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An Approximation Problem for the Multi-Via
Assignment Problem’

TEOFILO F. GONZALEZ

Abstract—We consider the multi-via assignment problem for multi-
layered printed circuit board routing. An efficient approximation algo-
rithm for this problem is presented. The algorithm is of (low) poly-
nomial time complexity and guarantees solutions with no more than
3 * OPT via columns, where OPT is the number of via columns in an
optimal solution. Several issues relating to the computational complex-
ity of via and multi-via assignment problems are also discussed.

I. INTRODUCTION

ARGE-SCALE computer systems are built by intercon-

necting silicon chips. The interconnections are carried
out by placing the chips on a multilayer printed circuit board
(MPCB). The components (chips) are mounted on top of a
board and their terminals are inserted in drilled-through holes
called pins. Terminals from different chips are connected by
printed wires located on any of the layers in the MPCB. Each
set of pins that need to be made electrically common is called
a net. In this paper we make the same basic assumptions made
by So [8]. These are as follows.

(1) The pins and vias are at fixed locations. Vias appear
only column-wise.

(2) Only points (pins or vias) on the same line (row or col-
umn) can be connected directly and the physical routes must
be confined within the channels on both sides of the line.

(3) There are two layers in the MPCB. All row connections
are on one layer and all column connections are on the other.

The via assignment problem (VAS) consists of adding the
least number of via columns and specifying the points (pins or
vias) that need to be connected directly in such a way that no
two pins from the same net are connected to vias from differ-
ent via columns and a routing satisfying (2) and (3) exists.
Fig. 1(a) illustrates a set of via assignments and a final routing
for an instance of the VAS problem. After solving the VAS
finding physical routes for the printed wires (routing) reduces
to solving several single-line single-layer routing problems [8] .
The single-line single-layer problem can be solved by the algo-
rithms given in [6] and [7].

The computational complexity of the VAS probiem hasbeen
studied in [9] and [10]. In [9] it was shown that the VAS
problem can be solved efficiently when only one via column
is needed for all the interconnections. However, as pointed out
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Fig. 1. (a) VAS problem. (b) MVAS problem.

in [9] and [10], when three or more via columns are required
the problem becomes an NP-hard problem. This result relies
on the restriction that no net is connected to vias from more
than one via column. If this restriction is relaxed, the problem
is called the multi-via assignment (MVAS) problem. In Fig. 1(b)
we represent a set of via assignments and a final routing for
an instance of the MVAS problem. As noted in [9], there are
instances for which an optimal solution to the MVAS problem
requires less via columns than an optimal solution to the cor-
responding VAS problem (one of such instances is given in
Fig. 1). The converse is not true. In [9] it was conjectured
that the MVAS problem is an NP-hard problem. In this paper,
it is shown that the MV AS problem is NP-hard. Furthermore,
it is shown that the VAS and MVAS problems are NP-hard
even when only two via columns are required for all the inter-
connections. Our results finely separate “difficult” from
“easy” cases of these problems.

A solution using »n via columns, where # is the number of
nets, can be obtained very quickly by just assigning one via
column to each net. This solution is not desirable because it
implies a huge MPCB as well as a design that is expensive to
produce. On the other hand, finding a solution with the least
number of via columns seems to be an extremely difficult
problem. Because of these difficulties we will try to reach a
compromise by turning our attention to the study of algo-
rithms that generate near-optimal solutions quickly, i.e., every
solution generated by these algorithms has a number of via
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columns that is not far from optimal. In [9] and [10] several
heuristics to solve these problems are presented. However,
there is no guarantee that the objective function value of a
solution generated by these heuristics is within a constant
bound of the optimal one. An algorithm that generates solu-
tions with an objective function value within a constant bound
of the objective function value of an optimal solution is called
an approximation algorithm. In what follows we discuss why
it is unlikely that there exists an efficient approximation algo-
rithm for the VAS problem. The VAS problem has the prop-
erty that obtaining a solution with an objective function value
within 100 percent of the optimal solution value is an NP-hard
problem. This can be easily shown by using the reduction out-
lined in [9] and the results in [2] relating to the complexity
of generating approximate solutions to the graph coloration
problem. The reduction outlined in [9] can also be used to
show that any approximation algorithm for the VAS problem
is also an approximation algorithm for the graph coloration
problem. The converse does not seem to be true. The graph
coloration approximation problem has been studied in great
detail [2] and it seems to be computationally intractable.
Therefore, it is unreasonable to try to obtain an efficient
approximation algorithm for the VAS problem before one can
be found for the graph coloration problem. Because of this
we turn our attention to the MVAS problem. Our main result
is an efficient algorithm that guarantees solutions close to opti-
mal for the MVAS problem.

Our contribution, on the theoretical aspects of the VAS and
MVAS problem, is to settle some issues relating to their com-
putional complexity. On the practical side, for the MVAS
problem we present an efficient algorithm that generates
solutions with an objective function value that in the worst
case is not far from the objective function value of an optimal
solution.

In the next paragraph we define the via assignment problem
and in Section II we show that some versions of this problem
are NP-complete. An approximation algorithm for the MVAS
problem is presented in Section III and in Section IV it is shown
that our algorithm can be implemented to run in polynomial
time by obtaining efficient algorithms to solve a couple of
graph problems. These algorithms are used as internal proce-
dures by our algorithm.,

Let P be a multilayered printed circuit board. Board P con-
sists of » rows and ¢ columns for the pins. At the intersection
of a row with a column there is a pin. Each pin belongs to at
most one net. The nets are represented by Ny, N,, -+, N,
and each NV; consists of a set of pins that need to be made elec-
trically common. Vias can be added for interlayer connections,
however vias appear only column-wise. Wire segments can only
be used to connect points (pins or vias) located on the same
line (row or column). It is assumed that all the wire segments
connecting points on the same row are on one layer and the
ones connecting points on the same column are on the other
layer. Two wires on different layers are said to be connected
directly if both of them are connected to the same point (pin
or via). The VAS problem consists of adding the least number
of via columns in such a way that all pins in each net can be
made electrically common by adding a set of wires that satisfy
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Fig. 2. The VAS or MVAS problem given in Example 1.1.
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Fig. 3. All the possible net connections for Example 1.1 without the
use of via columns.
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Fig. 4. A solution to the VAS problem given in Example 1.1 (column 6
is a via column).

the above requirements and no two pins from the same net are
connected directly to vias from different via columns. The
MVAS problem is defined similarly, except that the restriction
imposed on the location of the vias used for the interconnec-
tion of all the pins in each net is relaxed, i.e., it is now possible
to use vias from two or more via columns for the interconnec-
tion of all the pins in a net. Since every feasible solution for
the VAS problem is also a feasible solution for the MVAS prob-
lem, the MVAS problem has an optimal solution value that is
never worse than the optimal solution value for the correspond-
ing VAS problem. It is simple to show that the converse is
not true [9] (another example of this is given in Fig. 1). An
instance of the VAS problem is shown in Example 1.1 (Fig. 2)
and one of its solutions is depicted in Fig. 4.
Example 1.1: An instance of the VAS or MVAS problem.

r=5,c=5n=3
N ={(2,1),3,4),(4, 1), (5,9}
N, ={(1,4),(4,3),(4,5),(5,3)}
and

N3 = {(193)a(1’5)’(352)a(3a5)7(5:2)} .
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Our NP-completeness results are established by reducing the
exact cover by 3-sets (XC3) problem to the VAS and MVAS
problems. The XC3 problem was shown to be NP-complete
by Karp [5] and it is defined as follows:

Exact Cover by 3-Sets (XC3):

Input: A finite set X = {x;,x,," -, x3,} and a collection
C= {(x,-l’l,x,-lyz,x,-“)ll <I<m} of 3-element subsets of X.
In each triplet all the x,’s are different.

Question: 1s there a subcollection C' C C such that every
element in X occurs in exactly one member of C'?

II. NP-COMPLETENESS RESULTS

In this section it is shown that the VAS and MVAS problems
are NP-complete even when only two via columns are needed
for all the interconnections. The first result is obtained by re-
ducing the XC3 problem to the VAS problem. The NP-com-
pleteness of the MVAS problem is established by using the re-
duction for the VAS problem and observing that the instance
constructed has no solution with two via columns in which
a net is connected to vias from more than one via column.
The problem of deciding whether an instance of the VAS
problem can be routed by using at most two via columns is
referred to as the 2-VAS problem. The 2-MVAS problem is
defined similarly.

Theorem 2.1: The 2-VAS problem is NP-complete.

Proof: Tt is simple to see that the 2-VAS problem is in
NP. We now show that the XC3 problem reduces to it. Let
(X, C) be any instance of the XC3 problem. Let /; be the
number of occurrences of element x; in C. We may assume
without loss of generality that all the /;’s are greater than one
as otherwise an “equivalent” instance for it with all the /,’s > 1
can be easily obtained. The new instance can be obtained in
polynomial time and the size of the new problem is poly-
nomially related to the size of the original instance. Let

3q
L= Z li-
i=1

From any instance of the XC3 problem we construct the
following 2-VAS problem (INS). The problem INS consists
of n=m +2 nets and the board is of size r =/ rows by ¢ =
3 *m+L columns for the pins. The rows are labeled (i, /)
for 1<i<3 *g and 1 <j</; and the columns are labeled
with the integer k for 1 <A <3 *m + L. By ((G, j), k) we de-
note the pin located at the intersection of row (i, j) with col-
umn k. The nets are defined as follows:

i) Net NV;, 1 <i<m, respresents the ith 3-element
subset in C. Let (x,, x;, x;,) be this triplet from C. Net
N; has a pin on each of the following positions:

((r,)),3*@-1+1), for 1<j<,

((s,/),3*(-1)+2), for 1<j<
and

(2,N,3*@G-1)+3), for 1</<,.

ii) Net N,,,; is an enforcer that consists of pins
located on each of the following points:

((i,1),3*m+i) for 1<i<3 *gq.
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IMig. 5. INS for XC3 in Example 2.1.

iif) Net N, is also an enforcer with a pin located
on each of the following positions:

i-1
((isj+1)13*m+3*q+z (lz_ 1)+])5

z=1
for 1<i<3*q and 1</</-1.

Example 2.1: Given the instance (X, C) for the XC3 prob-
lem, where

X={xy,x5," ", x¢} and
C= {(xl,xz,x3),(x1,x2,x4), (x2’x3’x4)a(x29x37x5)’
(X3,X4,X6), (x47x51x6)}

the above procedure constructs the following instance of the
2-VAS problem (INS) see Fig. 5.

Fig. 6 shows a solution for INS with two via columns.

Clearly, INS can be constructed in polynomial time. Inorder
to complete the proof of the theorem it is only required to
show that the instance INS can be routed using only two via
columns if and only if XC3 has an exact cover. This is shown
in two parts:

@) if XC3 has an exact cover then INS can be routed using
two via columns.

Proof (for part a): Let C' be any exact cover for XC3.
Clearly, |C'| =q. Letiy,i,," i, be the set of indices of the
nets that represent the 3-element subsets in C'. Each of these
nets and net V,,,, are connected to one of the via columns.
The rows used by these nets on via column number one are as
follows:

i) Net NV, ., usesrows (7, j+ 1), 1<i<3*gand | <j<

-1,
ii) Let net Nii represent (x,, x,, x;) € C. Net N,-]. uses rows
(r, ), (s, D and (¢, 1).
It is simple to show that each row on this via column will be
used by exactly one net.

The second via column will be used for the connection of
the remaining nets. The rows on the second via column used
by these nets are as follows:

i) Net N, ., usesrows (i, 1)) for 1 <i<3 *¢q.

ii) Letjy, /2, "\ jm -g be the indexes of the nets that repre-

sents 3-element subsets that are in C but not in C'. Let
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Fig. 6. Solution for the problem depicted in Fig. 5 (columns 37 and 38
are via columns).

Nj, represent (x,, x5, xf) €C. For net N;, let k;, kj, and
k; be the number of times variables x,, x;, and x, appear
in the 3-element subsets of X represented by nets N; N,
“, Nj,. Net Nj, is routed using rows (7, k;), (s, k) and
(. k).
1t is simple to show that each row on via column two will be
used by exactly one net and that each of the nets can be inter-
connected by using the vias specified above. This completes
the proof of part a.
b) If INS can be routed using two via columns then XC3 has
an exact cover.

Proof ( for part b): Let R be a routing for INS. Clearly,
nets NV, ,, and N, ,, need at least one via for their connection
and both of these nets cannot use vias from the same via col-
umn. Let N; ,Nj, -+, N;, be the nets connected through the
columns used by net N,,,,. Clearly, the 3-element subsets of
X represented by nets Ny N, LV, form a subcover for X.
In order to show that this is an exact cover for X, it is only re-
quired to show that /=g. A proof for this can be obtained
by using the following observations: in any feasible solution
all rows on both via columns must be used, net N,,, ,, leaves
3 * g unused vias on the via column it uses for its connection
and each of the nets Ny, - -+, N, use exactly three rows for
their connection on one of the via columns. This completes
the proof of part b and Theorem 2.1. ]

Theorem 2.2: The 2-MVAS problem is NP-complete.

Proof: The proof of this theorem is based on the reduction
used in the proof of Theorem 2.1. The proof of the theorem
follows the same arguments as the ones used in the previous
proof after showing that the instance INS does not have a
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feasible solution in which a net is connected to vias from the
two via columns. |

III. APPROXIMATION ALGORITHM

In this section we present an efficient approximation algo-
rithm for the MVAS problem. The input to the algorithm is
an instance, Y, of the MVAS problem. The solution that it
generates has no more than 3 * OPT via columns, where OPT
is the number of via columns in an optimal solution. The
algorithm consists of three major steps.

In the first two steps an instance of the VAS problem, X,
in which all nets have exactly two pins is constructed. Problem
X has the property that the maximum number of nets sharing
the same row in the MPCB is not greater than 2 * a, where a
is a lower bound on the number of via columns in an optimal
solution to Y. Furthermore, a solution to Y can be easily
obtained from the solution to X. This solution has the same
number of via columns as the one in the solution to X. The
specific computations performed by these steps are the con-
struction of a bipartite graph and the identification of a
“special” subset of edges in it. The “special” subset of edges
and a decomposition of the nets in Y are used to define the
nets for X.

The third step of the algorithm consists of finding an approxi-
mate solution to X. An approximate solution to this problem
is required since it is an NP-hard problem. The specific com-
putations performed by this step are to construct a multigraph
from X, then the edges of this multigraph are “colored” and
from any such coloration we obtain a solution to X. The solu-
tion to X that we construct has no more than (%) * § via col-
umns, where § is the maximum number of nets sharing the
same row in X.

Before presenting our algorithm we outline in more detail
the three major steps in it. Additional definitions as well as
some intermediate computations have been introduced to
clarify our procedure.

Step I: The set of pins in each net NV, is partitioned into the
sets Nj 1, Ny, -+, Ny, insuch a way that all the pins in each
set V; ; can be made electrically common without the use of vias
and the pins in each set NV;; cannot be made electrically com-
mon with a pin in N; . (k #) without the use of vias. We shall
refer to the sets NV, ; as subnets. For N;; we define R;j as the
set of rows on which the pins in N; ; lie. The sets V; ; and R; ;
for the MVAS problem given in Example 1.1 are as follows:

Ny ={2,1),4, D}, Ry, =1{2,4},
N1,2 ={(,4)}, Ry, = {3},
N1,3={(5’5)}, Ry s ={5},
N2,1={(1,4)}, R2,1={1},
Ni 2 ={(4,3),(4,5),(5,3)}, Ry, =1{4,5},
N3 (=N, and  Rj;,; ={1,3,5}.

Every net with /;=1 can be eliminated since it needs no via
column for its connection. If all nets are eliminated then our
solution is an optimal solution since it includes no via columns.
In Example 1.1, net NV, is the only net eliminated. Hereafter,
n represents the number of nets not yet been eliminated.

In this step we select an element from each R;;. Any pin
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Fig. 7. Bipartite graph constructed by Step I for Example 1.1.

from subnet N;; located on the row selected from R; j will be
used for the connection of Ny ; to all other subnets of net NV;.
The selection of these elements is performed in such a way
that the maximum number of subnets sharing the same row
for their connection, is minimized. We shall refer to this mini-
mum value as @. The value for a can be shown to be a lower
bound on the number of via columns in an optimal solution to
the original MVAS problem.

The selection of the row from each R;; is made by finding
an optimal complete s-matching in a bipartite graph. This is
explained in what follows. Let S= {(i, /)IN;; is a subnet},
T={1,2,--,1,and E= {((4, /), k) |k €R; ;}. Clearly G =
(SUT, E)is a bipartite graph. The bipartite graph obtained for
the MVAS problem given in Example 1.1 is depicted in Fig. 7.

An s-matching, I, for G is a subset of edges such that no two
edges in it are incident to the same node in S. A complete s-
matching is an s-matching with cardinality equal to | S|. Fora
complete s-matching, /, we define M(I') as the maximum num-
ber of edges in ] incident to any node in set 7. We say that the
complete s-matching, I, is an optimal complete s-matching (ocs-
matching) for G if every complete s-matching Z for G has
M(Z)Y=M(I). The set of edges 7= {((1, 1), 2), ((1, 2), 3),
(1, 3), 5,2, 1), D, (2, 2), 4)} is an ocs-matching for the
bipartite graph depicted in Fig. 7. The problem of selecting a
row for the connection of each subnet reduces to the problem
of finding an ocs-matching for G. In the next section we present
an efficient algorithm to construct an ocs-matching for G.
Given an ocs-matching, /, for G we find r; ;, the row to be used
for the connection of subnet N, ; to all other subnets of net V;,
as follows: r;; =k if edge ((7, /), k) is in the ocs-matching /.
Clearly, from the definition of an ocs-matching we can see that
each subnet has one and only one row selected and in such a
row there is at least one pin from this subnet. Also, if “7” is
an ocs-matching for G then a =M(I). The optimality of the
complete s-matching guarantees that there is no feasible solu-
tion to Y withless than a via columns, where ais defined above.
The r;; values for the ocs-matching obtained above are: 7, ; =
2,r,2=3,r13=5,r,,=1,andr, , =4.

The computations performed by this step can be described
as follows:

1.1) Construct G=(S U T, E) from G,
1.2) Obtain an optimal complete s-matching, I, for G,
1.3) Define r;; from 1. ]

Step II: At this point we construct an instance, X, of the
VAS problem, such that from a solution to X it is simple to
construct a solution to Y with the same number of via columns
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Fig. 8. Instance X constructed by Step II for Example 1.1.

as the one in the solution to X. Problem X has the property
that the number of pins that need to be connected on each
row is at most 2 * a.

Let

n
L= Z li'
i=1

The instance X consists of n' = L - n nets and the board has ' =
r rows and ¢'=2n' columns for the pins. We shall refer to the
n' nets as Ny, * -, Nij-y for 1<i<n. Net N;; has two
pins, one is located at position (r;;, k) and the other pin at
position (r;j,,, k+1),wherek=2*(j-1+Z!7) (I,- 1)+
1. Fig. 8 shows the instance X constructed for the problem
given in Example 1.1.

r=5,¢=6,n=3
N{,l = {(2’ l)s (3>2)}
N;,2 ={(3a3))(594)}

and
N;.,l = {(1’ S)a (4’ 6)} .

The proof for the claim that from any solution to X one can
construct a solution to Y, with the same number of via columns
as the one in the solution to X, is straightforward.

In this step, the initial computation is:

2.1) Construct X from 7; ;.

Once the solution to X (Sx) has been obtained (Step III) we
perform the following computation:

2.2) Obtain the solution Sy for Y from solution Sy . n

Step IlI: 1In this step we find an approximate solution to
X, the restricted VAS problem obtained in Step II. This
solution is obtained from a coloration of the edges in a multi-
graph. The multigraph that we use is M =(V',E"), where V'
is the set of nodes and E' is a multiset of edges, is defined as
follows:

V'={iliis a row in X}
and
E’={{i,j} anet in X has a pin on rows 7 and j}.

The multigraph M constructed from X given in Fig. 8 is shown
in Fig. 9.

An edge coloration for multigraph M consists of assigning
one color to each edge in E in such a way that no two edges
incident to the same node are assigned the same color. An
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Fig. 9. Multigraph constructed by Step III for Example 1.1.
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Fig. 10. Solution constructed by our algorithm for Example 1.1
(columns 6 and 7 are via columns).

edge coloration for the multigraph depicted in Fig. 9 is:
edge {3, 5} is colored “one” and all the remaining edges are
colored “two.” A solution to X can be obtained from a colora-
tion for M by simply connecting a net through the ith via
column if the edge in M that represents it is assigned color
“i.” Clearly, the number of via columns in our solution for
X is the same as the number of different colors in the color-
ation for M. It is simple to show that the number of colors
in any edge coloration for M is at least 8, where § is the maxi-
mum number of nets sharing the same row in the board for X.
In the next section we present an algorithm that finds an edge
coloration for M with no more than (%) * § different colors.
Hence, in our solution to the original MV AS problem there are
at most 3 * o via columns. The solution obtained for the
MVAS problem given in Example 1.1 is shown in Fig. 10. In
this case the solution obtained can be easily transformed into
an optimal solution. We cannot claim that this is always pos-
sible because there are nonoptimal solutions for which any
efficient “transformation” process will not decrease the num-
ber of via columns.
The computations performed in this step are:

3.1) Use X to construct M= (V' E');
3.2) Find an edge coloration, C, for M;
3.3) Use C to construct Sy for X.

Our algorithm is illustrated in Fig. 11. Additional definitions
as well as intermediate steps have been introduced to clarify
the exposition of the algorithm.

Theorem 3.1: Algorithm APPROX constructs a solution to
Y by introducing at most 3 * OPT via columns, where OPT is
the number of via columns in an optimal solution to Y.

Proof: By the above discussion. [

In the next section we show that an ocs-matching for abipar-
tite graph G =(SU T, E) can be obtained in O(es¥? 12 log
§) time, where s =|S|, r=|T], and e = | E|. In Section IV it is
also shown that a coloration with no more than (%) * d differ-
ent colors for a multigraph M =(V', E") can be obtained in
O(m*n) time, where d is the maximum degree of any node
in M, n=|V'| and m = |E']. In order to simplify the nota-
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Algorithm APPROX ( Y //an instance of the MVAS

problem// )
1.1 Use Y to construct
G= (S {(_})T ., E);
1.2 Obtain an optimal complete s-matching, I,
for G;
1.3 Define r from I1;
i,3
2.1 Construct X from r. _;
i,3
3.1 Use X to construct M = ( V' , E' });
3.2 Find a coloration, C, for M;
3.3 Use C to construct solution Sx for X;
2.2 for Y;

Use Sx to obtain the solution SY

Return ( SY )i
End of Algorithm;

Fig. 11. Algorithm APPROX.

tion in the next section, the above bounds are in terms of the
number of elements (nodes and edges) in the graphs and not in
terms of the number of rows and nets in the board. Using the
above results we compute the overall time complexity of the
algorithm.

Theorem 3.2: Algorithm APPROX can be implemented to
execute in no more than O(rY? p¥? log p) time, where p =
% |N;| and r is the number of rows in the board.

Proof: First let us find a bound for the maximum size of
G. Set S can have at most O(p) elements since each subnet
must have at least one pin and no pin is in more than one sub-
net. In T there is one node per row in the board, hence T has
O(r) nodes. The maximum number of edges in E is O(p).

Using these bounds and Theorem 4.2 we get that lines 1,2, and
3 take O(p), O(r"/* p¥/* log p) and O(p) time, respectively.

Line 4 takes no more than O(p) time since X contains no
more than p/2 nets. The multigraph M contains r vertices (one
per row in the original board) and the number of edges is O(p)
(one per net in X). Using these bounds and Theorem 4.3 we
have that line 5 takes O(p) time and line 6 takes O(p* r) time.
The remaining lines can be easily shown to require O(p) time.

Now if r>p then some rows have no pins that need to be
connected. These rows can be eliminated from the beginning.
Hence, one can assume that »<p and the upper bound on
the time complexity for the algorithm can be easily obtained
by combining the individual upper bounds on the time re-
quired by each of the steps. This completes the proof of the
theorem. ]

IV. OCS-MATCHINGS AND COLORATIONS

In Section IV-A we present an algorithm to construct an
ocs-matching for a bipartite graph and in Section IV-B we
present an algorithm that finds an edge coloration for a
multigraph. In order to simplify our notation we derive all of
our bounds in terms of the number of elements (nodes and
edges) in the graph rather than using the number of rows and
nets in the board.

A. OCS-Matchings

We present an algorithm to construct an ocs-matching for
G, where G =(SUT, E) is a bipartite graph and an ocs-match-
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Fig. 12. H graph obtained from G (Fig. 7) with! = 2.

ing is defined in the previous section. Let $={x;, x;, ",
xs}, T={y,,¥2, ", y:} and e = | E|. Note that s =|S|and
t=|T|. For a complete s-matching Z, let M(Z) be the maxi-
mum degree of any node in G'=(SUT, Z). It is simple to
show that for any ocs-matching /, 1 < M) < |S|=s5. Our pro-
cedure performs a binary search on the set of integers {1 -+ - s}
to find the least value, /, such that G has a complete s-matching,
I, with M(I)<1. Clearly, at most O(log s) of these tests are
required. The problem of testing whether G has a complete
s-matching, /, with M(I) <1 can be reduced to the problem of
testing whether a bipartite graph H =(SU T', E') has a com-
plete matching for S, where 7'={y;;1»;€T and 1<j<
IYand E'={{xg, yi;}1xx €S, y;; €T and {xy, y;} EE}.
See [1] for the definition of a complete matching for S in
H. Fig. 12 shows the bipartite graph H obtained from the bi-
partite graph G given in Fig. 7 with /=2,

Theorem 4.1: Let G, H, and I be as defined above. G hasa
complete s-matching, I, with M(J)<! if H has a complete
matching for S.

Proof. Since the proof is straightforward it will be
omitted. [ |

Theorem 4.2: An ocs-matching for G can be obtained by
the above procedure in O(es¥? t1/2 log s) time.

Proof: Testing whether a bipartite graph has a complete
matching for S (the set of nodes is S U T') can be accomplished
by constructing a maximum matching and then checking if its
cardinality is equal to the cardinality of set S. A maximum
matching for a bipartite graph can be obtained in O(en'/?),
where »n is the number of nodes and e is the number of edges
(see [4]). When we perform this test for some value of [, H has
[S|=s, IT'|=tl and |E'|= el. Hence, such a test can be per-
formed in O(el(s + tH)/?)). Since ! is O(s), this bound becomes
O(es¥? tY%),  As established above, the maximum number
of such tests is O(logs). Multiplying these last two bounds
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gives us the desired result. This completes the proof of the
theorem. ]

In a subsequent paper we will present a faster- algorithm to
construct ocs-matchings.

B. Coloring the Edges in a Multigraph

Any multigraph M with maximum node degree, d, can be
labeled with no more than (%) * d different colors. The
proof of this fact is based on a generalization of Vizing’s
theorem [10] (see [1]). It is simple to design an algorithm
that constructs such a coloration. The algorithm colors one
edge at a time. When considering an edge for coloration, the
algorithm first checks if it is possible to color it without re-
coloring any previously colored edge. This operation takes
O(d) time. If some edges need to be recolored, this is accom-
plished by following a procedure similar to the one used in
the proof of Vizing’s theorem outlined in [1]. In the worst
case, the time complexity for this recoloration is O(dn).
Since d is O(m), then the time complexity is O(nm). As there
are m edges in M, the overall time complexity of our procedure
is O(m? n).

Theorem4.3: an edge coloration for a multigraph M=
(N, E) with no more than (3) * d different colors can be ob-
tained in O(m?n) time, where d is the maximum degree of a
nodeinM,n=|N|and m = |E|.

Proof: By the above discussion. |

V. DISCUSSION

It has been shown that the VAS and MVAS problems are
NP-hard even when only two via columns are needed for the
interconnections. On the practical side, we have shown that
for the MVAS problem one can construct a solution that is
“close” to optimal. Our algorithm is of polynomial time com-
plexity. One can easily improve on the performance of our
algorithm without increasing the upper bound on its time com-
plexity by using some simple heuristics in the construction of
problem X as well as in some postprocessing transformations.
However, it seems highly unlikely that a smaller worst case
approximation bound can be obtained without a considerable
increase on the time complexity bound. An approximation
bound of 3 - 3/n can be achieved on problem instances with
n nets, for n 2> 3. One of the interesting features of our algo-
rithm is that it generates a lower bound for the number of
via columns in an optimal solution. This allows the practitioner
to get some idea of how good is the solution he intends to use.

The total area of the board can also be used as the objective
function for the via assignment problem. Under this function,
finding an optimal solution is still an NP-hard problem. How-
ever, the complexity of the corresponding approximation
problem is very different from the one of the problems studied
in this paper. The same comment applies when we are allowed
to introduce via rows. In a subsequent paper we present some
results relating to this and other variations of the via assign-
ment problem.
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A Class of Cellular Architectures to Support
Physical Design Automation

ROB A. RUTENBAR, STUDENT MEMBER, IEEE, TREVOR N. MUDGE,
MEMBER, IEEE, AND DANIEL E. ATKINS, MEMBER, IEEE

Abstract—Special-purpose hardware has been proposed as a solution
to several increasingly complex problems in design automation. This
paper examines a class of cellular architectures called raster pipeline
subarrays—RPS architectures—applicable to problems in physical DA
that are (1) representable on a cellular grid, and (2) characterized by
local functional dependencies among grid cells. Machines with this
architecture first evolved in conventional celtular applications that ex-
hibit similarities to grid-based DA problems. To analyze the properties
of the RPS organization in context, machines designed for cellular
applications are reviewed, and it is shown that many DA machines
proposed/constructed for grid-based problems fit naturally into a tax-
onomy of cellular machines.

The implementation of DA algorithms on RPS hardware is parti-
tioned into local issues that involve the processing of individual cell
neighborhoods, and global issues that involve strategies for handling
complete grids in a pipeline environment. Design rule checking and
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routing algorithms are examined in an RPS environment with respect
to these issues. Experimental measurements for such algorithms run-
ning on an existing RPS machine exhibit significant speedups.

From these studies are derived the necessary performance charac-
teristics of RPS hardware optimized specifically for grid-based DA.
Finally, the practical merits of such an architecture are evaluated.

I. INTRODUCTION

HE successful implementation of increasingly complex

integrated systems has been made possible only because
of the existence of increasingly sophisticated DA tools. Tra-
ditional DA research—for example, mathematical analysis of
DA algorithms and data-structures, application of software
structuring techniques to chip layout, and use of databases to
manage the design process—has produced software tools run-
ning on conventional serial computers. These tools are limited
in three fundamental ways: by the inherent complexity of the
problem, by the efficiency of the coded implementation, and
by the resources of the machine on which the code runs. To
overcome these three limitations recent attention has focused
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