomial-time algorithm for Qm | prmt, d̄ j | ∑

C j . Then, we explain
its main procedures, namely the Scheduling Procedure (SP) and the Job-Ordering
Procedure (JOP). In the subsequent two sections, we prove the various properties
of these two procedures. In the fifth section, we discuss the time complexity of our
algorithm and in the last section we present extensions and conclusions.

Throughout this article, we use the following notation and terminology. We
consider several different types of schedules, namely, complete schedules, partial
schedules, and temporary schedules. A complete schedule specifies the processing
times of all n jobs; such a schedule is denoted by a σ with an appropriate subscript
or superscript. A partial schedule specifies for each one of the n jobs some part
of its processing time, which may be anywhere from zero to its total processing
time; a partial schedule is typically denoted by S with an appropriate subscript or
superscript. Note that not every partial schedule is a complete one, but complete
schedules may also be referred as partial schedules. A temporary schedule is a partial
schedule that is generated in a step of a procedure in order to verify a feasibility
condition and obtain some information; after the verification has been completed
and the necessary information is obtained, the temporary schedule is discarded. A
temporary schedule usually carries a subscript T .

2. The Algorithmic Framework

We assume that we are given a feasible set of jobs. All schedules are assumed to
be feasible unless stated otherwise. Let

D1 < D2 < · · · < Dz

denote the distinct deadlines of the n jobs and let D0 = 0. Every schedule σ induces
a deadline d j (σ) for each job j , where d j (σ) is defined as the smallest Dk with
C j ≤ Dk in σ . If the context is clear, we drop the σ and simply denote the induced
deadline by d j . Note that the induced deadline d j of job j may be smaller than
its original deadline d̄ j . However, every feasible schedule has the property that
d j ≤ d̄ j for each job j .

We motivate our algorithm by asking two key questions. Suppose a “birdie” were
to tell us the induced deadline of each job in an optimal schedule. Having only this
information, can we construct an optimal schedule? Second, how do we get the
information that the “birdie” has? It is clear that the answers to these two questions
immediately provide an algorithm that yields an optimal schedule for our problem.

We proceed with answering the first question. The next lemma shows that if a
short job has an induced deadline that is no later than that of a long job, then the
short job is completed no later than the long job (and possibly earlier). Lemma 1
can be proved via a standard interchange argument.

LEMMA 1. Suppose we have two jobs j and k such that p j ≤ pk. If there is
a schedule σ such that d j (σ) ≤ dk(σ) and C j > Ck, then there exists another
schedule σ ′ with total completion time

∑
C j not larger than that of σ and with job

j completing no later than job k (and possibly earlier).

PROOF. We omit the proof since it is based on a simple interchange
argument.

98 T. F. GONZALEZ ET AL.

Lemma 1 yields a completion sequence in an optimal schedule. That is, jobs with
induced deadlines equal to D1 finish first, in ascending order of their processing
requirements, followed by jobs with induced deadlines equal to D2, in ascend-
ing order of their processing requirements, and so on. Since the jobs finish their
processing in this order, they should also be scheduled in the same order. Thus,
we consider a procedure to schedule the jobs using the list L where the jobs are
ordered according to the given completion sequence. However, there are a huge
number of different schedules that could be generated by such procedure. Our pro-
cedure will schedule the next job in L in such a way that it is completed as early
as possible, with the provision that the remaining jobs in L can meet their induced
deadlines. In Theorem 1, we show that this strategy generates an optimal schedule.
We refer to this procedure as the Scheduling Procedure SP. The input to SP is the
ordering L in which the procedure will try to complete the n jobs while adher-
ing to the current induced deadlines. The output of SP is a complete schedule (if
one exists) with starting times, preemptions and completion times of all n jobs.
However, as we shall see later on, when L is an optimal ordering procedure SP gen-
erates an optimal schedule in which the job completion sequence will be identical
to L .

In this article, we use an interchange argument which we refer to as the massive
interchange argument. Let us give an example on how this argument works by
applying it to show Lemma 1 in another way. First, delete jobs j and k from the
schedule. Wherever those jobs were scheduled, there is idle time now. The idle
time previously assigned to job j from time Ck to time C j is assigned to job k and
the idle time prior to time Ck is partitioned into two disjoint sets of idle times that
are called general virtual machines. As we shall establish later on, one can show
that the two jobs can be scheduled on these virtual machines if their remaining
processing requirements are such that they each fit on the faster one of the two
virtual machines. The beauty of this argument is that we actually do not need to
construct a schedule, we just have to show that one such schedule exists.

Before describing the scheduling procedure, we have to introduce additional
notation. The input of the SP procedure is the list L as well as the current induced
deadlines. Assume that jobs 1, . . . , j − 1 have already been scheduled and jobs
j, j + 1, . . . , n need to be scheduled. Let S denote the partial schedule already
in place (see crossed lines in Figure 1) during the time interval [0, r], where r
is the smallest induced deadline among the jobs j, j + 1, . . . , n. In this partial
schedule, we partition all the idle time during the time interval [0, r] into m groups
and refer to them as virtual machines VM . Virtual machine μl is defined as a
series of consecutive idle time intervals on machines m, m − 1, . . . , 1 (an idle time
interval may have length zero). Virtual machine μl comprises the idle time interval
[bi,l, ei,l] on machine i . The various time segments belonging to μl satisfy the
property ei,l = bi−1,l , e1,l = r , and if ei,l > bi,l , then for every x ∈ [bi,l, ei,l] virtual
machine μk for k < l must include time x on machine k ′ for some k ′ < i . The
processing power of μl is defined as

W (μl) =
m∑

i=1

vi (ei,l − bi,l).

From the above definitions, it follows that for all l < k virtual machine μl has
at least as much processing power as virtual machine k and for every machine i ,

Minimizing Total Completion Time on Uniform Machines 99

FIG. 1. Virtual machines from time 0 to time r .

ei,l ≤ bi,k for all l < k. Our virtual machines are similar to the disjoint proces-
sors introduced by Gonzalez and Sahni [1978] and Gonzalez [1978] for uniform
machines.

Consider a preemptive scheduling problem with m virtual machines; virtual
machine μl has processing power W (μl). Jobs j, j + 1, . . . , n have process-
ing requirements p′

j , p′
j+1, . . . , p′

n , and all jobs have an induced deadline r . By
using the Longest Remaining Processing Time on the Fastest Machine (LRPT-
FM) rule, or equivalently, by using the preemptive scheduling rule similar to
the level algorithm developed by Horvath et al. [1976], which we will refer to
in what follows as the Highest Level algorithm, one can establish the following
lemma. The inequalities in the necessary and sufficient conditions are similar
to those established by Liu and Yang [1974] for feasible schedules on uniform
machines.

LEMMA 2. Consider the preemptive scheduling problem with virtual machine
μl having processing power W (μl), jobs j, j +1, . . . , n having processing require-
ments P ′

j = (p′
j , p′

j+1, . . . , p′
n), and all jobs having an induced deadline r . This

partial scheduling problem has a feasible schedule if and only if
l∑

i=1

xi (P ′
j) ≤

l∑

i=1

W (μi)

for 1 ≤ l ≤ m − 1 and
n∑

i= j

p′
i ≤

m∑

i=1

W (μi),

where xi (P ′
j) is the ith largest value of p′

j , p′
j+1, . . . , p′

n.

PROOF. The proof is omitted since it is a simple application of the Highest
Level algorithm.

We now define some important terms and establish a property that will be used in
subsequent proofs. For a problem instance that satisfies the conditions of Lemma 2,
a virtual machine μq is said to be tight when

∑q
i=1 xi (P ′

j) = ∑q
i=1 W (μi) for

100 T. F. GONZALEZ ET AL.

FIG. 2. Virtual machines from time 0 to time t .

some q < m, or
∑n

i= j p′
i = ∑m

i=1 W (μi). All the jobs involved in a summation
where equality holds are said to be critical. Let virtual machine μq be the smallest
indexed virtual machine that is tight. We claim that either xq(P ′

j) > xq+1(P ′
j), or

xq(P ′
j) = xq+1(P ′

j) and q = 1. Note that q > 1 and xq(P ′
j) = xq+1(P ′

j) can be used
to contradict the assumption that

q+1∑

i=1

xi (P ′
j) ≤

q+1∑

i=1

W (μi).

Consider again the original problem with the virtual machines and take now into
account that the jobs that still need processing may be subject to different deadlines.
As we shall prove later on, an optimal schedule for our original problem is a feasible
schedule in which job j is completed as early as possible, with the provision that
all jobs are completed before or at their deadlines. Our Scheduling Procedure (SP)
schedules job j so that it finishes as early as possible, provided that all remaining
jobs are completed before or at their deadlines. Let the induced deadline of job j
be Dq . We note that the induced deadline of job j is the smallest among the jobs
j, j + 1, . . . , n. Let t be the earliest completion time of job j . Since job j has
induced deadline Dq , it must be that t ≤ Dq or there is no feasible schedule. The
value of t is determined by the procedure MC j (S) which finds the earliest possible
completion time for job j given the partial schedule S and the induced deadlines for
jobs j +1, . . . , n. Procedure MC j (S) finds this minimum value of t by considering
a scheduling problem that is reversed in time: the deadlines act as release dates and
the jobs are scheduled backwards in time. The preemptive scheduling rule that is
used for scheduling the jobs backwards is the Highest Level algorithm discussed
above. If there is a feasible schedule, then procedure MC j (S) returns the value of
t ; otherwise, it returns ∞. When t is determined to be smaller than or equal to Dq ,
Procedure SP defines the virtual machines from time 0 to t (see Figure 2). It then
schedules job j either on virtual machine μm if p j = W (μm), or by using two
adjacent virtual machines such that job j cannot be processed only by the slower
one of these two machines, but it can be processed by the faster one (see Figure 3
where we use μ2 and μ3). At the next iteration, the virtual machines from time 0
to r will be defined as in Figure 4.

Minimizing Total Completion Time on Uniform Machines 101

FIG. 3. Assignment of job j to μ2 and μ3.

FIG. 4. Resulting virtual machines.

The SP procedure consists of seven steps.
Scheduling Procedure (SP)

Step 1 (Initialization). Reindex the jobs so that job 1 is supposed to finish first, job 2 second, and
so on. So L = (1, 2, . . . , n). Let j = 1 and S = ∅.

Step 2 (Find least completion time for job j). Let the induced deadline of job j be Dq . Procedure
MC j (S) finds and returns the earliest possible completion time t ≤ Dq for job j in schedule S, if
it exists, such that it is possible to schedule the remaining jobs to finish by their induced deadlines.
Otherwise, the procedure returns ∞.

Step 3 (Feasibility test). If t = ∞, then exit;

Step 4 (Define virtual machines). Define the virtual machines for schedule S from time 0 to time t .
Step 5 (Determine the virtual machines where job j is to be scheduled). Determine the value of i

such that i = m and p j = W (μm), or if job j would be processed only on μi , it will be completed by
time t , but job j cannot be processed only on μi+1 to complete by time t .

Step 6 (Schedule job j to finish by time t). If i = m, then job j is scheduled only on μm where it
fits exactly. Otherwise, determine the value x such that job j fits exactly on virtual machine μi from
time 0 to time x and on virtual machine μi+1 from time x to time t . Schedule job j accordingly (on
μi and μi+1).

Step 7 (Stopping Criterion). If j < n, increase j by 1 and go back to Step 2.

End Scheduling Procedure (SP)

102 T. F. GONZALEZ ET AL.

This completes the description of the Scheduling Procedure. In the third section,
we show that, given the completion sequence of an optimal schedule, SP always
generates an optimal schedule.

The MC j (S) procedure consists of eleven steps. Our approach to find the earliest
completion time for job j is to consider a scheduling problem that is reversed in
time: the deadlines act as release dates and the jobs that have not been scheduled yet
are scheduled backwards in time. The preemptive scheduling rule that is used for
scheduling the jobs backwards is the Highest Level algorithm mentioned above.
After finding the value for t , the temporary schedule that had been generated,
which we call ST , is discarded. If there is a feasible schedule, then procedure
MC j (S) returns the value of t ; otherwise, it returns ∞. Note that, for the purpose of
procedure SP the temporary schedule ST does not have to be specified (it suffices
to verify that such a schedule exists). However, in some of our proofs, we refer to
the schedule generated by procedure MC j (S) which is simply schedule ST .

Procedure (MC j (S))

Step 1 (Initialization). Initialize schedule ST to be identical to partial schedule S. Let Dq be
the induced deadline of job j , and let Dq < Dq+1 < · · · < Dz be the induced deadlines of the jobs
j, j +1, . . . , n. Let i = z. Let p′

j , p′
j+1, . . . , p′

n be the processing requirements of jobs j, j +1, . . . , n.

Step 2 (Construct the schedule for the time interval [Di−1, Di]). Repeat this step while i > q.
Generate schedule ST (in reverse time) by using the Highest Level algorithm over the time interval
[Di−1, Di] for the jobs with induced deadline greater than or equal to Di . Let p′

j , p′
j+1, . . . , p′

n be the
remaining processing requirements of jobs j, j + 1, . . . , n. Decrease i by one.

Step 3 (Define virtual machines). Define the virtual machines for schedule ST from time 0 to time
Dq .

Step 4 (Feasibility test). If it is not feasible to schedule all the remaining jobs on the virtual
machines in schedule ST , then set t equal to ∞ and return.

Step 5 (Define virtual machine break points). Let B1 < B2 < · · · < By be the minimum set of
distinct points in time such that the same (nonempty) set of virtual machines are defined over the
same set of (real) machines in between every pair of break points. Let i = y.

Step 6 (Construct the schedule for the time interval [Bi−1, Bi]). If we were to schedule jobs
j +1, j +2, . . . , n in the time interval [Bi−1, Bi] using the Highest Level procedure and the resulting
jobs plus job j can be scheduled in the resulting virtual machines from time t = 0 to time t = Bi−1,
then schedule jobs j + 1, j + 2, . . . , n in [Bi−1, Bi] as indicated (in reverse time), decrease i by 1
and repeat this step.

Step 7 (Initialize s). Let s = Bi .
Step 8 (Find points where the remaining execution requirements of jobs becomes identical). Let

s ′ ≥ Bi−1 be the largest value such that if we were to schedule jobs j + 1, j + 2, . . . , n in the time
interval [s ′, s] using the Highest Level procedure, then two jobs (among jobs j, j + 1, . . . , n) that
had different remaining processing times before will now have identical remaining processing times.
If this condition is not met for any Bi−1 ≤ s ′ < s, then let s ′ = Bi−1. If it is possible to schedule jobs
j, j + 1, . . . , n on the virtual machines from time 0 to time s ′, then construct the schedule (for jobs
j + 1, j + 2, . . . , n) from time s ′ to s as indicated above (but in reverse time), let s = s ′ and repeat
this step.

Step 9 (Find the value of t). Find the least value of t in the interval [s ′, s] such that if we were to
schedule jobs j +1, j +2, . . . , n using the Highest Level algorithm in the interval [t, s], it is possible
to schedule jobs j, j + 1, . . . , n on the virtual machines from time 0 to time t . Construct the schedule
from time t to time s (in reverse time) for jobs j + 1, j + 2, . . . , n using the Highest Level algorithm.

Step 10 (Construct the schedule from time 0 to time t). The schedule for jobs j, j + 1, . . . , n from
time 0 to time t is generated by the Highest Level algorithm. Note that this operation is not actually
needed by procedure SP, however it will be useful in our correctness proofs.

Step 11 (Return t). Return the value of t .

End Procedure (MC j (S))

Minimizing Total Completion Time on Uniform Machines 103

This completes the description of the Procedure MC j (S). In Section 3, we show
that this procedure finds the correct value for t .

We now focus on the second question—How do we get the information the
“birdie” has? Our approach is to begin by using the SRPT-FM rule, ignoring the
deadline constraints. After all, if the SRPT-FM schedule does not have any deadline
violations, then the schedule is already optimal. In general, however, the SRPT-FM
schedule may have some deadline violations. We need a mechanism to avoid dead-
line violations while maintaining as much of an SPT-type structure as possible. In
what follows we describe the procedure that generates the optimal ordering and we
refer to this procedure as the Job-Ordering Procedure (JOP) (this ordering proce-
dure invokes the SP procedure as a subprocedure). JOP consists of an initialization
step and a main step. The input of this procedure is the list of jobs L which orders
the jobs in increasing order of their processing requirements and, when there are
ties, in increasing order of their original deadlines. The output of the procedure
is a list L̄ that specifies the order in which the jobs are completed in an optimal
schedule.

Job-Ordering Procedure (JOP)

Step 1 (Initialization). Reindex the jobs in ascending order of their processing requirements and in
ascending order of their original deadlines for identical processing requirements. Let L = (1, 2, . . . , n)
be the list of jobs in ascending order of their indexes. For each job j , initialize its induced deadline
to be its original deadline d̄ j . (This is a slight abuse of notation since induced deadlines are defined
with respect to a schedule. As we shall see later, the induced deadlines will be updated to correspond
to the induced deadlines in an optimal schedule.) Set k = 1 and L̄ = L .

Step 2 (Main). In what follows, we reorder the jobs in L̄ to form an ordering of the completion
sequence in an optimal schedule. We consider each job in turn, starting with the first job in L̄ .
Suppose we have fixed the position of the first k − 1 jobs and we are considering the kth job. Let
L̄ = (i1, i2, . . . , in) and let R(ik+1, ik+2, . . . , in) denote the list obtained by reordering the last n − k
jobs in L̄ in ascending order of their induced deadlines and in ascending order of their processing
requirements for identical induced deadlines. Set the induced deadline of job ik to be the smallest
induced deadline among the jobs ik+1, ik+2, . . . , in . We now construct a complete schedule σ by
applying SP to the list

L̂ = (i1, i2, . . . , ik) || R(ik+1, ik+2, . . . , in).

The outcome of the application of SP may fall into one of the following two cases:

Case (i). σ is a feasible schedule and t is finite. This means that job ik is completed no later than
any one of the jobs in (ik+1, ik+2, . . . , in). In this case, job ik is fixed in position k. L̄ will be the same
as before (i.e., L̄ = (i1, i2, . . . , in)) and the above process will be repeated with k increased by 1.

Case (ii). t = ∞ and σ is infeasible. In this case, we move all the jobs in (ik+1, ik+2, . . . , in) with
the smallest induced deadline (among all the jobs in (ik+1, ik+2, . . . , in)) ahead of job ik (but behind
job ik−1). Let i j1 , i j2 , . . . , i jl be those jobs in ascending order of their processing requirements. Fix
job i j1 in the kth position, job i j2 in the (k + 1)st position, . . . , and job i jl in the (k + l − 1)st position.
Reset the induced deadline of job ik to be its original deadline d̄ ik . Set k to be k + l. Let

L ′ = (ik+1, ik+2, . . . , in) − (i j1 , i j2 , . . . , i jl).

We set L̄ to be

L̄ = (i1, i2, . . . , ik−1) || (i j1 , i j2 , . . . , i jl) || (ik) || L ′.

The above process will be repeated with the new L̄ and the new k.

Step 3 (Stopping Criterion). If k = n, then STOP; otherwise, go back to Step 2.

End Job-Ordering Procedure (JOP)

104 T. F. GONZALEZ ET AL.

When JOP stops, L̄ specifies the completion sequence of an optimal schedule. In
Section 4, we show that JOP generates an optimal completion ordering. The results
in Sections 3 and 4 yield our main result that Qm | prmt, d̄ j | ∑

C j can be solved
in polynomial time for each m ≥ 2.

3. The Scheduling Procedure

Before we can establish that procedure SP generates an optimal schedule, we need
to show that procedure MC j (S) finds the earliest possible completion time t for job
j so that the remaining jobs complete their processing by their induced deadlines.
To prove this result, we need Lemma 3, where we establish that if it is possible to
schedule job j in the partial schedule S to complete by time t , then one can schedule
job j to complete at the same time in schedule ST . Schedule ST is just schedule
S plus a temporary schedule from time t till the latest deadline Dz generated by
procedure MC j (S) using the Highest Level scheduling rule in reverse.

Suppose that Procedure SP is given the list L as well as the current induced
deadlines. Without loss of generality, we may assume that jobs are ordered in
increasing order of their induced deadlines and jobs with common deadlines
are ordered in increasing order of their processing requirements. Assume that
jobs 1, . . . , j − 1 have already been scheduled by procedure SP and the sched-
ule is given in S. For j ≤ i ≤ n, let pi be the processing requirement of
job i .

In the following lemma we assume that a partial schedule S for jobs 1, 2, . . . , j−1
is already in place (generated by procedure SP) and that job j can be com-
pleted by time t while allowing all remaining jobs to be finished by their induced
deadlines.

LEMMA 3. Let S be the schedule for jobs 1, . . . , j − 1 generated by procedure
SP. Suppose there exists a complete schedule σY that includes S and has job j
finishing at time t. Then, there exists a schedule with job j finishing at time t
that includes the temporary schedule ST , where ST includes schedule S plus the
schedule from time t till Dz generated by procedure MC j (S) using the Highest Level
scheduling procedure in reverse.

PROOF. To prove the lemma, we use the massive interchange argument to show
the existence of a feasible schedule SF that includes ST and in which job j finishes
by time t . Initially, let SF be schedule ST. Let l be such that jobs l+1, l+2, . . . , n are
all the jobs that have completion times greater than t in σY . Since jobs j, j +1, . . . , l
complete by time t in σY and schedule ST (and also SF) includes S, it follows that one
can schedule in SF exactly as in σY all the jobs j, j + 1, . . . , l without introducing
any conflicts.

Let

P ′′
l+1 = (p′′

l+1, p′′
l+2, . . . , p′′

n)

denote the processing time for jobs l + 1, l + 2, . . . , n in schedule σY from time 0
to time t . Let

P ′
l+1 = (p′

l+1, p′
l+2, . . . , p′

n)

denote the remaining processing time for jobs l + 1, l + 2, . . . , n in schedule SF.

Minimizing Total Completion Time on Uniform Machines 105

Since schedule SF includes schedule ST, which uses the Highest Level preemptive
scheduling procedure in reverse, it follows that for each 1 ≤ k ≤ n − l

k∑

i=1

xi (P ′
l+1) ≤

k∑

i=1

xi (P ′′
l+1),

where xi (P ′
l+1) is the i th largest processing time of P ′

l+1. The meaning of xi (P ′′
l+1)

is the same as xi (P ′
l+1), but using the processing times given by P ′′

l+1.
Let μi , 1 ≤ i ≤ m, be the virtual machines for all the idle time in SF

1 from
time 0 to time t . Let W (μi) be the processing power of virtual machine μi . Since
schedule σY exists and the virtual machines in SF correspond to the times when
jobs l + 1, l + 2, . . . , n are scheduled in σY from time 0 to time t or idle time in
schedule σY , we know that

k∑

i=1

xi (P ′′
l+1) ≤

k∑

i=1

W (μi) 1 ≤ k ≤ min{n − l, m − 1}

and
n−l∑

i=1

xi (P ′′
l+1) ≤

m∑

i=1

W (μi).

Since for each 1 ≤ k ≤ n − l
k∑

i=1

xi (P ′
l+1) ≤

k∑

i=1

xi (P ′′
l+1),

it follows that
k∑

i=1

xi (P ′
l+1) ≤

k∑

i=1

W (μi) 1 ≤ k ≤ min{n − l, m − 1}

and
n−l∑

i=1

xi (P ′
l+1) ≤

m∑

i=1

W (μi).

Using a lemma similar to Lemma 2 we can show that it is possible to schedule
the remaining processing times for all the jobs l + 1, l + 2, . . . , n in the virtual
machines defined from SF to generate a complete schedule that includes ST and in
which job j completes by time t . Therefore, a schedule with the required properties
exists. This completes the proof of the lemma.

We are now ready to establish in Lemma 4 the correctness of procedure MC j (S).

1 Strictly speaking, the idle time in schedule SF is not necessarily a set of virtual machines. However,
one can easily modify the definition of virtual machines to cover this more general case. The more
general definition assigns to virtual machine μ1 at each time x the fastest machine that is unused,
to virtual machine μ2 the second fastest machine, and so on. These more general virtual machines
have the same properties as the virtual machines (the properties discussed around Lemma 2 and also
Lemma 2).

106 T. F. GONZALEZ ET AL.

LEMMA 4. Given the partial schedule S for jobs 1, 2, . . . , j − 1 generated by
procedure SP, procedure MC j (S) determines whether or not there is a feasible
schedule for j, j + 1, . . . , n and if so, it returns the earliest possible completion
time t for job j such that the remaining jobs still can be scheduled by their induced
deadlines.

PROOF. Lemma 3 shows that the scheduling strategy used in Steps 2, 6 and 8
does not increase earliest possible completion time for job j . Therefore, it is simple
to verify that procedure MC j (S) determines the earliest possible time job j can be
scheduled to complete provided that jobs 1, 2, . . . , j − 1 are scheduled as in S and
the remaining jobs can be scheduled by their induced deadlines. This completes the
proof of the lemma.

The following theorem is instrumental in proving that SP yields an optimal
schedule.

THEOREM 1. Given the order of completions in an optimal schedule, there
exists an optimal schedule (i.e., a schedule with minimum

∑
C j) in which each job

is finished as early as possible, provided that all the jobs that follow can meet their
induced deadlines.

PROOF. Let L = (1, 2, . . . , n) denote the completion sequence in an optimal
schedule. Let σ denote a schedule in which each job is completed as early as
possible (provided that all the jobs following it can meet their induced deadlines)
and the jobs complete in the order given by L . We prove by contradiction that the
schedule σ is optimal with respect to

∑
C j . Suppose σ is not optimal. Let σ ∗ be

a schedule with minimum
∑

C j in which the jobs finish in the order L and which
has the largest value of j such that the first j −1 jobs finish exactly at the same time
as in σ . If there are several schedules with the above property, select one in which
job j finishes at the earliest possible time, which we refer to as t . By Lemma 4, we
know that the completion time of job j in σ ∗ is greater than its completion time
in σ .

We now use the massive interchange arguments to show that either σ ∗ is not a
schedule with minimum

∑
C j , or that there is a schedule with the same value for∑

C j in which the first j − 1 jobs are finishing at the same time as in schedule σ ,
but job j finishes before time t . In both cases, we contradict how σ ∗ was selected.

Now apply the MC j (SX) procedure to schedule SX which consists of the first
j − 1 jobs scheduled as in σ ∗ and the induced deadlines for jobs j, j + 1, . . . , n
being their completion times in schedule σ ∗. Let schedule σT denote the schedule
generated by MC j (SX). (Note that this definition of induced deadline is different
from the one defined in Section 2. We use the same term here because we do not
want to introduce additional terminology. This new definition of induced deadline
applies only to the proof of this theorem.) Clearly, schedule σT can be constructed
by procedure MC j (SX) since σ ∗ is a feasible schedule, and it includes schedule SX .
If the

∑
C j for schedule σT is less than that for σ ∗, then clearly σ ∗ is not optimal,

which contradicts our assumption. So it must be that the
∑

C j for schedule σT is
equal to the one for σ ∗ and job j finishes at time t . If for some integer i > 1, there
is at least one job with an induced deadline equal to Di and this job is not being
processed continuously in σT during the interval Di−1 and Di , then we can swap
in the schedule some δ units within that interval with the last δ units just before

Minimizing Total Completion Time on Uniform Machines 107

Di . Clearly, at least one job will have its completion time reduced by δ units in σT
without increasing the completion time of the other jobs. This contradicts the fact
that σ ∗ is an optimal schedule.

Our approach to find a contradiction begins by showing the existence of a job id ,
which is scheduled just before time t in σT and whose induced deadline is less than
its original deadline. Let Dα be the induced deadline of job id . Then, we define a
value of δ that is small enough to satisfy several important properties. We define the
partial schedule T i as schedule σT after deleting all the assignments from time 0 to
time t − δ for jobs j, j + 1, . . . , n, that is, these assignments in σT are idle time in
T i . We then interchange job id and some jobs scheduled in the time interval Dα and
Dα + δ and the time interval t − δ and t in T i . As a result, the completion time of
job id increases by δ. But instead of scheduling job j in the time interval from t − δ
to t , we schedule job id . This decreases the completion time for job j by δ units
since we can show that it is possible to schedule the remaining processing times
for the jobs j, j + 1, . . . , n to finish by time t − δ in the virtual machines defined
from T i . Therefore, we have constructed another optimal schedule in which jobs
1, 2, . . . , j − 1 are scheduled as in σ but job j completes by time t − δ, which
contradicts the way we selected schedule σ ∗. Before we establish this result it is
convenient to define other partial schedules.

Let Tt be schedule σT after deleting the assignments of jobs j, j + 1, . . . , n
from time 0 to time t , that is, these assignments in σT are idle time in Tt . Let
the total time jobs j, j + 1, . . . , n need to be processed in the interval [0, t] in Tt
be P ′

j = (p′
j , p′

j+1, . . . , p′
n), respectively. Also, define the virtual machines (see

footnote 1) from time 0 to t in Tt . Let W ′(μi) be the total processing power of the
i th virtual machine. Clearly,

k∑

i=1

xi (P ′
j) ≤

k∑

i=1

W ′(μi) 1 ≤ k ≤ min{n − j + 1, m − 1}

and
n− j+1∑

i=1

xi (P ′
j) ≤

m∑

i=1

W ′(μi).

We claim that either μm is the only tight machine for which job j is critical and
the number of nonzero values p′

j , p′
j+1, . . . , p′

n is at most m; or job j is critical for at
least one virtual machine l < m. If none of the virtual machines is tight for job j , or if
μm is the only tight machine for which job j is critical and the number of nonzero
values p′

j , p′
j+1, . . . , p′

n is larger than m, then procedure MC j (SX) would have
found an earlier termination time for job j when procedure MC j (SX) constructed
σT . So let l be the smallest integer such that job j is critical for virtual machine l. Let
jobs i1, i2, . . . , il−1 and j be the critical jobs because of virtual machine l. Let ε be a
small enough value such that if we were to increase the execution time requirement
of job j by ε none of the virtual machines μ1, μ2, . . . , μl−1 would be tight. This
value of ε will be used later on. We assert that one of the jobs in {i1, i2, . . . , il−1}
satisfies the conditions for job id identified above; that is, job id is scheduled just
before time t in σT and its induced deadline is less than its original deadline.
Otherwise, schedule σ does not exist because jobs 1, 2, . . . , j, i1, i2, . . . , il−1 do
not have a feasible schedule that includes S and in which job j finishes before

108 T. F. GONZALEZ ET AL.

time t . Note that jobs i1, i2, . . . , il−1 and job j use the fastest machines available
(excluding the ones used for S) in schedule σT from time zero till they reach their
induced deadlines.

Let us assume that all remaining processing requirements (p′) in Tt for jobs
i1, i2, . . . , il−1 and j are different. Later on, we explain how to handle the more
general case. The value of δ is defined in such a way that in σT the time intervals
[t − δ, t] and [Dα, Dα + δ] satisfy the following conditions:

(1) At most, one job is executed in σT on each of the machines in each of the two
intervals;

(2) If p′
i > p′

k , then, even if job i is scheduled for the next two intervals of length
δ on the fastest machine, it is the case that the remaining processing time for
job i is strictly greater than the one for job k. This is true even if job k was not
processed in these two intervals. That is, p′

i − 2δv1 > p′
k ; and

(3) δ is less than ε/v1.

Clearly, jobs i1, i2, . . . , il−1 and j must each be scheduled on only one machine in
σT during the time interval [t − δ, t]. Jobs j and id are not scheduled in the interval
[Dα, Dα + δ].

Let Tt−δ be schedule σT after deleting all the assignments from time 0 to time
t − δ for jobs j, j + 1, . . . , n, that is, these assignments in σT are idle time in Tt−δ.
Let P ′′

j = (p′′
j , p′′

j+1, . . . , p′′
n) be the remaining processing time requirements for

jobs j, j + 1, . . . , n in Tt−δ. Also, define the virtual machines (see footnote 1) for
schedule Tt−δ from time 0 to time t − δ. Let W ′′(μi) be the total processing power
of the i th virtual machine. Clearly,

k∑

i=1

xi (P ′′
j) ≤

k∑

i=1

W ′′(μi) 1 ≤ k ≤ min{n − j + 1, m − 1}

and
n− j+1∑

i=1

xi (P ′′
j) ≤

m∑

i=1

W ′′(μi).

We define schedule T i as schedule Tt−δ except that we interchange job id in
[t −δ, t] with the job scheduled on the same machine (j1) in the interval [Dα, Dα +
δ]. If the new job in the interval [t − δ, t] is already scheduled in this interval,
then interchange that assignment in machine j2 with the corresponding one in
[Dα, Dα + δ]. Repeat this until we obtain an interchange without conflicts, that is,
the new job in the interval [t − δ, t] is either one that is not assigned in that time
interval, or it is just idle time. Figure 5 shows a sequence of interchanges including
the additional one for jobs j and id . Now instead of executing job j in schedule
T i during the interval [t − δ, t] on machine j0, we execute job id (a portion of job
id that was executed before time t − δ in σT). The net effect of this interchange is
that the completion time of job id increases by δ units, and, as we will show, it is
possible to schedule job j in such a way that it has a completion time of at most
t − δ.

Let Pi
j = (pi

j , pi
j+1, . . . , pi

n) be the remaining processing time for jobs j, j +
1, . . . , n in schedule T i Also, define the virtual machines (see footnote 1) in T i .
Let W i (μi) be the total processing power of the i th virtual machine. Note that

Minimizing Total Completion Time on Uniform Machines 109

FIG. 5. Job interchange.

W i (μi) = W ′′(μi). Furthermore, pi
j = p′′

j + δv j0 and pi
id

= p′′
id

− δv j0 , where j0 is
the machine that processes job j in the time interval t − δ and t in σt . For all other
jobs x , pi

x = p′′
x .

From the definition of δ, we know that the ordering of the jobs j, i1, i2, . . . , il−1
with respect to the processing requirements given by p′ is the same as the one
for p′′, which is also the same as the one for pi . Let Q be any proper subset of
j, i1, i2, . . . , il−1 of job indices of the largest remaining processing times jobs with
respect to pi . We now establish that

∑

q∈Q

pi
q ≤

|Q|∑

k=1

W i (μk).

By the definition of ε, we know that

ε +
∑

q∈Q

p′
q ≤

|Q|∑

k=1

W ′(μk).

Subtracting from both sides the total processing of these jobs that takes place during
the interval [t − δ, t] in σT then (since the ordering of the jobs is the same before

110 T. F. GONZALEZ ET AL.

and after the interval) the expression becomes

ε +
∑

q∈Q

p′′
q ≤

|Q|∑

k=1

W ′′(μk).

The right-hand side is equal to
∑|Q|

k=1 W i (μk). Now,
∑

q∈Q

pi
q =

∑

q∈Q

p′′
q ,

except when the subset Q includes job j but not job id . In this case,
∑

q∈Q

pi
q = δv j0 +

∑

q∈Q

p′′
q .

But, by definition, δ < ε/v1. So it follows that

∑

q∈Q

pi
q ≤ δvj0 +

∑

q∈Q

p′′
q < ε +

∑

q∈Q

p′′
q ≤

|Q|∑

k=1

W ′′(μk) =
|Q|∑

k=1

W i (μk).

Since for R = {i1, i2, . . . , il−1, j},
∑

q∈R

pi
q =

|R|∑

k=1

W i (μk),

by proving a lemma similar to Lemma 2 we know it is possible to schedule the
remaining processing times of the jobs j, j+1, . . . , n in T i . This contradicts the way
σ ∗ was defined, since the new schedule has the same

∑
C j and jobs 1, 2, . . . , j −1

finish at the same times as in σ ∗; however, job j has a smaller completion time. This
completes the proof of the theorem for the case when the processing requirements
of jobs i1, i2, . . . , il−1 and j have different processing requirements.

To complete the proof of the theorem, we need to show how we can arrive at a
contradiction when some of the jobs i1, i2, . . . , il−1 and j have identical processing
requirements. The value of δ is defined exactly as before. But now, we need to
alter the schedule in the interval [t − δ, t] for jobs that have identical execution
times. What we will do is to apply the Highest Level algorithm in the interval and
the jobs with identical processing requirements will use processor sharing. As a
result of this, every set of k jobs with identical execution times will have the same
remaining processing requirements before and after the δ interval because of the
processor sharing. We cannot claim that only one job will be scheduled in each
machine during the entire interval. However, the interval can be partitioned into
several subintervals in which one job will be scheduled on each machine. Now we
find job id as before. But instead of making one set of interchanges for the two
intervals of length δ we will make one set of interchanges in each subinterval. The
proof now follows similar arguments as those described above. This completes the
proof of the theorem.

THEOREM 2. Given the completion sequence in an optimal schedule, the SP
procedure always generates an optimal schedule.

PROOF. The SP procedure schedules each job to complete as early as possible.
By Theorem 1, it produces the minimum

∑
C j . When a job is scheduled, the SP

Minimizing Total Completion Time on Uniform Machines 111

procedure ensures that the remaining jobs can meet their induced deadlines. Thus,
the schedule produced by SP is feasible.

4. The Job-Ordering Procedure

The following theorem shows that the JOP procedure does generate an optimal
completion ordering. The proof of this theorem is similar to the one given by
Leung and Pinedo [2003].

THEOREM 3. The JOP procedure yields an optimal completion ordering L̄.

PROOF. Let L ′ = (1′, 2′, . . . , n′) be an optimal ordering and σ ′ be an optimal
schedule with completion sequence 1′, 2′, . . . , n′. By Theorem 2, we may assume
that σ ′ is constructed by the SP procedure using the list L ′. Let L̄ = (1, 2, . . . , n)
be the ordering obtained by the JOP procedure. Let k be the smallest index such
that k ′
= k, that is, i ′ = i for each 1 ≤ i < k but k ′
= k. We differentiate among
three cases, depending upon the processing requirements of jobs k ′ and k.

Case I. pk ′ < pk . Since pk ′ < pk , job k ′ appears before job k in the initial
ordering of L̄ but appears after job k in the final ordering. This means that job k ′
was considered in the job ordering process before job k, but was overtaken by job
k. In the JOP procedure, a job is overtaken by other jobs only if it fails to produce
a feasible schedule. That is, it is infeasible to schedule jobs 1, 2, . . . , k − 1, k ′, but
feasible to schedule jobs 1, 2, . . . , k − 1, k. This is impossible since pk ′ < pk .

Case II. pk ′ = pk . If the original deadline of job k ′ is greater than or equal to
that of job k, that is, d̄k ′ ≥ d̄k , then we can swap k ′ with k in L ′ and the new
ordering will produce a feasible schedule with total completion time equal to that
of σ ′. Thus, we may assume that d̄k ′ < d̄k . In this case job k ′ appears before job k
in the initial ordering of L̄ , but it appears after job k in the final ordering. Again,
this means that job k ′ was overtaken by job k in the job ordering process. But this
is impossible, since if it is feasible to complete job k before job k ′, it must also be
feasible to complete job k ′ before job k. (Recall that pk ′ = pk and d̄k ′ < d̄k .)

Case III. pk ′ > pk . If d̄k ′ ≥ d̄k , then we can swap k ′ with k in L ′ and the new
ordering will produce a feasible schedule with total completion time less than that
of σ ′. Thus, we may assume that d̄k ′ < d̄k . If job k completes by d̄k ′ in σ ′, then we
can swap k ′ with k in L ′ and the new ordering will produce a feasible schedule with
total completion time less than that of σ ′. Thus, we may assume that job k completes
after d̄k ′ (but at or before d̄k) in σ ′. Let d̄k ′ = Dx and the induced deadline of job
k in σ ′ be Dy . By our assumption, Dx < Dy ≤ d̄k .

Consider the jobs that follow job k ′ in L ′ up until job k. We assert that there is a
job j with its original deadline d̄ j > Dy−1 and job j starts before Dy−1 in σ ′. This
is because L̄ (with job k in the kth position) indicates that it is possible to complete
job k by Dx along with all the jobs whose original deadlines are less than or equal
to Dx . But Dx ≤ Dy−1. Since job k does not complete by Dy−1 in σ ′, there must
be another job in its place. We consider two cases, depending upon the processing
requirements of jobs j and k.

If p j < pk , then job j was considered in the job ordering process before job k,
but it was overtaken by job k. This is impossible since σ ′ indicates that it is feasible
to complete job j before job k.

112 T. F. GONZALEZ ET AL.

If p j ≥ pk , then we can swap j with k in L ′ and the new ordering will produce
a feasible schedule with total completion time less than or equal to that of σ ′. We
can repeat the above argument until job k completes by d̄k ′ , at which time we can
swap job k ′ with job k.

5. Time Complexity And Refinements

THEOREM 4. Given m machines and n ≥ m jobs, the procedure SP generates
a schedule in O(n2m3 + n3m) time with at most O(nm) preemptions.

PROOF. Step 1 in Procedure SP takes O(n) time and Step 3 takes constant time.
Step 2 takes t(n − j +1, m) time, where t(k, m) is the time complexity of procedure
MC j (S) for k jobs and m machines. Determining the virtual machines takes O(m2)
time when performed independently from the previous iteration. If it is performed
in conjunction with the previous step it just takes O(m) time. Steps 5, 6, and 7 take
O(m) time. Since Steps 2–9 is repeated at most n times the overall time complexity
is O(nm2 + nt(n − j + 1, m)).

Let us consider procedure MC j (S) when it determines the earliest possible com-
pletion time for job j . Suppose there are n jobs that need to be scheduled and there
are m machines. Step 1 takes O(n) time. When using the Highest Level scheduling
procedure, two or more jobs may end up with identical remaining processing time
even though they previously had different execution time requirements. Such an
event is called decreasing the number of different processing requirements or simply
decreasing-dpr events. Clearly, during the scheduling process there may be at most
n − 1 decreasing-dpr events. When there are k jobs to be scheduled in an interval,
Step 2 is executed once, and there are h ≥ 0 decreasing-dpr events, then Step 2 takes
O((h + 1)km) time since there are h + 1 regions where km different time slots are
needed to schedule the jobs under processor sharing. Since Step 2 may be repeated
n times, k is at most n, and the total number of decreasing-dpr events is at most n, it
follows that the overall time complexity for this step is O(n2m) time. Step 3 takes
O(m2) time and Step 4 takes O(n + m) time. The number of different break points
in Step 5 is O(m2). For each adjacent pair of break points, Step 6 takes O(nm)
time plus O(hnm) time, where h is the total number of decreasing-dpr events over
all the break point intervals. So the overall time for this step is O(nm3 + n2m),
since the total number of decreasing-dpr events is at most n. Step 7 takes constant
time. Steps 8 and 10 take O(nm) time for every decreasing-dpr events. Since there
are at most n such events, the overall time complexity for these steps is O(n2m).
Step 9 takes O(n +m) time. The overall time complexity for procedure MC j (S) (or
t(n, m)) is O(nm3 + n2m). Therefore, the overall time complexity for procedure
SP is O(n2m3 + n3m).

The number of preemptions introduced for each job is at most 2(m − 1) since
when we schedule job j it is scheduled on two virtual machines and the two virtual
machines have at most 2(m − 1) blocks of nonzero time. Since there are n jobs, the
total number of preemptions introduced is at most n(2m − 2).

One can speed-up procedure MC j (S) by making simple changes. The modifica-
tions are based on the observation that the schedule constructed by this procedure
is a temporary one whose purpose is to find the earliest possible completion time t
for job j in schedule S provided it is possible to complete all jobs by their induced

Minimizing Total Completion Time on Uniform Machines 113

deadline. Instead of generating nm time slots for the scheduling of n tasks, we just
need to update the remaining processing time for the jobs. This can be done in O(m)
time. We just need a list of the jobs being executed in an interval. All the jobs with
identical remaining execution time are listed together with an integer specifying the
number of jobs with that remaining processing time. The list will have at most m
entries. One can easily compute in O(m) time the remaining processing time of the
tasks when scheduled in an interval that ends when we reach the end of the interval
or an decreasing-dpr event takes place. Instead of the processing taking O(hnm)
(or O(n2m)) time it just takes O(hm) (or O(nm)) time. Therefore, the overall time
complexity is reduced to O(nm3 + n2m). We call this procedure FastSP.

THEOREM 5. Given m machines and n ≥ m jobs, the procedure FastSP gener-
ates a schedule in O(nm3 + n2m) time with at most O(nm) preemptions.

PROOF. Follows from the discussion above.

The JOP procedure involves at most n iterations, since each iteration of the
procedure fixes the position of at least one job. Thus, we have the following main
result of this article.

THEOREM 6. Qm | prmt, d̄ j | ∑
C j can be solved in O(n2m3 + n3m) time

with at most O(nm) preemptions.

6. Extensions and Conclusions

In this article, we presented a polynomial-time algorithm for Qm | prmt, d̄ j | ∑
C j .

This algorithm can be used to solve other scheduling problems as well. Suppose
that, instead of a deadline, each job j has a due date d j , and the objective is to
minimize the maximum lateness, where the lateness of a job is defined to be the
difference between its completion time and its due date. (In the 3-field notation,
this problem is denoted by Qm | prmt | Lmax.) This problem can be solved as
follows. Parametrize on the maximum lateness. Assume Lmax = z and create for
all jobs the deadlines d j + z. We then check if there is a feasible schedule with this
set of deadlines. The optimal value for the maximum lateness can be obtained by
conducting a binary search of z in a range between a lower and an upper bound.
Once the minimal value of z has been obtained, say z∗, we can use the algorithm
described in this article to find a schedule that minimizes

∑
C j . In this way, we

can solve the problem of minimizing
∑

C j , subject to the constraint that Lmax is
minimum. Of course, the algorithm will also work for any Lmax greater than or
equal to z∗.

The algorithm presented in this article can also form a basis for a polynomial-
time algorithm for a multi-objective scheduling problem with the same machine
environment and the objective α1

∑
C j + α2Lmax + α3Cmax with α1, α2 and α3

being the weights of the three objectives. Again, the algorithm can be developed
by parametrizing on both Lmax and Cmax.

Polynomial-time algorithms that check whether a set of jobs is feasible do exist,
even when the jobs have release dates and deadlines. Federgruen and Groenevelt
[1986] showed that the problem of determining feasibility can be reduced to a
network flow problem. Faster algorithms exist if the jobs have identical release
dates or identical deadlines (see Cho and Sahni [1980]).

114 T. F. GONZALEZ ET AL.

More efficient algorithms exist for a single machine. Smith [1956] showed that
this problem can be solved in O(n log n) time. Smith’s rule schedules the jobs
backward, starting at time t = ∑n

j=1 p j . From among all the jobs that can complete
at time t (i.e., jobs whose deadline is greater than or equal to t), choose the one
with the largest processing time. This reduces the problem to a set of n − 1 jobs
to which the same rule applies. Preemption is not necessary for a set of jobs with
the same release date. Thus, Smith’s rule solves 1 | prmt, d̄ j | ∑

C j as well as
1 | d̄ j | ∑

C j .
If each job j has, instead of a deadline, a release date r j (before which it cannot

start its processing), then minimizing
∑

C j is NP-hard for a single machine in
the nonpreemptive case but solvable in polynomial time in the preemptive case.
Lenstra [1977] showed that 1 | r j | ∑

C j is NP-hard and Baker [1974] presented
an O(n log n) algorithm for 1 | prmt, r j | ∑

C j . Baker’s rule schedules, at each
point in time, the job with the smallest remaining processing time from among all
the available jobs.

Lawler [1982] posed a single machine problem with release dates and deadlines,
that is, 1 | prmt, r j , d̄ j | ∑

C j , and asked whether it can be solved in polynomial
time. This question has been answered in the negative by Du and Leung [1993] who
showed that the problem is NP-hard. Thus, as far as polynomial-time algorithms
are concerned, we cannot have both release dates and deadlines in the problem.
Hence, we are only able to solve problems with either release dates or deadlines,
but not both.

Consider first the problem Pm | prmt, r j | ∑
C j . Lawler [1982] asked whether

this problem can be solved in polynomial time. Du et al. [1990] showed that it is
NP-hard, even for two identical and parallel machines; that is, P2 | prmt, r j | ∑

C j
is NP-hard in the ordinary sense. Thus, there is no hope in developing a polynomial-
time algorithm for multimachine when jobs have different release dates.

The situation is more promising when the jobs have different deadlines. Leung
and Pinedo [2003] gave a polynomial-time algorithm for Pm | prmt, d̄ j | ∑

C j for
each m ≥ 2. In this article, we show that a more general version of the problem, that
is, Qm | prmt, d̄ j | ∑

C j , can also be solved in polynomial time for every m ≥ 2.
As noted before, Sitters [2001] has already shown that Rm | prmt, d̄ j | ∑

C j is
NP-hard in the strong sense, for arbitrary m and d̄ j = ∞ for all j . The only question
that remains open is whether Rm | prmt, d̄ j | ∑

C j can be solved in polynomial
time for fixed m ≥ 2.

REFERENCES

BAKER, K. R. 1974. Introduction to Sequencing and Scheduling, Wiley, New York.
CHO, Y., AND SAHNI, S. 1980. Scheduling independent tasks with due times on a uniform processor

system. J. ACM. 20, 550–563.
DU, J., AND LEUNG, J. Y.-T. 1993. Minimizing mean flow time with release time and deadline constraints.

J. Algor. 14, 45–68.
DU, J., LEUNG, J. Y.-T., AND YOUNG, G. H. 1990. Minimizing mean flow time with release time constraint.

Theoret. Comput. Sci. 75, 347–355.
FEDERGRUEN, A., AND GROENEVELT, H. 1986. Preemptive scheduling of uniform machines by ordinary

network flow techniques. Manage. Sci. 32, 341–349.
GONZALEZ, T. F. 1978. Minimizing the mean and maximum finishing time on uniform processors. Tech.

Rep. CS-78-22. Dept. Comput. Sci. The Pennsylvania State University, University Park, PA.
GONZALEZ, T. F., AND SAHNI, S. 1978. Preemptive scheduling of uniform processor systems. J. ACM.

25, 92–101.

Minimizing Total Completion Time on Uniform Machines 115

GRAHAM, R. L., LAWLER, E. L., LENSTRA, J. K., AND RINNOOY KAN, A. H. G. 1979. Optimization and
approximation in deterministic sequencing and scheduling: A survey. Ann. Discrete Math. 5, 287–326.

HORVATH, E. C., LAM, S., AND SETHI, R. 1976. A level algorithm for preemptive scheduling. J. ACM.
23, 317–327.

LAWLER, E. L. 1982. Recent results in the theory of machine scheduling. In Mathematical Programming:
The State of the Art. A. Bachem, M. Grotschel, and B. Korte, Eds. Springer-Verleg, Berlin, Germany.

LENSTRA, J. K. 1977. Sequencing by Enumerative Methods. Mathematical Centre Tracts 69, Mathema-
tisch Centrum, Amsterdam, the Netherlands.

LEUNG, J. Y.-T., AND PINEDO, M. 2003. Minimizing total completion time with parallel machines with
deadline constraints. SIAM J. Comput. 32, 5, 1370–1388.

LIU, J. W. S., AND YANG, A. 1974. Optimal scheduling of independent tasks on heterogeneous computing
systems. In Proceedings of the ACM Annual Conference (San Diego, CA, Nov.). ACM, New York,
pp. 38–45.

MCCORMICK, S. T., AND PINEDO, M. 1995. Scheduling n independent on m uniform machines with both
flow time and makespan objectives: A parametric analysis. ORSA J. Comput. 7, 63–77.

PINEDO, M. 2002. Scheduling: Theory, Algorithms and Systems. Prentice-Hall, Englewood Cliffs, NJ.
SITTERS, R. A. 2001. Two NP-hardness results for preemptive minsum scheduling of unrelated parallel

machines. In Proceedings of the 8th International IPCO Conference, Lecture Notes in Computer Science,
vol. 2081. Springer-Verleg, New York, pp. 396–405.

SMITH, W. E. 1956. Various optimizers for single-stage production. Nav. Res. Log. Quart. 3, 59–66.

RECEIVED AUGUST 2004; REVISED JULY 2005; ACCEPTED JULY 2005

ACM Transactions on Algorithms, Vol. 2, No. 1, January 2006.

