
420 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL 7. NO 3, MARCH 1988 

Minimization of the Number of Layers for Single 
Row Routing with Fixed Street Capacity 

TEOFILO F. GONZALEZ AND SHASHISHEKHAR KURKI-GOWDARA 

Abstract-We present a set of algorithms to solve single row routing 
problems with a fixed street capacity using the least number of layers. 
The main difference between these algorithms is in the strategy used to 
search for an optimal solution. Varying this strategy greatly affects the 
performance of our algorithms. At the extreme points of our strategy 
we have algorithms Q and S. The worst case time complexity fur al- 
gorithm Q is linear and the one for algorithm S is exponential. The best 
case time complexity of all our algorithms is linear. The main disad- 
vantage of algorithm Q is that the constant associated with its time 
complexity bounds is large. On the other hand, the constant associated 
with the hest case time complexity bound for algorithm S is small. We 
also present an experimental evaluation of the performance of our al- 
gorithms. 

Keywords-MPCB routing, layering problem, dynamic program- 
ming, algorithms, minimum number of layer. 

I. INTRODUCTION 
* , U, } be a set of nodes (points) L lying on a straight line (row) with node U, located to 

the left of node U, + I ,  for 1 5 i < n. Let N = { N I ,  N 2 ,  
. . N,  } be a partition of I/. Each set N, is called a net. 

The single row single layer routing problem consists of 
introducing a set of wires to make electrically common all 
the nodes in each net. The wires must follow a path con- 
sisting of horizontal and veritical line segments. All the 
horizontal wires must run along one of the k upper hori- 
zontal tracks or the k lower horizontal tracks, and the ver- 
tical wires must run along any of the k vertical tracks that 
appear between every pair of adjacent nodes. Of course 
wires that carry different signal nets cannot intersect. A 
feasible solution for the single row single layer problem 
does not allow backing, i .e . ,  any vertical line cannot cross 
two or more wires that carry the same signal net. Switch- 
ing is allowed, i.e., a wire carrying some signal net as- 
signed to an upper horizontal track can be joined to a wire 
assigned to a vertical track which can be connected to a 
wire assigned to a lower horizontal track. The reverse op- 
eration is also allowed. There is no limit on the number 
of such switching. 

Net NI is said to include node U ,  if the leftmost node in 
N ,  is not located to the right of node U ,  and the rightmost 

ET I/= { U ] ,  ~ 2 ,  . 

Manuscript received October 10, 1986; revised September 18, 1987. 
This work was supported in part by the National Science Foundation under 
Grant DCR-8503163. A preliminary version of this paper was presented at 
the IEEE Physical Design Conference, Houston, TX, March 1986. The 
review of this paper was arranged by Associate Editor R .  H .  J .  M .  Otten. 

The authors are with the Department of Computer Science, University 
of California. Santa Barbara, CA 93106. 

IEEE Log Number 8718403. 

node in NI is not located to the left of node U , .  The density 
of node U , ,  denoted by d,, is the number of nets that in- 
clude node U,.  The density, d ,  for a problem instance is 
defined as max { d, }. In certain problem instances, the 
number of horizontal tracks are not enough to route all the 
nets. An obvious case is when d is greater than 2k. Nec- 
essary and sufficient conditions for a routing to exist were 
introduced in [5]. Efficient algorithms to construct a 
routing when such a routing exists were introduced in [5], 
[6] and [4]. The algorithms in [4] seem to be the fastest 
for all values of k. 

Problem instances that cannot be routed in one layer, 
can be routed by introducing additional layers. A direct 
generalization of the single row single layer routing prob- 
lem is the multilayer single row routing problem, which 
is also known as the layering problem. This problem is 
defined as the single row single layer routing problem, 
except that we are required to find a minimum layer rout- 
ing. In this problem, a net may be routed in several layers, 
however, no vertical line segment can cross (in all layers) 
two or more wires carrying the same signal net and the 
only place where a wire can be switched to another layer 
is at a node. Hueristic algorithms for the layering problem 
were studied in [3] and [9]. When k = 2 ,  the algorithm 
given in [9] generates solutions with a number of layers, 
f, which is not more than 1.33 f *, where f * is the number 
of layers in an optimal solution. In practice, k is never 
greater than two. That is why we restrict our attention to 
the case when k = 2. As pointed out in [9] when k = 2,  
the multipoint routing problem can be reduced to a two- 
point layering problem by increasing the number of nodes. 
The resulting problem will never have more than twice 
the number of nodes in the original problem. Therefore, 
we restrict our attention to the solution of the layering 
problem when k = 2 and all nets are two-point nets. In 
Section IV we show how to modify our algorithms to deal 
with the case when k > 2 .  A single row single layer rout- 
ing problem which can be routed using 2 upper and 2 
lower tracks is called a (2, 2)-single row single layer rout- 
ingproblem. Because of our restriction on k we can define 
the layering problem as the problem of partitioning a sin- 
gle row routing problem into the least number of (2, 2)- 
single row single layer routing problems. 

The layering problem is a fundamental problem in 
MPCB routing. The classical approach, introduced by [SI, 
to solve MPCB routing problems consists of introducing 
the least number of via columns and assigning vias to the 

0278-0070/88/0300-0420$01 .OO O 1988 IEEE 

I 



GONZALEZ AND KURKI-GOWDARA: MINIMIZATION OF SINGLE ROW ROUTING 42 1 

different nets (via assignment problem) in such a way that 
a solution to the original problem can be obtained by solv- 
ing a set of single row routing problems. An approxima- 
tion algorithm for the via assignment problem and refer- 
ences to previous work for this problem appear in [ 11. As 
we mentioned before, single row single layer routing 
problems can be solved efficiently. In this paper we pre- 
sent algorithms for the layering problem. 

In Section I1 we present our algorithms for the layering 
problem, and in Section 111, we evaluate their perfor- 
mance. We discuss extensions of our results in Section 
IV. 

11. THE ALGORITHMS 
In this section we present our algorithms for the layer- 

ing problem. Instead of dealing directly with the mini- 
mization problem, it is convenient to begin by solving a 
decision problem closely related to the minimization 
problem. We call this problem the 1-layering problem. 
This problem is identical to the layering problem with the 
exception that we are not required to partition the set of 
nets into the least number of (2, 2)-single row single layer 
routing problems, it is only required to determine whether 
or not it is possible to partition it into 1 (2, 2)-single row 
single layer routing problems. Later on we show how to 
solve the original problem by solving a set of decision 
problems closely related to the 1-layering problem. 

Our procedure to solve the /-layering problem proceeds 
by scanning the set of vertices from left to right. When 
considering node U , ,  we have a set of feasible solutions 
from node u I  to node U ,  - ,  (in set S ,  - I )  and we construct 
the set of feasible solutions from node ut to node U ,  from 
S, - When considering node U ,  we say that net N, is ac- 
tive if net N, includes node U , .  The left-most node in a net 
is called a begin node, and the rightmost node is called 
the end node. Instead of keeping feasible solutions sepa- 
rately, we shall combine and represent as a group sets of 
these feasible solutions. This is important since it greatly 
decreases both the time and space required by our algo- 
rithms. Before introducing our algorithms, it is important 
to explain our internal representation for sets of feasible 
solutions. 

Since at this point we are only interested in determining 
whether or not there exists a partition of the set of nets 
into / (2, 2)-single row single layer routing problems, 
when representing a feasible solution we shall only keep 
the layer assignment for active nets, i .e.,  we do not keep 
track of the layer assignment of nets whose end nodes 
appear to the left of U , .  Omitting this information de- 
creases both the time and space required to solve the l- 
layering problem. Note that two feasible solutions with 
different past assignments but the same assignment of ac- 
tive nets can be merged into one feasible solution. This is 
because the solution of the remaining subproblem de- 
pends only on the current state. When representing a fea- 
sible solution we shall not specify track assignments, we 
only care about the relative ordering of the nets (wires) at 
each layer. Note that once we have the relative ordering, 

any feasible solution with track assignment consistent with 
this ordering can be easily obtained. Note that this sim- 
plification decreases the time and space required by our 
algorithms. Instead of representing each feasible solution 
by an /-tuple that defines the ordering of the active nets at 
each level, we shall represent a set of feasible solutions 
by an I-tuple. A set of feasible solutions is represented by 
the 1-tuple, ( S L , ,  SL2, - * * , SL, ), where each SL, rep- 
resents a set of orderings in  layer i .  The 1-tuple ( SLI ,  SL2, 
* * . , SLI ) represents all feasible solutions whose order- 
ing in layer 1 is one of the orderings in SL, ,  the ordering 
in layer 2 is one of the orderings in SL2, and so forth. 
When we refer to a set of orderings we use the following 
coding scheme. An asterisk “*” in a tuple, means that 
any of the nets not yet assigned can occupy this position, 
and any other symbol at the i’th position indicates that the 
i’th element in the ordering is the net represented by that 
symbol. For example, if the active nets in a layer are nets 
a and b, and a set of orderings is given by (*, *), then the 
valid orderings are (a ,  b )  and (6 ,  a ) .  Our notation is sim- 
ilar to the one in [4]. The reason for this is that it allows 
us to solve the single row single layer routing problem on 
each of the layers quickly, and it enables us to group to- 
gether sets of feasible solutions. The state of a layer is 
given by any of the following symbols. 

No net is active in the layer. 
Net a is active in the layer and the set 

of orderings is given by the expres- 
sion (*). 

Nets a and b are active in the layer and 
the set of orderings is given by the 
expression (*, *). 

Nets a, b, and c are active in the layer 
and the set of orderings is given by 
the expression (*, *, *). 

Nets a, b, and c are active in the layer, 
and the ordering is given by either ( a ,  
6,  c )  or ( c ,  b, a ) .  

Nets a, b, c, and d are active in the 
layer, and the ordering of the nets is 
given by either (*, *, c ,  *) or (*, c ,  
*, *). This is because net c was the 
last net that became active in this 
layer. 

( a ,  6,  c ,  d ) Nets a ,  b, c,  and d are active in this 
layer, and the ordering is given by 
either (*, b, c, *) or (*, c ,  b, *). 

Let us now explain the above notation as well as the 
transition function for these states that appears in Fig. 1 .  
At this point we shall concentrate only on the set of nets 
assigned to layer h. We traverse the set of nodes from left 
to right. Let us now consider node U ,  E NJ.  Let SL,,, - I 

represent the state of layer h at this point. The next event 
is either finding out that node U ,  belongs to a net which 
has not been assigned to layer h or that U ,  belongs to a net 
which is assigned to layer h. In the former case SLI, , ,  is 
just SLIT,, ~ I ,  but in the latter case computing SLIT,,  is more 



422 IEEE TRANSACTIONS O N  COMPUTER-AlDEl )  DESIGN. VOL. 7. NO.  3. MARCH I Y X 8  

complex. Let us now concentrate on this event. Node U ,  

could be either a begin or an end node of a net assigned 
to this layer. Clearly, if SL/, , ,-  I contains four nets, i t  is 
impossible for the next event to be the begin node of a net 
assigned to this layer as otherwise we would have five 
active nets. If SLh,; - I contains zero nets the next event 
cannot be the end node of an active net in this layer. Let 
us now consider all possible states SL,,,,  - I .  There are 
seven cases: 

C u s e l :  SLh.i-l = 0. 
Clearly, the next event must be finding the begin node 

for net Nj .  In this case the set of valid orderings is given 
by the expression (*). Therefore the next state is SLl,,i = 

{ N j  1. 
Case2:  sLh , i - l  = { a } .  
If the next event is finding the end node for net a, then 

SLh,,  = 1;3. On the other hand if the next event is tinding 
the begin node for net N j ,  then the set o f  valid orderings 
is given by the expression (*, *). Therefore, SL,,,, = { U ,  

Nj > .  
Cuse3: SLh,, -= { a ,  O } .  
If the next event is tinding the eiid node for net b (a 

similar case would arise if net a is the one to end first), 
then SLh.; = { a } .  On the other hand if the next event is 
finding the begin node for net N j ,  then the set of valid 
orderings is given by the expression (*, *, *). Therefore, 
SLh,; = { U ,  Nj,  b } .  

Cuse 4: sLh,;- 1 = { U ,  b,  C } .  

If the next event is finding the end node for net L' (a 
similar case would arise if net a or net b is the one to end 
first), then SLh,; = { a ,  b } .  On the other hand, if the next 
event is finding the begin node for net N,,  determining the 
next state is more complex. The reason for this is that we 
look ahead to check all the possible states that would arise 
from this state. If the next event is finding the end node 
of Nj ,  then the set of orderings is given by either the 
expression (*, N j ,  *, *) or (*, *, N,, *) and therefore the 
next state SL,,,, is [ a ,  b, N j ,  c ] .  When we find the end 
node of N,, the set of orderings is given by (*, *, *) (the 
resulting state will be { a ,  b,  c ) ) .  However, if the next 
event is finding the end node of net b (a similar situation 
would arise if net a or net c is the next net to end), the set 
of orderings is given by either the expression (*, b,  N,, 
*) or (*, N j ,  b,  *) and SLh,i is ( a ,  b,  N j ,  c ) .  When we 
find the end node of net b, the set of valid orderings is 
given by the expression (*, N,, *) and the resulting state 
will be ( a ,  N,, c ). 

Case 5: S L h , l - I  = [ a ,  b,  c ,  d ] .  
Discussion of this case is omitted since it is included in 

Case 6: SL,,,, - I = ( a ,  b,  c ,  d >. 
Discussion of this case is omitted since i t  is included in 

Cuse 7: SL, , , ; -  I = ( U ,  b ,  c ) .  
If the next event is finding the end node for net c (a 

similar case would arise if net U or net h is the one to end 
first), then SLh,; = { a ,  b ). On the other hand if the next 
event is finding the begin node for net N j ,  determining the 

case 4. 

Case 4. 

next state is more complex. The reason for this is that we 
shall look ahead to check if this event would produce fea- 
sible solutions. If it does not generate even one feasible 
solution, we shall eliminate this state from further consid- 
eration. If the next event is finding the end node of net N,, 
or net b (the net in the center), then we know that the set 
of orderings is given by either (*, b, N,, *) or (*, N,,  b,  
*) and, therefore SLh,, = ( a ,  b,  N,, c ) .  However, if this 
is not the case (the next net to finish is either net a or net 
c), it is simple to see that there exists no feasible routing 
for the set of nets assigned to this layer. Therefore, we 
can eliminate this set of feasible solutions. 

The transitions explained above are summarized Fig. I .  
Now we are ready to present algorithm Q. Let S, denote 
the set of feasible solutions when considering nodes 1 
through node i. Clearly So is U .  Algorithm Q finds all 
possible states Si from Si I .  When coniputing S, from 
S i -  I ,  if iii is a begin node, we assign this begin node to 
each of the layers in each of the f-tuples following the 
transition function given in Fig. 1.  If it is an end node, 
we delete such a net from all feasible states and merge 
identical states. It is simple to see from the way we de- 
fined our transition function that a termination of a net is 
always feasible because such a net, if in the company of 
three other nets, will always occupy one of the central 
tracks. We proceed computing these S's until we find a 
state SI = @ and there are active nets in  which case the 
solution to the decision problem is false, or until we reach 
S,, in which case the answer to the decision problem is 
true. The algorithm is given below. 

algorithm Q 
so + 0 
for i = 1 to n do 

case 
:node U ,  is the begin node for net N , :  

construct SI from S, - by assigning net N, to 
each of the layers in each of the /-tuples in 
SI I and following the transitions given in 
Fig. 1. 

SI is computed from SI - I by deleting net N, 
from all the 1-tuples in S, - and eliminating 
equivalent states. 

:node U ,  is the end node for net N , :  

endcase 
if SI = 0 and there are active nets then re- 
turn( false) ; 

endfor 
return(true); 

end of algorithm Q; 

The T1-layering problem can be stated as follows: Given 
a single row routing problem, and a partition Tof the left- 
most c nets ( c  is any integer constant h 0) ,  is there a 
partition P into 1 equivalence classes such that each set of 
nets in each equivalence class is a (2, 2)-single row rout- 
ing problem and T C P? We say that T G P if deleting 
some elements from P generates partition T. This new de- 

__ 
1 1 



GONZALEZ AND KURKI-GOWDARA: MINIMIZATION OF SINGLE ROW ROUTING 423 

begin 

<a,b,c> 

Fig. 1 .  Transition function 

cision problem can be solved by using an algorithm sim- 
ilar to algorithm Q .  The main difference is that instead of 
starting with So = 0, the algorithm starts with S, = X ,  
where X is the set of feasible solutions obtained from par- 
tition T. We shall refer to this procedure as algorithm R. 

Let us now explain algorithm S ( c ) ,  where c is a non- 
negative integer constant. Algorithm S (  c )  proceeds in a 
depth first search order for the first c levels (first c nodes) 
and for each set of feasible solutions it encounters at level 
c it solves the remaining subproblem by invoking algo- 
rithm R,  i .e . ,  it proceeds in a breath first manner from 
that point on. The procedure stops with an affirmative an- 
swer the first time algorithm R returns an affirmative an- 
swer. The procedure will stop with a negative answer if 
all the calls to algorithm R return a negative answer. Note 
that algorithm S(0) is identical to algorithm Q.  An im- 
portant feature of algorithm S( c)  is that none of the iden- 
tical solutions that appear in the first c levels will be 
merged together. Also, identical solutions at some level 
greater than c will be merged together only if they are 
generated during the same invocation of algorithm R .  
Later on we explain how these decisions affect the per- 
formance of the algorithm. 

In practical situations, we are interested in finding a 
routing with the least number of layers. So far the only 
problem that we can solve are decisions problems related 
to the layering problem. Let us now show how an optimal 
routing can be obtained. Let us assume that we begin with 
a problem instance with density d. Clearly, a lower bound 
for the number of layers in an optimal solution is LB = 
r d / 4 1  . From the result in [5] we know that an upper 

bound for the number of layers in an optimal solution is 
UB = r d / 3  1 . To find the number of layers in an opti- 
mal solution, we can perform a binary search on the set 
of integers in the interval [ LB, UBI .  In each iteration we 
need to solve an 1-layering problem. After [log, ( UB - 
LB + 1 ) 1 iterations we will find the number of layers in 
an optimal solution. Let h be this number. Before finding 
an optimal routing we first must find an optimal partition. 
There are two methods for finding an optimal partition. 
The first method consists of modifying the data structure 
to keep track of all the nets assigned to each layer. Find- 
ing an optimal partition with this additional information 
becomes a trivial matter. Let us now consider the second 
method for finding an optimal partition. First of all we 
explain how this works with algorithm Q .  To find an op- 
timal partition we will invoke algorithm R several times. 

Let us assume that the TI - I I-layering problem has a so- 
lution. We now show how to find a partition T, such that 
the T,l-layering problem has an answer yes. If node U ,  is 
an end node, then from the transition function we know 
that for T, = T, - the TI 1-layering problem has a yes an- 
swer. On the other hand, if it is a begin node, this new 
net could be assigned to any of the 1 different layers. We 
try each of these assignments one at a time by executing 
algorithm R until one returns the answer yes (note that 
since the T, - I-layering problem has an answer yes, at 
least one of the assignments of the new net to the layers 
will produce a partition with a yes answer). The partition 
T, is just T, - I together with this last assignment. To ob- 
tain a net partition using the second method and running 
algorithm S( c ) ,  we proceed exactly as when using algo- 
rithm Q after level c .  Before level c, we can easily keep 
the net partition at each point. Note that in this case this 
additional information can be kept in c records. 

111. COMPLEXITY ISSUES A N D  EXPERIMENTAL RESULTS 

In most practical situations we are only interested in 
problems that can be solved in fewer than 16 layers. 
Therefore, when analyzing the complexity of our algo- 
rithms we assume that 1 is a fixed constant. As noted be- 
fore, k is also a fixed constant. 

The maximum number of different active net partitions 
at any given level is at most ( 2 k l ) !  = (41 )!. Since all the 
orderings in each layer can be coded into a single tuple 
and there are I layers, the maximum number of states at 
any level is at most (41)!/241. Therefore, IS, I 5 
(41)!/241 in each iteration performed by algorithm Q .  
Since 1 is a constant, the (worst and best case) time com- 
plexity of algorithm Q is O ( n ) .  Clearly, the constant as- 
sociated with these time complexity bounds is large. The 
space requirements for this algorithm are also large. The 
same bounds also applies to algorithm S(0) since it is 
identical to algorithm Q .  However, algorithm S ( n )  be- 
haves quite differently. The best case time complexity 
arises when the first depth first path leads to an answer of 
yes. This is O ( n )  with a very small constant. The only 
problem with this algorithm is the worst-case time com- 
plexity. This is O ( I " )  since we cannot cancel identical 
partial solutions and at each step a net can be assigned to 
the 1 different layers. With respect to the space bound, it 
is small since we need to keep at each level only a small 
set of feasible solutions if we generate the feasible solu- 
tions in a lexicographic order. 

Note that the above analysis only considers the extreme 
cases of our strategy. Different values of c ,  generate dif- 
ferent types of algorithms. As c increases the worst case 
time complexity bound increases, the space requirements 
decrease but the constant associated with the best case 
time complexity bound decreases. 

Constructing the actual routing takes O ( n )  time if we 
are using the first method (the one with large space re- 
quirements). If we use the second method then the worst- 
case time complexity for algorithm Q increases to O (  n ' ) .  

-. 1 1 



424 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 7. NO. 3, MARCH 1988 

For algorithm S( n ) the worst-case time complexity re- 
mains exponential. 

An experimental evaluation of our algorithms was con- 
ducted by solving 50 randomly generated problems on a 
SUN-2 with 1 megabyte of memory, and on a VAX-750 
with 4 megabytes of memory. A description of the prob- 
lems generated is given in Table I. 

For 4 out of the 50 problems, our algorithm was stopped 
after 100 hours of CPU time. However, for these prob- 
lems we obtained a solution with no more thanf*  + 1 
layers, where f * is the number of layers in an optimal 
solution. 

The yes answers were generated by algorithm S( c) with 
c = 0.5 n in a matter of few seconds to minutes of CPU 
time. Algorithm Q had to spend about 30 hours on a few 
problems to generate a no answer. It is simple to see that 
if the answer is yes to a problem instance than algorithm 
S ( c )  should be used, whereas if the answer is no we are 
better off using algorithm Q .  The performance of algo- 
rithm S( c )  greatly depends on the value of c. Let us now 
consider problems with a yes answer. When c / n  is 0.65, 
the algorithm usually takes a few seconds. For c / n  = 
0.40 the algorithm takes about 10 min. However for c / n  
at about 0.20 the algorithm takes about 25 min. For many 
of these cases it would take a very long time for S ( 0 )  to 
terminate. Problems with an answer yes usually can be 
solved quickly. Problems with an answer no usually take 
a long time. 

IV. DISCUSSION 
We have shown that there is an “efficient” dynamic 

programming algorithm to solve the single row routing 
problem, for the case when there is a fixed number of 
layers and a fixed number of tracks per layer. The worst 
case time complexity for this algorithm is linear. Our al- 
gorithms proceed by solving a set of decision problems. 
Decision problems with a yes answer can be solved 
quickly, however, decision problems with a no answer 
are very hard to solve. Consequently, sequential search is 
better than binary search in our search for the minimum 
number of layers. From our experimentation, we conjec- 
ture it is always possible to generate solutions with f *  
layers quickly. 

The best way to solve the layering problem is by exe- 
cuting algorithm S( c)  for different values of c in parallel. 
Parallel computers with about 10 processing elements 
would be perfect for the job. 

There are several heuristics used by our algorithms to 
speed up the solution process. One of these heuristics uses 
the results in [5]  which assert that a solution can be easily 
obtained if the remaining problem has density less than or 
equal to 3 * the number of layers. Other speed ups for the 
algorithm involve the use of efficient data structures and 
fast sorting algorithms. 

Our algorithms can be easily adapted to solve problems 
when k > 2. The main changes deal with the coding of 
feasible solutions. The time required to solve these prob- 
lems is larger because the set of feasible partitions in- 

- 

TABLE I 

Number of Problems 
Generated Number of Nets Density 

_ _ _ ~  

10 20 12 
10 30 16 
I O  40 22 
I O  50 29 
I O  60 33 

creases with k .  Our algorithm can be easily adapted to 
handle the case when a subset of the nets have been as- 
signed to specific layers. The time and space requirements 
of our algorithms decreases with these additional con- 
straints. 

REFERENCES 
T. Gonzalez, “An approximation for the via assignment problem,” 
IEEE Trans. Computer-Aided Design, vol. CAD-3, pp. 257-264, 
T. Gonzalez and K. G. Shashishekhar, “An efficient algorithm to min- 
imize the number of layers in single row routing problems with fixed 
street capacity,” presented at 1986 Physical Design Conf., Houston, 
TX, Mar. 1986. 
S. Y. Han and S .  Sahni, “Layering algorithms for single row rout- 
ing,” in Proc. 22nd Design Aurornarion Conf., pp. 516-522. 
S .  Han, and S .  Sahni, “Single row routing on narrow streets,” IEEE 
Truns. Computer-Aided Design, vol. CAD-3, pp. 235-241, July 1984. 
E. Kuh, T .  Kashiwabara, and T .  Fujisawa, “On optimal single-row 
routing,” IEEE Trans. Circuits Syst., vol. CAS-26, June 1979. 
R. Raghavan and S .  Sahni, “Optimal single row router,” IEEE Truns. 
Computers, vol. C-32, pp. 209-220, Mar. 1983. 
S. Sahni, A. Bhatt, and R. Raghavan, “The complexity of design au- 
tomation problems,” in Proc. 19th Design Automation Conf., June 
1981. 
H. So, “Some theoretical results on the routing of multilayer printed- 
wiring boards,” IEEE Symp. Circuits and Systems, pp. 296-303, 1974. 
S .  Tsukiyama, E. S.  Kub, and 1. Shirakawa, “On the layering problem 
on multilayer PWB wiring,” IEEE Truns. Computer-Aided Desigji, 
vol. CAD-2, pp. 30-38, Jan. 1983. 

* 
Teofilo F. Gonzalez was born in Monterrey, 
Mexico, in 1948. He received the B.S. degree in 
computer science from the Instituto Technologico 
de Monterrey and the Ph.D. degree in  Computer 
Science from the University of Minnesota, Min- 
neapolis, in 1972 and 1975, respectively. 

He has been a member of the Computer Sci- 
ence Faculty at the University of Oklahoma, the 
Pennsylvania State University, the Instituto Tec- 
nologico de Monterrey and the University of Texas 
at Dallas. He is now Professor of Computer Sci- 

ence at the University of California, Santa Barbara. His major research 
interests are in the design and analysis of algorithms, computational as- 
pects of computer-aided design, and scheduling theory. 

Dr. Gonzalez is a member of the Association for Computing Machinery, 
IEEE Computer Society, and the Operations Research Society of America. 

* 
Shashishekhar Kurki-Gowdara received the 
B.E. degree in electrical and electronics engi- 
neering from Bangalore University, India, in 
1980, and the M.S. degree in computer science, 
from the University of California, Santa Barbara, 
in  1980 and 1982, respectively. He is currently 
studying for the Ph.D. degree in computer Sci- 
ence at the University of California, Santa Bar- 
bara. 

His research interests include design and anal- 
ysis of algorithms, VLSI routing and placement 

algorithms, and computability theory. 
Mr. Kurki-Gowdara is a member of the ACM. 

1 1 


