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An Approximation Algorithm for the Via Placement 
Problem 

TEOFILO F. GONZALEZ AND SHASHISHEKHAR KURKI-GOWDARA 

Abstract-In this paper, we consider the via placement problem that 
arises in multilayer printed circuit board (MPCB) layout systems. It is 
shown that this problem can be formulated as an integer linear max- 
flow problem. Since the integer linear max-flow problem is an NP-corn- 
plete problem, it is unlikely that one can find an el€icient algorithm for 
its solution. However, a solution to our via placement problem can be 
obtained by relaxing the integer constraints in the integer linear max- 
flow problem. A solution to the relaxed linear max-flow problem can 
be obtained by solving a linear programming problem. Our procedure 
generates in time bounded by a low order polynomial a placement with 
no more than 2 * don density, where don is the density in an optimal 
placement. 

Keywords-Multilayer printed circuit boards, routing, via place- 
ment, polynomial time approximation algorithms, NP-complete prob- 
lems, linear max-flow problem. 

I. INTRODUCTION 
ARGE SCALE computer systems are built by inter- L connecting multilayer printed circuit boards (MPCB). 

Each MPCB consists of a grid with r rows and n columns. 
The computer chips (components) are mounted on top of 
the MPCB and their terminals are inserted in drilled- 
through holes called pins. The pins are located at grid 
points (intersection of a row with a column). Terminals 
from different chips are connected by printed wires lo- 
cated on any of the layers. Each set of points (pins) that 
need to be made electrically common is called a net. In 
this paper we use the routing model proposed by So [ 171. 
In this model only points (pins) on the same line (row or 
column) can be connected directly. The physical routes 
for these wires must be confined within the channels on 
both sides of the line. All the row connections are per- 
formed on one layer, and all the column connections are 
carried out on another layer. The main advantage of this 
model is that the MPCB routing problem is reduced to 
solving no more than r + n single-line single-layer rout- 
ing problems. The single-line single-layer routing prob- 
lem can be solved by the algorithms given in [lo], [13], 
[14], and [19]. A sample problem is shown in Fig. l(a) 
and a wire layout is given in Fig. l(b). 
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Fig. 1. Simple MPCB routing problem. 

It is simple to find problem instances that cannot be 
solved under the above model (Fig. 2(a)). To solve these 
problem instances, one introduces a set of via columns. 
These via columns are initially placed to the right of all 
the pin columns and the vias are located at grid points. 
Hereafter, when we refer to a point, we mean a pin or a 
via; and when we refer to So’s model, we use the new 
definition for point. We assume that n also includes the 
via columns. The vias are assigned to the nets in such a 
way that a routing under the above model exists (see Fig. 

The via assignment problem (VAS) consists of adding 
the least number of via columns and specifying the points 
(pins and/or vias) that need to be connected directly in 
such a way that no two pins from the same net are con- 
nected to vias from different via columns and a routing 
under the above model exists. The multi-via assignment 
problem (MVAS) is defined similarly, except that we al- 
low the pins from a net to be connected to vias from more 
than one via column. Fig. 3 illustrates via assignments 
and a final layout for a? instance of the VAS and MVAS 
problems. As noted in [18], an optimal solution to the 
MVAS problem requires no more via columns than an op- 
timal solution to the VAS problem; however, the number 
of vias used in an optimal solution to the MVAS problem 
is usually larger than those in an optimal solution to the 
VAS problem (e.g., see Fig. 3). 

As noted in [7], finding an efficient approximation so- 
lution for the VAS problem is as hard as finding an effi- 
cient approximation algorithm for the (node) graph color- 
ation problem. The problem of finding a good 
approximation solution to the (node) graph coloration 
problem is a computationally difficult problem [3]. On the 
other hand, finding a good approximation solution for the 
MVAS problem is a computationally tractable problem 
[7]. Approximation algorithms and heuristics for these 
problems appear in [ 11, 171, [ 181, and [20]. For the MVAS 
problem the algorithm in [7] guarantees a solution with a 

2(b)). 
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Fig. 2 .  MPCB routing problem. (a) MPCB routing problem that cannot be 
solved without introducing via columns. (b) A solution to (a) with one 
via column. 

I ,  

(a) (b) 
Fig. 3 .  Solutions to the VAS and MVAS problem. 

number of via columns which is not more than 3 * OPT, 
where OPT is the number of via columns in an optimal 
solution. 

The above formulation suffices to solve all MPCB rout- 
ing problems as long as there are enough tracks between 
each pair of adjacent lines. This assumption is not real- 
istic. In practice, there are only a small number (usually 
two) of tracks on each side of the line in each of the sin- 
gle-line single-layer routing problems. In order to solve 
the MPCB routing problems when the number of tracks is 
small, it is required to increase the number of layers. That 
is, if there are h layers for routing the row wires and U 

layers for routing the column wires, then instead of solv- 
ing r + n single-line single-layer routing problems, we 
solve r single-row h-layer routing problems and n single- 
column v-layer routing problems. The layer assignment 
(layering) problem consists of finding the least number of 
layers (h  + U )  required to sol& an MPCB routing prob- 
lem. There are several heuristics and approximation al- 
gorithms to solve this problem [8], [9], [21]. Gonzalez 
and Kurki-Gowdara [8] developed a polynomial time dy- 
namic programming algorithm that generates an optimal 
solution to the layering problem when there are a small 
number of tracks and a fixed number of layers. The main 
drawback of this algorithm is that the constant associated 
with the worst case time complexity bound is large; how- 
ever, the experimentation reported in [8] indicates that 
quite often the algorithm generates near-optimal solutions 
quickly. 

There are MPCB routing problems whose optimal so- 
lution under the above model requires an excessive num- 
ber of layers. A solution with a smaller number of layers 
can be obtained by moving the via columns and placing 
them between adjacent chips. This operation is realistic 
since it can be carried out by moving the chips apart while 
maintaining their relative columnwise ordering. The 

placement of the via columns is such that the maximum 
density of any of the single-row routing problems is least 
possible, where by density we mean the maximum num- 
ber of nets that cross (with a pin to the right and to the 
left) any channel (the region between adjacent points) on 
the row. This problem is called the via placement opti- 
mization (VPO) problem. Note that different placements 
have exactly the same column density, but their row den- 
sities may be different. Another important observation is 
that minimizing the density does not necessarily imply that 
a solution with the minimum number of layers can be ob- 
tained from it. However, minimizing density tends to 
minimize the number of layers. We assume that if a via 
in row i is assigned to net j ,  then there exists at least one 
pin from ne t j  in row i .  This assumption is not too restric- 
tive because if vias are assigned using the VAS model, 
then the assumption is immediately satisfied. When vias 
are assigned according to MVAS model this condition may 
not be satisfied. However, if one solves the MVAS prob- 
lem using the algorithm in [7], then the assumption holds. 
Since the algorithm in [7] is the currently best algorithm 
for the MVAS problem, it appears at this time that our 
assumption is not restrictive. Heuristics for the VPO and 
related problems appear in [2] and [6]. 

In this paper we study the VPO problem. We present 
an algorithm that generates a solution with a density which 
is not more than twice the optimal density doPT. Our tech- 
nique consists of reducing the VPO problem to an integer 
linear max-flow problem. Since this problem has been 
shown to be NP-complete [ 151, it is unlikely that one can 
find an efficient algorithm for its solution [4]. However, 
if we relax the integer constraints in this linear max-flow 
problem, a solution may be obtained by standard linear 
programming algorithms [SI or by more recent algorithms 
[ I l l ,  [12], [22]. The solution to the (non-integer) linear 
max-flow problem is not a solution to our VPO problem, 
but one can obtain a solution to our problem from it. The 
density for such a solution is shown to be within two times 
the density in an optimal solution. The time complexity 
for our algorithm is bounded by a low order polynomial 
in terms of r and n,  and we believe it can be obtained 
quickly. In Section I1 we formally define our problem as 
well as the integer max-flow problem. In Section I11 we 
show that a restricted via placement decision problem can 
be solved by formulating it as an integer max-flow prob- 
lem with bundle capacities. In Section IV we show that a 
solution with a density that is within two times the opti- 
mal density can be obtained from a solution to the (integer 
constraint relaxed) max-flow problem with bundle capac- 
ities. We show in Section V how the restrictions made in 
the previous sections can be handled by a more general 
algorithm. Therefore, our result holds for the unrestricted 
VPO problem. 

11. DEFINITIONS AND PROBLEM SIMPLIFICATION 

Let P be a multilayered printed circuit board. Board P 
consists of r rows and n columns (columns 1, 2, * . , 
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n - U are pin columns and remaining U columns are via 
columns numbered 1, 2, * * * , U) .  At the intersection of 
a row with a column there is a point (pin or via). Each 
point belongs to at most one net. The nets are represented 
by sets NI, N, ,  . * * , N,, where N j  consists of the set of 
points in net i .  Between every pair of adjacent pin col- 
umns there is a channel, and there is a channel to the left 
(right) of the first (last) pin column. We label the channels 
with the column number that appears immediately to the 
left of the channel, if there is one, and zero otherwise. 
Fig. 4 shows a problem instance with r = 5 ,  n = 11, U 

= 4, m = 6, and the integer i at a grid point indicates 
that the point belongs to net N i .  The objective of the VPO 
problem is to place the via columns in the channels (any 
number of via columns per channel) in such a way that 
the density of the resulting problem is least possible. The 
point density of (point) p located at the intersection of row 
k with column I is defined as the number of nets with si 
5 1 I e; and si # e ; ,  where s i ( e i )  is the leftmost (right- 
most) column containing a point from net i in row k .  The 
row density is the maximum of the point densities for the 
points in that row. The density of a problem is defined as 
the maximum of the row densities. Note that all via place- 
ments have exactly the same column density. We should 
also point out that each via column has at least two vias 
assigned to nets. If this is not the case, the via column 
may be deleted without modifying the pin connectivity. 

Instead of solving the VPO problem directly, we solve 
a set of via placement decision problems (VPD problems) 
and then from their solutions we construct the solution to 
the optimization problem. The input to the VPD problem 
is identical to that for the VPO problem, except that there 
is another input value denoted by d,,,. The VPD problem 
consists of determining whether there is a placement, P ,  
for the via columns with density, denoted by d ( P ) ,  at 
most d,,,. Let d,,,, be the density of the pin columns (re- 
member that via columns are not pin columns) in the VPD 
problem. Clearly, in any placement, P ,  of the via col- 
umns the resulting density d ( P )  is at most (d,,,, + U). 
The decision problem can be solved a logarithmic number 
of times for d,,, between d,,, and (d,,,, + U )  until the 
optimal density bound is found. Thus by repeatedly solv- 
ing the decision problem log ( U )  times, the optimal den- 
sity is obtained. Once this optimal value is computed, an 
optimal placement is constructed from the “flow” values 
obtained by solving the decision problem (this will be ex- 
plained later on). The main reason for introducing the via 
placement decision problem is to simplify our exposition. 
In Section V we show how to solve the via placement 
optimization problem directly. 

Let us now consider the following two restrictions on a 
via placement problem. 

R1) If a via in row i is assigned to netj ,  then no other 
via assigned to net j is located in row i .  

R2) If there is a placement P for the via placement 
problem with density d ( P ) ,  then there is another 
placement P’ with density d ( P  ’) I d ( P )  in which 

0 0 0 0 0 0 0 m E l n E l  
0 0 0 0 8 0 0 E l E l E l 0  
0 0 8 8 0 0 0 E l ~ l z l 0  
0 o o o o o o m ~ l z l E l  
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Fig. 4 .  MPCB routing problem. 

the via columns that appear in each channel are 
placed in increasing order of their initial column 
ordering (index). 

In what follows we use the notation ( i ,  j )-VPO (or ( i ,  j )- 
VPD) to refer to a VPO (VPD) problem that satisfies re- 
strictions Ri through Rj .  It is important to remember that 
our final result is a polynomial time algorithm for the (un- 
restricted) VPO problem that generates a solution with 
density 5 2  * doPT. 

The integer max--ow problem with bundle capacities is 
defined as follows. As input we are given a directed graph 
G = ( N ,  E )  with two special nodes labeled source and 
sink, and an edge eo directed from the sink to the source; 
a collection S = (SI, S 2 ,  - , S,)  of subsets of arcs; and 
a collection C = (c , ,  c2, . , c,) of bundle capacities. 
Graph G must also satisfy the property that the only edge 
emanating from the sink and the only edge ending in the 
source is edge eo. The flow problem consists of assigning 
a non-negative integer flow to each edge in E so as to 
maximize the flow along eo (i.e., from sink to source, 
which is identical to the flow from source to sink), pro- 
vided that flow is conserved at each node (for each node, 
the total incoming flow must equal the total outgoing flow) 
and the bundle capacities are satisfied (for 1 I i I I, the 
total flow assigned to the edges in S, must not exceed the 
bundle capacity ci). The max-$ow problem with bundle 
capacities is defined similarly, except that the flows are 
allowed to be non-negative real numbers. The integer 
max-flow problem with bundle capacities has been shown 
to be NP-complete [ 151; however, when the integer con- 
straints are relaxed it is well known that the problem can 
be solved by formulating it as a linear programming prob- 
lem which we know is polynomially solvable. 

As an example, consider the integer max-flow problem 
defined over the directed graph depicted in Fig. 5 .  The 
edges are labeled with their corresponding flows. The col- 
lection S of arc bundles is ( { (source, u1 ), (source, U,) }, 
{ (source, U,), ( source, u3) } , { (source, u3), (source, 
V I ) } ,  { ( V I ,  sink), ( ~ 2 ,  sink)}, {(U,,  sink), ( ~ 3 ,  sink)}, 
{ ( v3, sink), ( u1, sink) } ) and the collection of the bundle 
capacities is C = ( 1 ,  1, 1, 1, 1, 1 ) .  

Clearly the maximum integer flow from source to sink, 
given that the above bundle capacities are satisfied, is one. 
The optimal flows are: eitherf,, = f l  = f4  = 1 and all 
otherf;’s zero; f o  = f 2  = f s  = 1 and all otherfi’s zero; 
orfo = f 3  = f6 = 1 and all otherfi’s zero. After relaxing 
the integer constraints (the flows could be any non-nega- 
tive real numbers) we obtain a max-flow problem with 
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Fig. 5 
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Max-flow problem with bundle capacities. 

maximum flow equal to 3 /2.  The optimal flow values are: 

that the maximum flow in an optimal solution for a max- 
flow problem is greater than or equal to the maximum 
flow in an optimal solution for the corresponding integer 
max-flow problem. The max-flow problem defined above 
is formulated as a linear programming problem as fol- 
lows. 
maximize fo 
subject to 

f l  = f 2  = f 3  = f 4  = fs = f6 = 0.5 andf, = 1.5. Note 

/ *  conservation rules *I 
f o  - fl - f 2  - f 3  = 0; f l  - f4  = 0;  

f l  + f 2  I l ; f 2  + f 3  I l ; f 3  + f l  5 1; 

f, 2 0 

f 2  - f S  = o ; f 3  -f6 = o ; f 4  + f S  + f 6  - f O  0;  
/ *  bundle capacities *I 

f4 + f S  5 lif.5 + f 6  5 l ; f 6  + f 4  5 1; 
/*  flows must be non-negative real values */ 

When there are max selectors, each element in a bundle 
is a set of edges rather than a single edge, and the restric- 
tion is that instead of adding the flow of the single edge, 
we take the maximum of the flow along the edges in the 
set. Formally, instead of being given a collection of sub- 
set of edges, we are given a collection S of sets whose 
elements are subsets of edges and a collection of capaci- 
ties C .  ForexampleS = ( { { a ,  b, c } ,  { d ,  e } } ,  { { g ,  
h } ,  { i } } ) and C = ( x ,  U). This is interpreted as follows. 

max { f (4 ,  f (b)9  f (4) + max { f ( 4  m} 5 x ;  

and max { f ( d > f ( h ) }  + f ( i >  I Y 
wheref(x) is the flow along edge x. By relaxing the in- 
teger constraints, the problem can be formulated as a lin- 
ear programming problem. In particular, the above con- 
straints are modeled by introducing variables x I ,  x and 
x3 together with the following inequalities in the linear 
program. 

f ( a )  I q ; f ( b )  5 x, ; f (c)  I XI 

f(d) I x2;f(e) 5 x2 

f ( g )  I X G f ( h )  5 x3 

x3 + f ( i >  I Y 

f(*) 2 0  
x, L 0. 

XI  f X 2  I x  

The integer linear max--ow problem is a max-flow 
problem with max selectors and bundle capacities in which 
a variable may be used as a bundle capacity. It is simple 
to show that the noninteger version of this problem can 
also be formulated as a linear programming problem. That 
is why we call the problem the linear max-flow problem. 

111. FORMULATION OF THE ( 1 ,  1 )-VPD PROBLEM AS 

AN INTEGER MAX-FLOW PROBLEM WITH BUNDLE 
CAPACITIES 

In this section we show that the ( 1, 1 )-VPD problem 
can be formulated as an integer max-flow problem with 
bundle capacities. However, finding a solution to the 
above integral flow problem is computationally difficult. 
In Section IV, we show that a suboptimal solution to the 
( 1, 1 )-VPD problem can be obtained from an optimal so- 
lution to the relaxed max-flow problem with bundle ca- 
pacities, which can be solved in polynomial time. We be- 
gin by formulating the ( l ,  2 )-VPD problem as an integer 
max-flow problem with bundle capacities, and then we 
show how to formulate the (1 ,  1)-VPD problem. 

Given a ( 1 ,  2)-VPD problem, we formulate it as an 
integer max-flow problem with bundle capacities. That is, 
given a (1 ,  2)-VPD problem X we construct an integer 
max-flow problem Y such that Y has an integer flow from 
source to sink with value equal to v if and only if X has a 
placement P with density d ( P )  I d,,,. First let us con- 
struct apow graph from the ( 1, 2)-VPD problem X .  There 
are two special nodes labeled source and sink. For each 
via column k (  1 I k I U ) ,  we introduce the following 
set of nodes and edges. The set of nodes is { ( i ,  j ) k  I 1 I 
i I 2, 0 5 j I n - U } .  Assume that these nodes are 
laid along two parallel horizontal lines, with the node 
( 1, j )k above (2 ,  j )k and node ( i ,  j ) k  to the left of ( i ,  j 
+ l ) k .  The (horizontal) edges in the flow graph are di- 
rected from node ( i , j ) k  to node ( i , j  + l ) k ,  for 1 I i I 
2, and 0 5 j < n - U. The (vertical) edges are directed 
from node ( 1 ,  j ) ,  to node (2,  j ) k ,  for 0 5 j I n - U .  
Two more edges, one from the node labeled source to the 
node ( 1, O),, and the other from node (2 ,  n - v ) ~  to the 
node labeled sink are added to the flow graph. For ex- 
ample, consider the flow graph in Fig. 6 introduced for 
via column i in the problem given in Fig. 4. 

For the moment let us assume that S = ( { el }, { e 2 } ,  
. . .  , { e , } )  and C = (1 ,  1, - , l ) ,  where E = {el ,  
e2, - , e,} is the set of edges in the flow graphs and 
let d,,, = 3. Remember that we intend to construct Y (the 
integer max-flow problem with bundle capacities) in such 
a way that it has a flow from source to sink equal to v if 
and only if the VPD problem X has a placement P with 
density d ( P )  I d,,,. Let us now consider a maximum 
integer flow for the above integer max-flow problem. 
From our formulation it is simple to verify that the max- 
imum integer flow for our problem is four. Let us now 
consider the following optimal integer flow. Assign a flow 
of one to the vertical edges ( (  1 ,  0 ) 1 ,  (2,  0 ) 1 ) ,  ( (  1 ,  O),, 
( 2 ,  O h ) ,  ((1, 1)3, ( 2 ,  1 ) 3 ) ,  and ((1, 2 h 7  ( 2 ,  2)4); a 
flow of one to all edges emanating from node source and 
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ending at node sink; and a flow of one to all other edges 
to form a legal flow, i.e., a flow that satisfies the flow 
conservation rules. Note that there is only one legal flow 
that satisfies the restrictions imposed above. The interpre- 
tation of the individual flows is as follows. The flow graph 
for via column k has a flow of one from source to sink. 
From the structure of the flow graph, the restriction that 
the flows are nonnegative integers and the restriction that 
all flows have a value of at most one, we know that ex- 
actly one vertical edge has a flow of one. Let the edge 
from vertex ( 1, j ) k  to (2,  j )k  be such an edge. This in- 
dicates that via column k is to be placed in channelj. The 
placement, P ,  generated by the above optimal flow is de- 
picted in Fig. 7. Note that in channel number zero the two 
via columns are ordered according to their initial column 
order, i.e., via column 1 is to the left of via column 2. 

For many problem instances any optimal integer flow 
generates a placement with density I d,,,; however, this 
is not true in general. Consider the following optimal flow. 
Assign a flow of one to the vertical edges ( ( 1 ,  7) ,  , 

5)4, (2,  5)4); a flow of one to all edges emanating from 
source and ending in sink; and a flow of one to all the 
other edges to form a legal flow. Note that there is only 
one legal flow that satisfies the restrictions imposed above. 
The placement, P ’ ,  generated by this optimal integer flow 
is depicted in Fig. 8.  Clearly, the density in row 4 is 
greater than d,,,. Therefore the placement is not valid. 

In order for our integer max-flow problem to model the 
( 1 ,  2)-VPD problem, we need to introduce additional 
constraints, i.e.; more elements in S. In other words, our 
modeling so far allows all possible placements and what 
we need is to eliminate the placements that are not valid. 
Let us consider the via placement problem with one via 
column given in Fig. 9(a). The flow graph for it is given 
in Fig. 9(b). An optimal flow is illustrated in the same 
figure as follows: thicker edges indicate a flow of one, 
and thinner edges indicate a flow of zero. The resulting 
placement following our convention for the flow in the 
flow graph in Fig. 9(b) is given in Fig. 9(c), where the 
wiggle lines indicate the regions where the density in- 
creases by one because of the placement of the via col- 
umn. The edges are labeled by the letters a-g and a ’-g ’ 
in Fig. 9(b). In Fig. 9(d) we show the regions in the 
placement where the density increases, because of the flow 
along the edges labeled a-g and a ‘-g ’. Clearly, there is a 
limit on the amount of density that a region can absorb. 
In order to facilitate the introduction of the adaitional 
constraints we make use of the bundle-capacity graph. 

Given a via placement decision problem P ,  we con- 
struct G, (bundle-capacity graph) as follows: 

(2, 7 h ) ,  ((1, 712, (2,  7 h ) ,  ((1, 6)3, (2,  6131, and ((1, 

The set of vertices is defined by the set of grid points 
{(i, (j, k))ll I i I r ,  0 r j  5 n - U, a n d 0  I k I 

The edges in the graph are defined as follows. For 1 I 
i I r ,  0 5 j I n - U ,  and 0 I k < U, there is a directed 
edge from vertex (i ,  (j, k)) to vertex ( i ,  ( j ,  k + 1) ) .  
For 1 I i I r and 0 I j < n - U ,  there is a directed 
edge from vertex (i, ( j ,  U ) )  to vertex (i ,  ( j  + 1, 0)). 

Associated with each edge in the bundle-capacity graph, 
there is an integer (the capacity) and a set of edges from 
the flow graphs (bundles). 

The vertex ( i ,  ( 0 ,  0 ) )  is introduced for convenience 
only. The vertex ( i ,  ( j ,  0))  corresponds to the pin located 
at the intersection of row i with columnj. For 1 I k I 
U, the column (*, ( j ,  k)) indicates the location that via 
column k will occupy if it is placed in channel j .  Let 
d ( i ,  j )  = the current density (i.e., considering only the 
pin columns) of row i after column j and before column j 
+ 1, for 1 5 j < n - U ,  and let d ( i ,  0) = d ( i ,  n - U )  

= 0. The capacity associated with the edge whose tail is 
located at vertex ( i ,  ( j ,  k)) is d,,, - d (  i, j ). Later on, 
we add a set of edges from the flow graphs to the bundle 
associated with each edge. The set of additional con- 
straints is defined as follows. For each edge in the bundle- 
capacity graph, the sum of the flow for the set of edges in 
the flow graphs assigned to the bundle is less than or equal 
to the capacity for that edge in the bundle-capacity graph. 

The bundle-capacity graph for the via placement prob- 
lem given in Fig. 4 with d,,, = 3 and without including 
the bundles is given by Fig. 10. The capacity of an edge 
in the bundle-capacity graph indicates that the density be- 
tween two points may be increased by at most that amount. 

Let us now add edges from the flow graphs to each bun- 
dle (associated with an edge) in the bundle-capacity graph. 
Consider via column k with its flow graph defined over 
t h e ~ e r t i c e s ( l , j ) ~ a n d ( 2 , j ) , , f o r O  I j I n - u.The  
start (end) point si ( e , )  is the leftmost (rightmost) pin that 
needs to be connected to the via on the ith row of via 
column k .  By assumption such points exist (see comment 
just after the definition of the VPO problem in Section I). 

U > .  
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Fig. 9. (a) Via placement decision problem. (b) Flow graph for via col- 
umn. (c) Placement for (a) obtained from the flow in (b). (d) Edges from 
the flow graph included in the bundles. 

0 - - 0  -- a - -  
e--+ 

3 3 3 3 3 3 3  ... 

3 3 3 3 3 3 3  ... ... 3 3 2 2 2 2 2 3 3  ... 

.’. 3 3 3 3 Case 1: j + 2 I si I ei: In this case h is added to the 
bundle associated with the edges whose endpoints are ver- 
tices in the set { ( i ,  ( j ,  k ) ) ,  - - , ( i ,  ( j  + 1 ,  k ) ) } .  That 

0- - 0 -  z is, the density in the region from vertex ( i ,  ( j ,  k ) )  to 
vertex (i, ( j  + 1, k )  ) will be increased by one only when 

3 3 3 3 3 3 3 ... ... 3 3 2 2 2 2 2 3 3 ... 

3 3 3 3 3 3 3  ... 

3 3 3 3 3 3 3  ... 

... 3 3 3 3 

..I 3 3 3 3 
0 - -  0-----0-----0----0 
0 

-o----o----o----. 
n . via column k is placed to the left of channelj + 1. 
w -  

Fig. 10. Bundle-capacity graph constructed for the problem given in 
Fig. 3 with d,,, = 3 .  

Let g represent edge ( (  l , j ) k ,  ( 1 , j  + l ) k )  and let h rep- 
resent the edge ( (2 ,  j ) k ,  (2,  j + We usef (x)  to 
represent the flow along edge x (see Fig. 1 1 ) .  

Clearly, i f f (  g )  = 1, then via column k is not placed 
to the left of pin column j + 1 (i.e., it is not placed on 
channels 1,2 ,  - - , j  ); and i f f (h )  = 1, then via column 
k is not placed to the right of pin columnj + 1 (i.e., it is 
not placed on channels j + 1, j + 2, * ). By construc- 
tion, eitherf( g) is one o r f ( h )  is one, but not both. Now 
we determine in which edge (whose endpoints are vertices 
in the set { ( i , ( j ,  k ) ) ,  , ( i ,  ( j  + 1, k ) ) } )  bundle in 
the bundle-capacity graph these edges must be included. 
This decision is based on the location of si and ei. There 
are six cases that need to be considered, depending on the 
values of si and ei. 

channel ..-* j j+l 
i+ i Din column... I 

case i 

Case 2: j + 1 = si < ei: In this case h is added to the 
bundle associated with the edges whose endpoints are lo- 
cated in the set { ( i ,  ( j ,  k ) ) ,  * * - , ( i ,  ( j  + 1, 0 ) )  ). That 
is, the density in the region from vertex (i, ( j ,  k ) )  to 
vertex ( i ,  ( j  + 1 , O ) )  will be increased by one only when 
via column k is placed to the left of channelj + 1. 

ch-i --. * j j+l 
pin columa-’ j i+l i+2 

casc2 

Case 3 : j  + 1 = si = ei: In this case h is added to the 
bundle associated with in the edges whose endpoints are 
located in the set {(i, ( j ,  k ) ) ,  * * , ( i ,  ( j  + 1, 0) ) ) ,  
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and g is added to the bundle associated with the edges 
whose endpoints are located in the set { ( i ,  ( j  + 1 ,  0)),  
+ - - , ( i ,  ( j  + 1, k ) )  } . That is. the density in the region 
from vertex ( i ,  ( j ,  k ) )  to vertex ( i ,  ( j  + 1 ,  0 ) )  will be 
increased by one only when via column k is placed to the 
left of channel j + 1 ,  and the density in the region from 
vertex (i, ( j  + 1 ,  0 ) )  to vertex ( i ,  ( j  + 1 ,  k ) )  will be 
increased by one only when via column k is placed to the 
right of channel j .  

channel ..--* j j+l  
pin column---* j j+l j+Z 

w 0 f(h) A f(g) 0 
case 3 

Case 4: si < j + 1 < e;: In this case neither g nor h 
is added to any bundle. 

channel --* j j+l 
pin column---* j j+l j+Z 

O O O I 7 8  
case4 

Case 5: si < j + 1 = ei: In this case g is added to the 
bundle associated with in the edges whose endpoints are 

k ) )  }.  That is, the density in the region from vertex ( i ,  ( j  
+ 1, 0 ) )  to vertex (i, ( j  + 1, k )  ) will be increased by 
one only when via column k is placed to the right of chan- 
nel j .  

located in the set { ( i ,  ( j  + 1, 0)),  - - - 3 ( i ,  ( j  + 1, 

channel --.-* j j+ I 
pin column--- j j+l  j+2 

0 
case5 

Case 6: si I ei I j :  In this case g is added to the 
bundle associated with in the edges whose endpoints are 

That is, the density in the region from vertex ( i ,  ( j ,  k ) )  
to vertex (i, ( j  + 1, k ) )  will be increased by one only 
when via column k is placed to the right of channel j .  

located in the set { ( i ,  ( j ,  k )  ), 9 ( i ,  ( j  + 1, k ) ) } .  

channel .---* j j+l  
pin column.--* j J + 1  j+2 

W 0 f(g) A f(g) 8 
case6 

Fig. 12 shows some of the edges in the bundle-capacity 
graph where edges from the flow graphs have been added 
to their bundles. The new constraints are defined for each 
edge in the bundle-capacity graph as the sum of the flows 
for the edges in the bundle must not exceed the capacity. 
After adding these constraints it is simple to prove Lemma 
2 . 1 .  

Lemma 2.1: The ( 1, 2)-VPD problem X has a place- 
ment P with density d ( P )  I d,,, iff the integer max-flow 
problem with bundle capacities Y constructed from it has 
a flow from source to sink equal to U. 

0 Proof: By the above discussion. 

pin column j j+l j+Z 
channel ’-* 

ImZ Fig. 1 1 .  Flow graph. 

Now let us relax (R2), the “ordering” assumption 
when placing more than one via column in the same chan- 
nel. That is, there might not be an optimal placement with 
the property that all the via columns assigned to the same 
channel are placed in order of their initial column index. 
Remember that we refer to this problem as the ( 1 ,  1 ) -  
VPO or the ( 1 ,  1)-VPD problem. To deal with this situ- 
ation we modify the flow graphs and the bundle-capacity 
graph by introducing additional nodes and edges. 

The new flow graphs are constructed as follows. There 
are two special nodes labeled source and sink. For each 
via column k we introduce the following set of nodes and 
edges. The set of vertices is { (1 ,  ( j ,  t ) ) k r  (2 ,  ( j ,  t ) ) k ( O  
I j 5 n - U, and 1 I t I v } . Assume that these nodes 
are laid along two parallel horizontal lines, with node ( 1, 
( j ,  t ) ) k  above (2 ,  ( j ,  t ) ) k ,  and node (i, ( j ,  t ) ) k  to the left 
of node ( i ,  ( j ’ ,  t ’ ) ) k  if ( j  - l )*v  + t < ( j ’  - l ) * v  + 
t‘. The (horizontal) edges are directed from vertex ( i ,  ( j ,  
t ) k  to vertex (i, ( j ,  t + I ) ) k ,  for 1 I i I 2, 0 I j I n 
- U and 1 I t < U. There are also (horizontal) edges 
directedfromvertex(i, ( j ,  v)) tover tex( i ,  ( j  + 1, l ) ) ,  
for 1 I i I 2 and 0 I j < n - U. The (vertical) edges 
are directed from vertex ( 1 ,  ( j ,  t ) ) k  to vertex ( 2 ,  ( j ,  t ) ) k ,  

0 5 j I n - U and 1 I t 5 U. Two more edges, one 
from the vertex labeled source to vertex ( 1 ,  ( 0, 1 ))k, and 
the other from vertex (2 ,  ( n  - U ,  u ) ) ~  to the vertex la- 
beled sink are added to the flow graph. The meaning as- 
sociated with the new flow graph is the following. If the 
vertical edge with flow of one is the edge oriented from 
node (1 ,  ( j ,  t ) ) k  to node (2,  ( j ,  t ) ) k ,  then via column k 
is placed on channel j in its tth position. As we shall see 
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Fig. 13. Bundle-capacity graph for the ( 1 ,  2)-VPD problem. 

later each via column has v positions where it can be 
placed in channel j .  

The bundle-capacity graph G, is now defined as fol- 
lows: 

The set of vertices is defined by the set of grid points 
{ ( i , ( j , k ) ) l l  i i i  r , O I j i n - v , a n d O s  
k I v 2 > .  

The edges in the graph are defined as follows. For 1 i 
i I r ,  0 i j i n - U ,  and 0 5 k < v2, there is an 
edge from vertex ( i, ( j ,  k ) ) to vertex ( i, ( j ,  k + 1 ) ) . 
For 1 5 i I rand 0 5 j < n - v, there is a directed 
edge from vertex ( i ,  ( j ,  v2)) to vertex ( i ,  ( j  + 1 ,  
0 ) ) .  

Associated with each edge, there is an integer (the ca- 
pacity) and a set of edges from the flow graphs (bun- 
dles). 

The vertex ( i ,  ( 0 ,  0 ) )  is introduced for convenience 
only. The vertex ( i ,  ( j ,  0))  corresponds to the pin located 
at the intersection of row i with columnj. For 1 5 k i 
U and 1 I 1 i U ,  the column (*, ( j ,  ( I  - 1 ) v  + k ) )  
indicates the location that via column k occupies if it is 
assigned to its Ith place in channelj. Note that now there 
are v different locations in a channel where each via col- 
umn can be placed. This allows arbitrary placement order 
for the via columns in each channel. Let d (  i, j ) be the 
current density (i.e., considering only the pin columns) 
of row i after column j and before column j + 1, for 1 5 
j < n - U ,  and let d ( i ,  0) = d ( i ,  n - U )  = 0. The 
capacity for the edge with tail at vertex ( i ,  ( j ,  k ) )  is d,,, 
- d (i ,  j ). The set of additional constraints is defined as 
follows. For each edge in the bundle-capacity graph, the 
sum of the flows for the set of edges in the flow graphs 
assigned to the bundle is less than or equal to the capacity 
for that edge in the bundle-capacity graph. Fig. 13 shows 
the nodes introduced for the problem given in Fig. 4. 

The edges in the flow graph that are associated with 
each bundle in the bundle-capacity graph are defined by 
following a procedure similar to the one for the ( 1, 2)- 
VPD problem. From our construction rules it is simple to 
prove the following lemma. 

Lemma 2.2: The ( 1, 1 )-VPD problem X has a place- 
ment P with density d (  P) I d,,, iff the integer max-flow 
problem with bundle capacities constructed from it has a 
flow from source to sink equal to v. 

0 Proof: By the above discussion. 

IV. SUBOPTIMAL SOLUTION FOR THE [ 1, 1 )-VPO 
PROBLEM 

In the previous section, we presented a method for solv- 
ing the (1, 1)-VPD problem by reducing it to the integer 
max-flow problem with bundle capacities. Since this in- 

teger max flow problem is computationally intractable, we 
relax the integer constraints by allowing real numbers as 
flows. In Section I1 we showed how such a problem can 
be solved in polynomial time by formulating it as a linear 
programming problem. In this section we show how to 
generate from the solution to the max-flow problem with 
bundle capacities a suboptimal solution for the ( 1, 1 )- 
VPO problem. The suboptimal solution has density less 
than or equal to 2 * doPT, where dopT is the density of an 
optimal solution. 

Our procedure is defined as follows. The solution to the 
(1, 1)-VPO problem is obtained by solving a set of 
( 1, 1 )-VPD problems. Each ( 1 ,  1 )-VPD problem is for- 
mulated as an integer max-flow problem with bundle ca- 
pacities. The integer constraints in the max-flow problem 
are relaxed and the problem is formulated as a linear pro- 
gramming problem and solved. If the ( 1 ,  1 )-VPD prob- 
lem has a yes answer, then the relaxed max-flow problem 
has a flow from source to sink equal to U ;  however, when 
the (1, 1 )-VPD problem has a no answer, the relaxed 
max-flow problem may or may not have a flow from 
source to sink equal to U .  In this section we prove that 
when the relaxed max-flow problem constructed from a 
( 1 ,  1 )-VPD problem (with d,,, = d ) has a flow from 
source to sink equal to U ,  then the via placement problem 
has a placement P with density d (P)  i 2 * d and such a 
placement can be easily obtained from an optimal flow in 
the relaxed max-flow problem. Therefore, after a loga- 
rithmic search, we obtain a placement with density d (  P )  
I 2 * d and we know that there is no placement for the 
via placement problem with density less than d. 

Let us now show that when the relaxed max-flow prob- 
lem constructed from a ( 1,  1 )-VPD problem (with d,,, 
= d ) has a flow from source to sink equal to U ,  then the 
via placement problem has a placement with density 2 * 
d and such a placement can be easily obtained from an 
optimal flow in the relaxed max-flow problem. If the op- 
timal flow obtained has the property that all the flow val- 
ues are integers, then we are done, and we have a place- 
ment with density d = doPT. In general this is not going 
to be the case. For example consider the flow graph for 
via column k ,  given in Fig. 14 (the flow values are as- 
signed to the edges in the flow graphs). 

If we follow our previous interpretation it suggests that 
fractions of the via column are to be placed at different 
locations, this is why we call it a pseudo-placement. This 
is not allowed in our via placement problem. However, 
from the structure of the flow graph we know that there 
is at least one path from the source to the sink that goes 
through the flow graph for via column k with the property 
that each horizontal edge has a flow greater than or equal 
to 0.5. Any one of these paths is selected to generate our 
solution to the via placement problem, i.e., the via col- 
umn will be placed at the position indicated by the vertical 
edge in this path. 

Now the question is what is the density of the place- 
ment obtained this way? The answer is simple. With the 
non-integral flow, the density of the pseudo-placement 
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source c density in- because of via column 1 
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T 

via col 1 
0.1 0.15 0.30 0.55 0.75 0.85 1 sink 

Fig. 14. Nonintegral solution for the flow graph of via column k .  Fig. 15. Placement. 

was at most d. Since we have at most doubled the flow 
along each edge in a bundle and each wire in the final 
layout is represented by a flow in a bundle, then the den- 
sity of the placement that we construct is at most 2 * d I 

Lemma 4.2: Our algorithm generates a placement for 

U 

the flow along each edge in a bundle and each wire in the 
final layout is represented by a flow in a bundle, then the 
density of the placement that we construct is at most 2 * 

Theorem 5.2: Our algorithm generates a placement for 

0 

d s 2 * dopT. 
2 * doPT. 

the VPO problem with density at most 2 * doPT. the ( 1, 1 )-VPO problem with density at most 2 * doPT. Proof: By the above discussion. Proof: By the above discussion. 
V. APPROXIMATION ALGORITHM FOR THE VPO 

In the previous sections we presented an algorithm that 
generates an approximate solution to the ( 1, 1)-VPO 
problem with a density which is at most two times the 
density in an optimal solution. However, we assumed that 
the via placement problem satisfies restriction R1.  In this 
section we show how to generate a suboptimal solution 
for the unrestricted via placement problem. Restriction R1 
can be eliminated by introducing max selectors. These 
max selectors will not affect our approximation bound, 
they will just increase the time complexity bound. Re- 
member that R1 is the restriction that if a via in row i is 
assigned to net j ,  then no other via assigned to net j is 
located in row i. 

Let us now explain how to solve the VPD problem by 
introducing max selectors. Suppose that three via columns 
have a via assigned to the same net Ni on some row i. 
Assume that our previous algorithm generates the place- 
ment given by Fig. 15, where the node labeled j is the 
leftmost pin for net Nj . 

Note that the density increases by three in some regions 
in Fig. 16 because of net Ni. This is incorrect, it should 
be at most one in all these regions. This problem can be 
handled by selecting the maximum of the three flows. Our 
rule to handle this situation is defined as follows: when- 
ever we deal with a bundle associated with an edge in the 
bundle-capacity graph, we find all the flows that are gen- 
erated because of the same net and then compute the max 
of all of them. Hence the use of max selectors. It is simple 
to verify that restriction R1 can be eliminated by the in- 
troduction of appropriate max selectors. 

Reorem 5.1: The VPD problem X has a placement P 
with density d (  P )  I d,,, iff the integer max-flow prob- 
lem with max selectors and bundle capacities Y con- 
structed from it has a flow from source to sink equal to U. 

0 
Using the techniques discussed in the previous section, 

we have an approximation algorithm for the VPO prob- 
lem. With the non-integral flow, the density of the pseudo- 
placement was at most d .  Since we have at most doubled 

PROBLEM 

Proof: By the above discussion. 

VI. DISCUSSION 
It is simple to verify that the linear programming prob- 

lems required to solve the VPO problem have a number 
of variables and equations that are bounded above by a 
polynomial in r and n. Also, the amount of space required 
to represent each linear programming problem is bounded 
above by a polynomial in r and n. Since the more recent 
algorithms that solve linear programming problems take 
time which is bounded by a polynomial in the problem 
size, we know that the total time complexity for our al- 
gorithm is polynomial. For brevity, we do not include a 
sharper time complexity bound. 

Our algorithms can be trivially modified so that instead 
of solving log (U) LP problems, one needs to solve only 
one LP problem. This is accomplished by placing the ob- 
jective function as a constraint that must equal U ,  and 
minimizing the required density d,,,. Note that many in- 
equalities need to be reformulated in terms of the com- 
puted density. 

In the introduction we mentioned that the VPO problem 
in which we allow a via from net j to be assigned to row 
i even though there is no pin from net j in row i is not 
interesting. However, this problem is important because 
a good approximation algorithm for it implies a good ap- 
proximation algorithm for the board permutation prob- 
lem, the min-cut linear arrangement problem, and the col- 
umn permutation problem. 

Another important feature of our algorithm is that it can 
be easily modified so that via columns are not placed in 
certain channels. This is desirable when the channel is in 
the middle of a chip. Note that in this case it is impossible 
to move only half of the chip. 
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