Available online at www.sciencedirect.com

sclENCE@DIRECT“ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 326 (2004) 155—-185

www.elsevier.com/locate/tcs

Complexity of pairwise shortest path routing
in the grid

Teofilo F. Gonzalez David Serena
Department of Computer Science, University of California, Santa Barbara, CA 95064, USA

Received 14 July 2003; received in revised form 9 June 2004; accepted 18 June 2004
Communicated by G.F. Italiano

Abstract

In parallel and distributed systems many communications take place concurrently. The efficient
delivery of all the messages depends on the routing algorithms as well as the underlying intercon-
nection network topology. The grid is a planar network topology that lends itself for efficient VLSI
implementation and therefore is of interest for theoretical analysis. Frequently, networks and switches
achieve high performance by delivering the messages through shortest paths. In addition, network
fault tolerance improves through insuring that the traversed paths are both edge and/or node disjoint.
The edge disjoint criterion is useful when network links are the predominant constraint, and the node
disjoint criterion becomes important when switches are the fault tolerant bottleneck. Because the latter
necessarily implies the former, it is apparent that node disjointness contributes to fault tolerance and
enhanced performance. In this paper, we examink-fl@rwise node and edge disjoint shortest paths
problem in the undirected graph topology of the grid. Herein it is shown th&-fizérwise node as
well as thek-pairwise edge disjoint shortest paths decision problems are NP-hard, and remain NP-hard
even for many different restrictions on the problem. We also discuss polynomial time algorithms for
restricted versions of our problems.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Grid networks; Fault-tolerance; Node disjoint shortest paths; Edge disjoint shortest paths;
NP-completeness

* Corresponding author.
E-mail addressegeo@cs.ucsb.edd.F. Gonzalez)david.serena@navy.m(iD. Serena).

0304-3975/% - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.06.027

http://www.elsevier.com/locate/tcs
mailto:teo@cs.ucsb.edu
mailto:david.serena@navy.mil

156 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185
1. Introduction

We establish NP-completeness or NP-hardness for routing problems defined over the
mesh or grid topology, which are common to many applications. Specifically, we show that
the k-pairwise node and edge disjoint shortest path problems in grid graphs are NP-hard.
Before we present our results, we formally define our problems and discuss previous related
work. Thek-pairwise node disjoint shortest paths problénthe grid is giverp pairs of
nodes andj blocking nodesk = p + ¢) denoted by

X={X1, X0, ..., Xp, Xp31, Xp12, ..., Xpig}

whereX; = (s;, t;), for 1<i< p, andX; = (¢;) for p + 1<i< p + ¢, find node disjoint
shortest paths in the grid for all the paks, i.e. the paths do not include blocking nodes and
no two such paths have a node in common. EachXait (s;, t;) consists of tw@ndpoints
which are called theourceandtarget, respectively. The nodes are calleblocking nodes

or faulty processorsEvery node in th@rid is represented by an ordered pair of integers
(J, k) and there is an edge from nodg k) to nodedj + 1, k) and(j, k + 1). The distance
between the source and target nodes of paifor pair distance in the grid is denoted
by d(X;) = d(s;, ;) and itis|j — ¢| + |k — m| wheres; = (J, k) and#; = (¢, m). This
distance is usually calledlanhattandistance. By ahortest pattior the pairX; we mean
any path froms; to #; with length equal tai(X;), i.e. the path is the shortest path in the
graph between the two nodes independent from any other blocking nodes or endpoints of
pairs X;, for i’ # i. Theedge disjoint shortest paths problésgiven X (without faulty
nodes org = 0) in the grid, find shortest paths connecting egcto ; such that no two
paths have an edge in common.

Note that in the context of undirected graphs the order of the source to target in the
routing request is not important. Therefore, in this context we consider the undirected pairs
X; = {s;, t;} instead of the directed pais;, ;). The directed pair problems are studied
in [6]. Both the decision problem and the search problem (generate a solution for yes-
instances) are important for analysis. The problem instgf€e0), (1, 1)}, {(0, 1)}} has
a solution, and search algorithms would generate the @&0) < (1,0) < (1,1). The
probleminstancg{(1, 1), (2, 2)}, {(1, 2)}, {(2, 1)}} inthe 4x 4 grid has no solution because
of the blocking nodes, but it has a routing with arbitrary length pathst) < (0, 1) <
(0,2) < (0,3) < (1,3) < (2,3) < (2, 2). For the edge disjoint shortest path problem
the instancé{(1, 1), (2, 2)}} has a solution; however, the problem instafi¢g, 1), (2, 2)},

{(2,1), (1, 2)}} does not have edge disjoint shortest paths.

Many of the message routing problems mentioned above are known to be computation-
ally difficult for general graphs when one allows arbitrary length paths, rather than just
shortest ones. Karfl0] analyzes th&-pairwise disjoint paths problem in general graphs
and established NP-completeness. Shildathpresented a polynomial time algorithm to
construct node disjoint paths in a graph for two pairs of vertices, and Wgk]rshowed
that(2k — 1)-connectedness is a necessary condition for a graph to admit disjoint paths for
a set ofk pairs of vertices.

The related problem where one seeks to fifqghirwise node disjoint pathsubitrary
distance pairsfrom vertices in sefss, so, . . ., s} to vertices in sefrq, ro, . . ., #;} is called
the set-to-set node disjoint paths problem. In this problem one needs tofott® disjoint

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 157

paths from one setto the other such thatthe paths aresfromy, ;) whereg : {1,2, ...k} —
{1,2,...k} and ¢ is any bijective function. Whereas in tlkepairwise problemyp is the
identity function, namelyp(i) = i. The undirected vertex version of Menger’s theorem
is applicable to the former problem, but not to the lafi]. It is not applicable to the
set-to-set node disjoirghortestpaths problem as Menger’'s Theorem may imgtiitrary
length paths.

The node disjoint paths problem for thecube has been studied even in the presence
of node fault§15,7,8] Gonzalez and Sereija,6] studied the node and the edge disjoint
shortespaths problem for the-cube. Similarly, algorithms for the node-to-set node disjoint
shortestpaths problem for tha-cube or hypercube have been develofi3,18]

Typically routing requestslike X above, are classified by the occupancy of source and
destination nodes at the vertices. Ark routing requestonstrains each source node to
appear at mogt times, and each target node to appear at ridishes at a vertex in the
graph[9]. This routing request problem has also been called the multimessage unicasting
message routing problefd] . If edge disjoint paths exist for ditkrouting requestsin agraph
or digraph, the graph is said to hek-rearrangeable. A routing requestisearrangeable if
any 1-1 routing request can be partitioned i6touting requests each of which has an edge
disjoint routing[9]. Concerning the concept bfk-rearrangeability and-rearrangeability
the edge disjoint paths are not restricted to shortest patpsriautation routing requess
a 1-1 routing request wherein all vertices are occupied by a source and a tapgetiah
permutation routing requesglaxes the constraint that all vertices be occupied. An example
of a partial permutation routing request is when vertex occupancy is constrained to a source
or target, but not both. We call this request fhartial half permutation routing request
Furthermore, the routing request for the problem defined at the beginning of this section is
called thepartial half permutation routing request with singletons

The problem of finding disjoint paths in two dimensions has been extensively studied in
[1,11,14]because of its applications to VLSI routing [Ir1] the classical grid routing model
is used and explores the grid routing problems. Formallynthe n1 grid, G = (V, E),
is a graph structure where vertices are labeled by pairs of intéggre;) € V such that
0<a; < n; fori € {0, 1}. Furthermore, edgfao, a1), (a2, a3)} € E, if bothag + 6 = a2
andai + (1 —) = a3 hold for o € {0, 1}. The capacityg, is the maximum number of
paths that may use any given edge. The number of pisscribes the occupancy of the
vertices in the grid. The case when= 1 corresponds to the partial half permutation routing
request without singleton nodes in the grid. Karp efld)] analyzes constant bend routing
methodologies for thie-pairwise edge disjoint case and establishes provably good heuristics.
Furthermore, they have shown that the optimal one turn routing problem is NP-complete
whenc = 2. In other words, they allow two paths to travel along each edge, but every path
has at most one bend. In this paper, we show that wheri (one path per edge) the one
turn routing problem is polynomially solvable, but the two turn problem is NP-complete.
All of our node and edge disjoint shortest paths problems are defined onlyfdr. In the
literature this corresponds terealizability for edges. Edge (nodeYealizability allows at
mostc paths to traverse any edge (no@E9].

We show in Section2.1that thek-pairwise edge disjoint shortest paths problem is NP-
hard in the grid (wher = 1). Bendsin the grid path correspond directly to a change in
the path direction from vertical to horizontal, or from horizontal to vertical. In Se@i@n

158 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

we show that the edge disjoint shortest path problem remains NP-complete even when we
restrict all the paths to have no more than some fixed constant number of bends (greater
than or equal to two). However, when every path is restricted to have one bend we show
that the problem is solvable in polynomial time. In addition, we show thakbairwise

edge disjoint shortest paths problem remains NP-complete even when every pair distance
is bounded by some fixed constant (Sec08).

Kramer and vanLeeuwefi2] established that thk-pairwise node disjoint (arbitrary
length) paths problem in the grid is NP-hard. This problem has also been studied for multi-
layer grids[1]. Agrawal et al[1] also discuss the node disjoint arbitrary length path with
constant number of bends, and establish an upper bound for the trade off between the number
of layers and area in a general multilayer grid model. In this paper the number of layers is
one.

In Section3.1, we discuss the node disjoisthortesipaths problem and establish that for
a partial half permutation routing request the problem is NP-hard. In addition in S8c2ion
we show that for a sufficiently large constant bound on the pair distankghiewise node
disjoint shortest paths problem remains NP-complete. The grid structure is generalizable
to higher dimensional topologies. Since the grid is embeddable in those topologies, NP-
completeness and NP-hardness results for those structures directly follow from our grid
results.

2. Complexity of grid edge disjoint shortest path problems

We show that the edge disjoint shortest path problem in the (undirected) grid
(Section2.1) is NP-hard. Then we establish that the problem remains NP-hard even when
every path is limited to have at most a constant number of bends (S@cBoand when
every the pair distance is bounded by a constant (Se2ti®nWhen there is a sufficient
constraint on the number of bends the problem is shown to be polynomial time solvable
(Section2.2, Theoren®). It is interesting to note that the result in SectB does in fact
imply a constant bound on the number of bends; however, it is a far larger constant than the
three bends required by the construction in Seci@h

2.1. Edge disjoint shortest paths

We establish that thiepairwise edge disjoint shortest path problem in the grid graph is
NP-hard by reducing the SAT problem toit. Our reduction has some architectural similarities
to the reductions for the corresponding problems defined oven-th#e[5,6]. From an
instancd of the SAT problem, we construct an instantg) of thek-pairwise edge disjoint
shortest path problem. First we give a general overview of the reduction, specify the pairs
to be introduced for the variables and clauses as well as for additional pairs, called blocking
pairs, that force certain paths for all the variable and clause pairs. We give a couple of
examples to illustrate our informal reduction and then we formally define our reduction.

There are two types of componenggttingandclause-checkeiThe settingcomponent
assigns to each variable a value (true or false). For each variatiiere is a pair indicated
by thex;’s in Fig. 1. We will also introduce blocking pairs (which are represented by thick

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

8

T

3

T

n

159

FALSE TRUE FALSE I TRUE FALSE I TRUE

: : :
Col 0 Col -1
w0 g I B
P Hml Bl el B Bt R

I I I

° [] .

L] L] L]

L] L] L]

1 i i

z; T ZTin

(a) (b) (©)

Fig. 1. Basic architecture of the construction: (a) Variabjds (uncomplemented) in clauseg;. (b) Variable
(uncomplemented);, or (complemented) variablg, are not in claus€’;. (c) Negation of varlabla i isinthe
clauseC ;. The thick lines represent the only possible shortest path for blocking pairs.

lines in Fig.1 joining the pair by the only possible shortest path for the pair) that will
guarantee that all the pairs can only be connected by a path with one turn or bend in a
shortest path solution. The top—down vertical to horizontal path corresponds to the value
false assigned te; and the top—down horizontal to vertical path corresponds to the value
true assigned t®;. There is aclause checkeior each claus€ ;. Each checker consists of
two pairs,c; andd; (see Fig.1). Furthermore, shortest paths for paifsandd; have 2
bends or 4 bends We will introdudxocking pairs(which are represented by thick lines
in Fig. 1 joining the pair by the only possible shortest path for the pair) in such a way that
shortest paths for paitg andd; exist if and only if the clause they represent is satisfied, i.e.
at least one of its literals has the value true. The pgimndd; must have paths that cross
in one position. This is due to the fact that in columm Qis aboved; and in the rightmost
columnng — 1,d; is abovec;. In Fig. 1 we use vertical ellipses to indicate a continuation
of theith variable and the location for other clauses. Horizontal ellipses inlRiglicate
the intersection regions of the clause with other variable pairs. Possible paths are indicated
by thin solid or dashed lines.

Let us now discuss in more detail the pairs for the variables and clauses. The igair
located atla, 0) and(a + 2, n1 — 1), for some positive integesandn; to be determined
later. Remember that in all of our figures the first coordinate increases from left to right and
the second one increases from top to bottom. Thecpa@iocated a0, ¢) and(ng—1, c+2)
and the ones for thé; pairs are located &0, c+-2) and(no—1, ¢), for some positive integer
c which will be determined later on. For every pair of vertices we define ghgirtest path
regionas the set of all the vertices which lie in any shortest path for the pair. We introduce
additional pairs, callebdlockingpairs, located at the intersection of the shortest path region
for the ith variable pair and th¢gth clause pair as well as between adjacent intersection
regions. As mentioned above, these pairs are represented by thick lines along the only
possible shortest path for the blocking pair. These pairs limit the possible paths for the
variable ;) pairs and/or the clause;(andd;) pairs. The pairs added in the shortest path
region for the'th variable pair and th¢th clause pair are different depending upon whether
or not the variable or its complement is present in the clause. In what follows we refer

160 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

to this intersection as thiatersection region for the variable and clause pair simply
theintersection regiorif the variable and clause pairs are understood. Aéighborhood

of an intersection region of a variable and a clause includes the intersection region plus
the previous and next columns inside the shortest paths region for the clause. As we shall
see later on, the neighborhood for a clause and two adjacent variables have a column in
common.

In what follows we specify the location of the blocking pairs for the intersection re-
gions. The blocking pairs introduced at the intersection regions for the three different cases
(variable is not in the clause, variable is in the clause and appears uncomplemented, or
complemented) are given in Fiy.. We justify our constructions below.

The neighborhood of the intersection for ttik variable and thgth clause pair when
the variable is in the clause is shown in Fiia). The region allows a crossing of the
path for the pairg:;; andd; when the variable has been assigned the value of true, i.e.,
it is connected by a path that uses the vertical right-hand side of the shortest path region
for the variable. If the path for the variable pair traverses the vertical left-hand side
of the shortest path region for the variable, i.e. the variable has the value of false, then
it is not possible for the paths for the paits andc; to cross in this neighborhood. Fig.

2(a) depicts the crossing of the paths égrandd; when the variable has the value of true.
Fig. 2(c) can be used to show that the crossing is not possible when the variable has the value
of false.

The neighborhood region when the negation of a variable is in a clause is given in
Fig. 1(c). The region allows a crossing of the path for the pajrandd; when the variable
has been assigned the value of false. B{f) depicts the crossing of the paths tgrand
d; when the variable has the value of false. FEigl) can be used to show that the crossing
is not possible in the neighborhood when the variable has the value of true.

When avariable is not presentin a clause the neighborhood region is such that the crossing
of the path for pairg; andd; is not possible. (Figl(b)). Fig.2(e) and (f) can be used to
show that it is not possible for the paths for paifsandd; to cross in the neighborhood no
matter what value the variable is assigned.

The pairsc; andd; need only cross at one variable pair in the proper state. Note that two
or more possible crossings may be availablecfoandd; (seec; andd; in Fig. 3). When
a crossing occurs we know the clause is logically satisfied. If the clause cannot be satisfied
then no crossings occur throughout the structure. There is no solution as the paths have not
crossed. In this case there are no edge disjoint paths for both the paindd; .

Before we formally define our reduction, we give a couple of examples to illustrate
our informal reduction. The instance of SATu1, uz}, {u2, iz}, {us, 1}} is satisfiable.

We illustrate our construction for this instance in FRywith a satisfying assignment
up = False andi; = uz = True.

The instance{u1, uz}, {u1, uz}, {u1, uz}, {u1, it2}} is not satisfiable and the problem
instance generated from it is depicted in Figvhere we show all configurations of “true”
and “false” values fowu; anduy. As we traverse the figures from left to right, none have
edge disjoint shortest paths for clauggs C3, C2 andCy, respectively.

Formally, the construction places for each variabjea pair at the vertice$(4i —

3,0), (4i — 1, n1 — 1)}. For thejth clause there are two paif€, 3j — 2), (no — 1, 3j)}
and{(0, 3j), (no— 1, 3j — 2)} representing thec';"and “d;” pairs, respectively. Of course

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 161

i

©) (d)

X No crossing possible for both clause pairs.

Fig. 2. (a) and (b) Crossing of clause pairs are possible because the value assigned to the variable satisfies the
clause. (c) and (d) Crossing of clause pairs is impossible because the value assigned to the variable does not satisfy
the clause. (e) and (f) Crossing of clause pairs is impossible because the variable is not in the clause.

n1 is a function ofw, the number of clauses; = 3w + 1 andng is a function ofv, the
number of variables, ng = 4v.

The additional blocking pairs are defined as follows: The vertical pairs between the
variable pairsx; and x;;1 are located a{(4i, 3j + 2), (4i,3j + 3)}, for 0<j < w.

The vertical pairs inside the shortest path region for each varigblere located at
{(4 —2,3j), (4 —2,3j + 1)}, for0< j< w.

We assume without loss of generality that none of the clauses contain a variable and its
complement, as otherwise we could just delete the clause without changing the satisfiability
of the clauses. Lei; < hy < --- < h, be the variables that claugeontains. We define
di,da, ..., d, € {0, 1} as follows: If the variabler;, , appears negated in the clause then
d; = 0, otherwised;, = 1. Now we define the blocking pairs for claysas follows:

{(4h1+dy —3,3j — 1), (4hy +dr — 2,3j — D)},
{(4hp+do —3,3j — 1), (4ho+do — 2,3j — D)}, ...,
{(4h, +d, —3,3j — 1), Bh, +d, —2,3j — D).

All other variablesy,, that are not contained in the clauSghave a blocking pair of the
form{(4¢ —3,3j — 1), (4¢ —1,3j — 1)}.

162 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

Tl T2 T3

cq g £ = = S dl

i
PGl FRRE RENEE Ny

c2 1 d2

dl INEE FEER NP

C3 _— el dS

dS 3 . . ! . i 4 c3

T o T3

Fig. 3. Problem instance generated fr¢fmq, us}, {up, u3}, {u3, i1}}. The solution shown corresponds to the
truth assignmeni, = False, andi; = u3 = True.

T x2 T Tz T T2 £ T2
— T — Ty [= —T
& NER [24 o c:TI_L‘ | I J‘T" I L 34 B | d
e — = X — =
dy €~ i 31 1€ I E T 1 e dy e1
R EH | T (Ll e el Hles o d2 2@ i L 4.
x |
da @ —I I| Pz de ez da cz da®][- |I l ! ca
c3 € dzg ca® - ®dg cz€ Ddz c3® I I dz
-— X -_— B
dg I dcz ds cg dg® I Ul 1 Yy ds t"»—l Il |I I I_“j ea
ca di ca® ‘ —Od; € : Pda i€ dy
% I bl -
dg I cq dq € - ‘l l'—= +u4 d41-7 I—£ l‘ | Doy dq & l T l_é +c4
) F L) E 1 E2] I T2 Z1 T2
(a) (b) () (d)

Fig. 4. Problem instance generated frofiaq, uo}, {11, u2}, {u1, us}, {it1, i2}} has no solution. A %" symbol
indicates that the clause pairs do not have shortest paths; (&) True andups = True. (b)u; = False and
up = False. (cuq = False andip = True. (d)ug = True andup = False.

In Theoreml we show that thé-pairwise edge disjoint shortest paths problem for the
grid (k-PAIRWISE-GRID-EDSP) is NP-hard. We cannot establish that the problem is NP-
complete because it is not clear whetherkmairwise edge disjoint shortest paths decision
problem is in NP. The difficulty in proving the problem is in NP is that it may be that for a
grid of sizeng by n1 the number of bends for a path may be as large asmqin,). But
the input length i log (ng + n1), wherek is the number of pairs. Therefore, the amount of
information needed to represent the path might not be polynomial with respect to the input
length.

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 163

Theorem 1. Given the partial half routing requesthe k-pairwise edge disjoint shortest
paths problem for the grigk-PAIRWISE-GRID-EDSRs NP-hard

Proof. We use the reduction from SAT given above. We now show that the instance
constructed from SAT has edge disjoint shortest paths for all pairs if and only if the instance
of SAT is satisfiable.

First we connect all blocking pairs by their only shortest path. Now, given any assignment
that satisfies all the clauses, we just connect eachypdiy the path that corresponds to
the truth assignment for the corresponding variable. Since the satisfying assignment is such
that every clause is satisfied, then we know that edge disjoint shortest paths exist for each
of the two pairs for each clause. The paths will cross as indicated i Fitperefore, edge
disjoint shortest paths exist for all pairs.

On the other hand, if edge disjoint shortest paths exist for the instance loptiewvise
edge disjoint shortest paths problem that we defined, we need to show that the instance of
SAT that we started from is satisfiable. Consider first the path foittheariablex;. Since
the path is a shortest path it must be inside the shortest path region for the variable. If it
starts by moving to the right, then it cannot move down on the next column because there is
a blocking pair that uses that edge. So it must move to the right to the next column and then
down. This corresponds to assigning the value of true to the corresponding variable. If the
path starts by moving down first, then it must continue moving down untilrpw 1 and
then continues to the right. This corresponds to the variable having the value of false. The
reason why the path must continue moving down is that in the shortest path region fgr pair
between the intersection regions for adjacent clauses the pathrfarst be on the left side
or the right side of the shortest path region for paibecause of the vertical blocking pairs
inside the region. So if the path is not continually moving down, then inside an intersection
region with a clause it must move to the right side. This is not possible because two rows
must be used by the paths for theandd; pairs and one row for the path for tlxepair.

There are three rows, but at least part of the middle row is blocked. Therefore, the path
for x; must continue moving down until romy — 1. Now lets consider the paths for any
pair ¢; andd;. Since these are connected by edge disjoint paths then they must cross at the
neighborhood of the intersection of a variable andithelause. By construction, it is easy

to show that the crossing is not possible in regions that represent variables that are notin the
clause. In addition, by construction one can easily show that such crossing is only possible
at the neighborhood region where a variable that has the value true appears in the clause,
or the variable has the value of false and it appears complemented in the clause. Therefore,
the existence of edge disjoint shortest paths implies the satisfiability of the instance of SAT
we started with.

Furthermore, the reduction is polynomial as the number of pairs introduce@is)O
The representation of pairs for the grid requires ahautog (v + w) bits, and thus the
reduction is polynomial. This completes the proof of the theorent.]

Whend (X;)< 2 the algorithm by Gonzalez and Ser¢b#] for the corresponding prob-
lem in then-cube works also for this problem simply because there are only two possible
paths for each pair. This problem is solved by reducing it to the 2SAT problem. It is well
known that 2SAT is polynomially solvabl@,17]. We have also developed a polynomial
time algorithm for the case wheh(X;)< 3. This algorithm is tedious, so for brevity we do

164 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

not include it. In the next section we discuss khgairwise edge disjoint problem when we
restrict paths to have a constant number of bends.

2.2. Restricting the number of path bends

The algorithm in the previous section can be easily adapted for arbitrary valdéex of
as long as the only valid paths have just one bend, i.e., the path consists of a vertical
line followed by a horizontal one or vice versa. The reduction to 2SAT is quite simple.
A variable is used to indicate one of the possible two paths and two-literal clauses are added
to avoid possible pairs of paths that overlap. We state our result in Thedmgithout
discussing further details.

Theorem 2. Given the partial half routing requesthe k-pairwise edge disjoint shortest
paths problem with at most one bend allowed per path is polynomially solvable for a partial
half permutation routing request in the grid

Proof. The problem is reduced to 2SAT (see the comment just before this theorem) which
in turn can be solved in polynomial time with respect to the number of paits.

In the previous subsection we have established NP-hardness fop#ieedge disjoint
shortest paths problem in the grid without a restriction on the number of bends or turns. A
careful examination of the reduction for Theordmeveals that when there is a solution
every pair is connected by a path with at most four bends. Given any set of paths, each with
at most four bends, once can easily verify in polynomial time whether or not the paths are
shortest, and are edge disjoint. Therefore, this restricted version of the problem is in NP.
The following corollary is a consequence of the previous theorem and the above comments.

Corollary 1. Given the partial half routing requesthe k-pairwise edge disjoint short-
est paths problem for the gri(k-PAIRWISE-GRID-EDSP-3TURN®&hen every path is
restricted to have at most four bends is an NP-complete prablem

None of the previous theorems cover the case when one limits each path to have at most
two turns. We now show that even this problem is an NP-complete problem. To prove this
result we polynomially reduce 3SAT to the edge disjoint shortest paths problem in the grid
when every path is allowed at most two bends. We start by discussing the transformation
details which are similar in nature to the ones in the previous section. The setting components
are similar. The main difference is that in the reduction we use 3SAT rather than SAT, and the
clause checkers are different. We use 3SAT in order to simplify our clause checker structure.
The clause checker pairs need to be changed because half of the clause pairs in the previous
reduction required paths with four bends. From an instdnaiethe 3SAT problem, we
construct an instancg(7) of thek-pairwise edge disjoint shortest path problem as follows.
First we give a general idea about our reduction and give an example. Then we formally
define the reduction and prove our result.

As in the construction given in the previous section, there are two types of components:
settingandclause-checkei hesettingcomponent assigns to each variable a boolean value.
For each variable; there is a pair indicated by the’s in Fig. 5. We will also introduce

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 165

Z; Zi
| TRUE | TRUE
L] L]
. .
L] L]
[15 B e T Cjl mmmmmedmmmee e
Cj2 ccccccfeccakanaa-. [% Y T ——
Cj,3 *----- Cj,3 ®----F----
i i
| S - | R S ——
[/ 5 1 R U S —_ [£7 = U R N Ep
Ci+1,2 - - - - - Cit1,2 — e p e -
Ci41,8 - - ool - Ci+1,8 - o e e -
. °
. °
L] L]
FALSE | FALSE |
;i T

(@) (b)

Fig. 5. Placement of the leftmost point in theg pair. (a) Wheni; is the third variable in claus€;. (b) When
u; is the third variable in claus€ ;. The thick lines represent the only possible path for blocking pairs.

someblockingpairs (which are represented by thick lines in Fgoining the pair by the

only possible shortest path for the pair) that will guarantee that alttegairs can only

be connected by paths that move to the right, then down, and then again to the right. We
say that the path whose vertical segment is on the left side represents the value of false and
the other one represents the value of true (BjigFor each clause we introduce three pairs,

one for each literal. The pairs for thigh clause are denoted hy; 1, c; 2, andc; 3. Notice

the difference from the previous reduction. In the previous reduction we had two pairs per
clause, where as now we have one pair per literal in a clause. Each of these pairs will have
two different possible rows for the path. If a variable is the third literal of ttireclause,

then the pair originates as indicated in FsgThis implies that if the value assigned to the
variable does not satisfy the clause, then the path for the corresponding clause pair must
be on the upper row for the pair, where as if the value assigned to the variable satisfies the
clause then the path may be on the upper or lower row for the pair. The idea is that if a
clause is satisfied by the values assigned to the variables, then at least one of the paths for
the clause pairs will be on its lower row and the remaining paths will use their upper rows.
On the other hand if the values do not satisfy the clauses, then the paths for the three pairs
for the clauses must be on their upper rows, but our construction will not allow one of these
paths to connect to its destination, as we shall see later on. Let us now discuss the other
endpoints for the clause pairs.

Consider thejth clause. Fig6 shows the rightmost endpoints for the three pairs. The
one unit thick black lines represent the only possible shortest paths for the blocking pairs
that are used to prevent a connection without a bend near the neighborhood of a clause
pair, or prevent connections from three pairs using the upper rows of the clause pairs. If
one allows the former case, then a clause that is not satisfied can have its three pairs con-
nected by shortest paths by just introducing a bend along one of the unused columns of

166 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

B : B

B . B’
B’ B’ |

I | A

Cj3 ? ¢ Y <3
A cj Cj.12 Cjip
€41 Cii €4,1

(a) (b) (c)

Fig. 6. Size three clause: the three valid rightmost configurations in the gridhot ; 2, andc; 3.

other variable pairs. The latter case prevents connections when all the three paths use their
upper rows which occurs when a clause is not satisfied. The leftmost diagram & Fig.
shows the connections when the clause is satisfied by the first variable, the middle diagram
is for the case when the second literal satisfies the clause, and the rightmost is when
the third literal satisfies the clause. Note that two or more literals may satisfy a clause.
However, it is sufficient to show that connections are possible if only one pair uses its
lower row.

Before we formally define our reduction it is important that we apply the reduction to
the following instance of 3SAT{u1, u2, us}, {u1, 2, us}, {2, 3, 4}, {u1, uz, us}}. The
solution shown in Fig7 for the case when1 anduy4 have the value of true and the other
variables the value of false.

Let us now formally define our reduction. The pair introduced forithevariable, for
0 < i< w, has its end points located @i — 4, 0), (4 — 1, n1 — 1)}. To insure variable
consistency introduce two vertical blocking pairs (thick black lines in Bjdgor theith
variable{(4i — 4,1), (4 — 4,2} and{(4i — 1,n1 — 2), (4 — 1, n1 — 3)}.

If variableuy, is thekth variable in claus€’; then let the variablé; be 1; otherwise if
the negation of the variable,, is in the clause let the variablg be 0. Each of the most
three variables in the claugg are represented by pairs.

cjx pairis{(4hy —3+46r,9j —6+k), (no —4+k,9j +5— 2k)}

The additional blocking pairs arging—5, 9j — 3), (no—5, 9j — 2)}, {(no — 4, 9j — 3),
(no—4,9j =2}, {(n0—1,9/-3), mo—1,9j —2)}, {(no—5,9j — 1), (no— 4,9 — D},
{(ng—5,9j + 1), (no — 4,95 + 1)}, and{(no — 5,95 + 3), (no — 4,95 + 3)}.

We now establish the main result for this subsection.

Theorem 3. The edge disjoint shortest paths problem for k pairs of vertices is NP-complete
when every path is restricted to have no more than two turns or bends

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 167

o— o— o— o——
|
|| | <
_
|| u Co
_ |1
|| | Csg
— |
|| | Cy
_
|
Lo Lo
u1 u u3g uq

Fig. 7. Problem instance constructed fr@fay, up, ugz}, {i1, i, ua}, {io, u3, ua}, {u1, up, uag}}. The solution
given isu1 anduy4 with value of true and the remaining variables have the value of false.

Proof. Since there are at most three straight line segments per path, we can verify in
polynomial time that any set of paths, each with at most two turns, whether they are pairwise
disjoint shortest paths. Therefore, the problem is in NP.

168 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

We reduce 3SAT to our problem as shown above. We now show that the instance con-
structed from 3SAT has edge disjoint shortest paths for all pairs if and only if the instance
of 3SAT that we started from is satisfiable.

First we connect all blocking pairs since they have exactly one shortest path. Now, given
any assignment that satisfies all the clauses, we just connect eaah pgithe path that
corresponds to the truth assignment for the corresponding variable. Since the satisfying
assignment is such that every clause is satisfied, then at least one of the three pairs for each
clause can be connected through its lower row. Therefore, edge disjoint shortest paths exist
for the three pairs for each clause as shown in Eigdence, edge disjoint paths exist for
all pairs.

On the other hand, if edge disjoint shortest paths exist for the instance lepthievise
edge disjoint shortest paths problem that we defined, we need to show that the instance
of 3SAT that we started from is satisfiable. Consider first the path foittheariablex;.

Since the path is a shortest path with at most two turns, it must be of one of the two forms
shown in Fig.7. Each of these two possible paths represents the value of true or false as
indicated in Fig.5. Now, the three pairs for each clause must be such that at least one of
them is connected by a path on its lower track, as otherwise the pairs cannot be connected
by shortest paths with at most two bends, because if the three pairs are joined by paths using
their upper tracks then the component given in Bigvill not allow for their connection

using shortest paths with at most two bends. This implies that at least one of the pairs for
each clause is connected by a path that starts moving down (when viewing the path from
left to right) which means that the corresponding variable satisfies the clause. Therefore, the
existence of edge disjoint shortest paths implies the satisfiability of the instance of 3SAT
we started with.

The reduction can be carried out in polynomial time as the number of pairs introduced is
O(vw). The representation of pairs in the grid requires abatibg (v + w) bits. Therefore,
the reduction takes polynomial time and our problem is NP-completel

A slight modification to the above reduction, namely the introduction of blocking edges
that force one additional turn on the left side of the path of each pair can be used to show
that the problem, when we limit the number of turns or bends to at most three, remains
NP-compete. A similar modification, but forcing the introductionsof 2 turns on the
leftmost side of every path shows that the problem remains NP-complete when one limits
the total turns allowed per path to any constant nuntb&his structure also shows that
the problem of findingarbitrary length paths with a (given) constant number of bends is
also an NP-complete problem. We should point out that Kramer and vanLe§l2}drave
already established this result, namely that the node disjoint paths for arbitrary length paths
in the grid is an NP-complete problem, they limit neither the number of bends nor the path
length to the shortest one.

2.3. Restricting the pair distance

In this subsection we consider the restricted version of the problem when the distance
between the endpoints of every pair is bounded by a constant, i.e., io# &X;) is less or
equal than some fixed constant. We show that even under this condition the edge disjoint
shortest paths problem farpairs in the grid remains NP-complete. To establish this result

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 169

we make non-trivial modifications to the reduction given in SeclidnA closer inspection

of that reduction reveals that the only pairs whose endpoints are not at a distance bounded
by some fixed constant are the ones for the variableis (Fig. 1), and the clause checkers

(c; andd; in Fig. 3). Our approach is to replace each of these pairs by a set of pairs whose
shortest paths have properties similar to the ones for the previous pairs, and the endpoints
of each of the new pairs are at a distance bounded by some fixed constant.

Consider first a replacement for eaghpair. As you recall from Sectio.1 (Fig. 1)
each variable in SAT is represented by a pair and the connecting path specifies whether the
variable has the value of true or false. The distance between the two endpoints is proportional
to the number of clauses and therefore is not bounded by a constant. The idea is to introduce
a number of pairs equal to the number of clauses. The paths used to connect all of these
pairs need to be consistent and each pair will cover the area for one clause.

Figs.8(a) and (b) give an example of our reduction for an instance of SAT with three
clauses. The interpretation of the paths for the odd numbered clause regions is exactly as in
Section2.1 The interpretation for the even numbered clause regions is the opposite of the
one for the odd ones. l.e., from top to bottom, a connecting path consisting of a vertical line
segment and then a horizontal line segment represents the value of false, and a connecting
path consisting of a horizontal line segment followed by a vertical one represents the value
of true.

All the pairs introduced (FigB) to replace one of the variable pairs in Fighave their
endpoints at a distance bounded by a constant and all of them have consistent values. For
example, if a variable pair is connected by a top to bottom path consisting of a vertical line
segment followed by a horizontal one, then the next pair below it is connected by a path
consisting of a vertical line segment followed by a horizontal line segment, and the same
pattern keeps on repeating periodically until we reach the bottom of the grid. In order to see
that this holds one must take into account the pairs which supplantémeld; clause pairs
in the construction in Sectic®.1 The pairs replacing the clause pairs in this construction
are such that the upper and lower row for the clause will be used by the clause pairs. The
middle line (row) for the clause will be used by some blocking pairs to be introduced
later on. As we shall see later on, the pairs replacing the clause pairs in this construction
enforce variable consistency by precluding paths other than the two configurations shown in
Figs.8(a) and (b).

When one defines the neighborhood region for the intersection of a variable and a clause
one needs to introduce mirror images about a vertical axis for E{g$—(c) for the even
numbered clauses. l.e., for even numbered clauses Higs.and (c) are swapped. In
Fig.9(a) we presentthe instance generated for the set of cléjugses 2}, {it2, i3}, {us, u1}}.

At this point ignore the clause pairs in the figure. We will discuss them later on. The in-
tersection regions have the same property for flow in the grid as those in the S&dtion
With the exception that the crossing information is propagated with constant distance clause
pairs from left to right in the grid. The intersection given in Figa) is used at the inter-
section region of clause 1 with the variable pairs associatedwyitindu,, and clause 3

with variablexs. Now the negations af; andus in clause 2 appear as the mirror image of
Fig. 1(c). In other words, while in Sectio®.1the segments appear as Fl{c), here they
appear in clause 2 as Fit(a). Fig.1(c) is used at the intersection region of clause 3 and
variableus. Fig. 1(b) is used at the intersection region of clause 1 and variahlelause 2

170 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

T; Ty

Clause

1
Intersection
!
] 2
' z;
Clause
Intersection
1
> $£ E
!
. z!, [

Wl
8 8
o) o ™~

8 &
o~ s

I
e P |

Clause
Intersection

alliman

-~
-~
-~
-

T x,
(a) (b)

Fig. 8. Consistent variable state is communicated vertically throughout the grid with finite distance pairs. (a) True
state of variable. (b) False state of variablke

and variablex1, and clause 3 and variabie. In Fig. 9(b) we give actual paths that cor-
respond to the assignments = False andi1 = u3 = True. The paths correspond to the
paths given in Fig2 for odd numbered clauses, and the mirror images of the same figure
for the even numbered ones.

As you recall from Sectio2.1 (see Fig.l) the jth clause in SAT is represented by the
pairsc; andd;. The distance between the endpoints in these two pairs is proportional to the
number of variables. As in the case for the variables, the idea is to introduce a number of
pairs equal to twice the number of variables. |.e., onandd; pair for each variable. The
paths used to connect all of these pairs need to be consistent. Furthermore, each pair will
cover the area for a variable. Fig€(a) and (b) give an example of how this works without
any pair for the variables shown. The idea is that if at some point the value of a variable
satisfies the clause then the crossing of¢hendd; paths will be made at the intersection
region with the pairs for the variable. Fifjl shows the zoomed section for the clause 1,
{u1, us}, for the the example given in Fi@. From left to right if the value of a variable
and all the previous variables do not satisfy a clause, then the crossing of the pair occurs

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 171

T T2 z3 z T T3
& 5 F e ot ,L_
c1 C1 : o
d1 £ T dy
+ h " +
& s} &) T B T
i i F T f } | £
€2 c2 T T
|-
™) 1
do & ds T T
£ = 4 ' 5 b
£ 5 H £ 55
c3 c3 T 4
ds b . ! ds . !
i i & | & [l B}
= = = = = =
(a) (b)

Fig. 9. Problem instance generated fréfm, us}, {io, i3}, {u3, u1}}. (2) Solid lines indicate the shortest path
for pairs with a unique path (vertical or horizontal line), and the other symbols are the endpoints of clause and
variable pairs. (b) Shows the solution fof = False andi; = ug = True.

LO
(I)l
B -
Ejlr

W
(b)
o e e il °
S &y S
\—w‘—/

(c)

Fig. 10. (a) Shows clause pairs independent from (b) and (c). (b) lllustrates post-crossing region. (c) lllustrates
pre-crossing region.

just after the intersection region, and the next two pairs start precisely as the first one did.
Eventually, if none of the values of the variables satisfies a clause then there is no possible
path for the last pair.

The instance{ii1, uz}, {11, 2}, {u1, uz}, {1, uz}} is not satisfiable and the problem
instance generated from it is depicted in Rigwhere we show all configurations of “true”
and “false” values fowu1 anduy. As we traverse the figures from left to right, none have
edge disjoint shortest paths for clauggs C3, C2 andCy, respectively.

For brevity we will not formally specify the location of all the pairs. Interested

readers may find the details [6]. The pairs for the variables are denotedxl{)’i) and the

172 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

T T2 T3

O ® 1) = 1
c1 q o b

A

dy .J g] LT d }
H £ i
n nl I ul
[mm) 1 ‘ -]
1
" i’
& & di 4 dy "
] B8 c.© !
-4.,-"’ - -
d - T "
1 o @ ® e
c1 d) e dy €1

Fig. 11. Constant constraint on pair distance. Shows only clayseo} whenuy = False andi; = True. Shows
labeling of the constant distance pairs below the grid.

12 = b2 2 =1 2) 22
i = o = i = i
e b e D e D ey
*
dy Trle 4 dy dq
L & h e & &
i d 2 H) & & 4
e —o-o-|-tN4- oo b ca a5 -
42 T P 4 O & g ! £ 2 &
i tu G i B o o S
e3 <y D 3 ey 3]
X
dg
d d i
i —+ . g i i s i =4 i
i 2 . - i i u;
g ~4 o o ogq c4
X
da L) 4 $1] ! 4.9 I da 1 T
(a) (b) (c) (d)

Fig. 12. Problem instance generated frimy, uo}, {u1, in}, {u1, un}, {i1, i2}} has no solution. A “x” symbol
indicates that the clause pairs cannot be connected via shortest paths.=£ajrue andup = True. (b)u; =
False andip = False. (cy1 = False andip = True. (d)u; = True andup = False.

ones for the clause pairs bqék) and d}k). Let us now state the main result in this
subsection.

Theorem 4. Given a partial half routing request on the griethen pair distances are con-
strained by a constanthe k-pairwise edge disjoint shortest paths problgrPAIRWISE-
GRID-CEDSRis NP-complete

Proof. As beforev andw are the number of variables and clauses, respectively. Given a set
of paths for all the pairs, one can easily check to see if each path is shortest path (number
of edges must be equal to the pair distance) and check that all of the edges in the paths
are different. Since all pairs have at most of distaocthen each path has no more than

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 173

c edges and all the above checks can be performed in polynomial time with respect to the
input length (Qvw log, (vw))). Therefore, the problem is in NP.

Now to show NP-completeness we use the reduction from SAT given above. We now
show that the instance constructed from SAT has edge disjoint shortest paths for all pairs if
and only if the instance of SAT is satisfiable.

Given any assignment that satisfies all the clauses, we just construct the corresponding
paths for pairsxl.(k) and the paths for all the;k) anddj(.k) paths exist because each clause is
satisfied. If a variable in a clause is in the proper state a crossing of #edd; occurs at

an intersection region, then that is propagated by péﬁ)randdj(.“, ¢ > k to the rightmost
extent of the grid (Figl10). As in the previous proof, if the instance we constructed from
an instance of SAT has a solution, then the instance of SAT we started from is satisfiable.
The proof for this is based on the result in the previous section and the properties of the
construction given above.

Furthermore, the reduction is polynomial as the number of pairs introduce¢bis)O
The representation of pairs in the grid requires abaulog (v + w) bits. Thus the reduction
takes polynomial time, and the problem is NP-completd.]

3. Complexity of grid node disjoint shortest path problems

We show that th&-pairwise node disjoint shortest paths problem in the grid is an NP-hard
problem by reducing SAT to this problem. Our reduction is similar in nature to the one in
Section2.], but it is slightly more complex. The main difference is that the crossing of the
shortest paths is not allowed because they must be node disjoint. Edge disjoint paths may
cross through a given node; however, node disjoint paths may not. One might conjecture
that this topological constraint implies that paths for pairs should be decided solely on local
information. However, this is not the case because there are problem instances in which
the direction of a path in one part of the grid forces changes in certain types of path in
another remote part of the grid. This communication of routing decisions throughout the
graph many times is qualitatively indicative of NP-hardness. In Se8t@ne show that the
problem remains computationally intractable (NP-complete) even when every pair distance
is bounded by a (small) constant.

3.1. Node disjoint shortest paths

Instead of representing a variable by a pair and the value of the variable by the direction
of the path connecting the pair, we use a sequence of pairs. These pairs are designed in such
a way that all of them are connected by paths that follow a certain pattern (like the ones in
Section2.3, see Fig8). In Fig. 13 we depict the general architecture of our construction.

The chainsey, x2, x3, x4, ... are used to represent the value of the variables. The paths for
x1, x2 andx4 indicate the value of true for the variable, and the one-fdndicates the value

of false. As we show later on, these values are propagated consistently across the grid. On
the top portion we introduce one pair for the first clause such that it has a shortest path if
and only if the first clause is satisfied. This is calledause-checkepair. Then in the next

region below we introduce another pair for the second clause which has similar properties

174

r1 T2 I

T4

c1

b

T
N
Qs

2
BRI RN T

S
SN

x

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

NO PATH

N\

LA

C1

(22'

Fig. 13. Overall architecture: diagonal pairs are variable states. Dashed lines show possible paths. The upper path
cannot connect (axX” indicates no connection is possible). The lower path can connect.

(second clause checker), and so on. These pairs are spaced sufficiently apart so that clause
checking pairs do not overlap with each other. This guarantees that the clause checking
pairs interact only with the horizontal and vertical blocking pairs that we introduce later on
and with the variable state information (i.e. the chainsgrr,, x3 andxy).

Once that the direction of the paths for the variables has been decided (which means
that the variables have been assigned boolean values), shortest paths for the clause-checker
pairs may or may not exist. if they exist then they will be of the form given in Eg&for
the clause checker paif. The form of the path is such that if the variables do not satisfy a
clause, every possible path for will advance to the other side of the chains representing
the variables, but its vertical distance will only drop by a value equal to 12 times the number
of variables. On the other hand, when at least one variable has a value that satisfies the
clause, then the path will escape vertically to the other side of the chains for a distance
equal to 12 times the number of variables plus a small constant, and then it will be able to
connect to the other point. The scenario when there is a path for the clause pair is shown
with the dashed and dotted line in Fit@. If none of the values for the variables satisfy
the clause, then every path for pairends up at a region where it is impossible to reach
the other endpoint af1, because there is a blocking pair whose only path will not allow it
to move lower. This clause path which cannot connect to the other endpoint is marked by
“x"and is represented by dashed lines in Bi§.For brevity we will not specify the actual
positions of all the pairs in the reduction. Interested readers are refef@ddoadditional
details. However, we will discuss additional details of the reduction in what follows.

From left to right in the grid, as the clause path crosses a chain for a variable that is not
in the clause, the path will move downward in the vertical direction by at most 12 units
per each variable. The same holds when a variable or its complement does not satisfy the
clause. However, if the value of the variable or its negation satisfies the clause, then either
the vertical movement may be more than 12 units or the path may only drop the usual
twelve vertical units. Let us now explain the general implementation framework and then
give additional details.

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 175

™
\
\
= .
\ T N
P
N |
N \ |
1\ t
| e X st
| \ N
i L3
1
A
T
(a) (b)

Fig. 14. Variablex; or its complement is not in clauge; . (a) Variablex; has the value of false. (b) Variabig
has the value true.

Fig. 14 shows the case when a variable or its complement is not in the clause. The
only possible path for the additional blocking pairs is indicated with thick black lines.
The dashed lines indicate one or more of the possible clause pathd.6Figpicts the
case when the variable’s negation is in the clause. Notice that this figure is different from
Fig. 14. Fig. 16 has five columns between the two endpoints of the horizontal blocking pairs,
but Fig.16 has six. The only possible path for the additional blocking pairs are indicated
with solid bold lines. The dashed lines indicate one or more of the possible paths. The case
when the uncomplemented variable is in the clause is given in Eiband18. Figs. 14,

16-18 actually admit more paths than those that are shown with the dashed lines; however
the exit location is invariant. To facilitate the exposition both the “true” and “false” variable
states for variable; are shown by curved lines. These also are indicative of a collection of
possible paths.

In Figs. 14, 16-18the region between the two horizontal thick lines (the only paths for
the blocking pairs) is called thgassage to the lower regioif a path begins on the left
side of the region above the left horizontal thick line and ends below the right horizontal
line on the right side of the region it will exceed the 12 vertical unit step for this variable.
This is only allowed if the variable pairs are in the appropriate state. In Edja) and (b)
the clause path cannot go through the passage to the lower region. The main reason for
this is that the paths, for the four pairs with endpoints on opposite sides of the passage to
the lower region, do not leave enough space for a clause pair to move to the lower region.
This is illustrated in more detail in Fig&5(a) and (b). In Figsl4, 16-18 a clause path
will enter five units below the top-left corner or below the left horizontal thick line. The
path will leave on the right side one unit above the right horizontal thick line or below it.
When either the current variable value or one of the previous ones satisfies the clause, then
the path may leave above or below the right horizontal thick line. On the other hand if the
values assigned to these variables do not satisfy the clause, then path can only leave above
the right horizontal thick line.

176 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

N T
- j— i

(a) (b)

Fig. 15. Specific paths when variable or its complemeris not in clauseC;. (a) Variablex; has the value false.
(b) Variableu; has the value true.

pt '
=t

- ‘4(i

T

T

(a) (b

Fig. 16. Negation of variable; is in clauseC;. (a) Variablex; has the value false. (b) Variahie has the value
true.

Fig. 16 shows our construction when the negation of a variable is in clayg@aotice
that the number of columns in the passage to the lower region is more than the ones in
Fig. 14). In Fig. 16(a) shows two possible configurations for the clause path. One of these
paths goes through the passage to the lower region. This is possible because the value of the
variable satisfies the clause. The passage region is shown in more detail19(Big.The
configuration in Fig16(b) does not allow the clause path to go through the passage to the
lower region because the value of the variable does not satisfy the clause. This blockage is
illustrated in Fig.20(a).

The reason for this blockage is simple (Fig(b)). In the “true” state for the variable the
paths associated with the pairs labeled with a square must go below paths for pairs labeled
with “o.” It is simple to see that every path that goes through the passage to the lower region
must use one of the four solid™in Fig. 16(b). Since the paths for the two pairs labeled with
“0.” and the two paths labeled with a square must go through the passage, it then follows
that no other path may use the passage.

Fig. 17 gives the construction when the variakleis in the clause and it has the value
false. In this case the clause path must exit to the right at the level indicated in the figure.
The passage to the lower region is depicted in more detail in2B{lp) where one can see

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 177

N
inml
O
ual
1
1 A
A
AN
e P
i
=)
- | |
m
g
M
[
=)
U
e - N
['||-—|
u)

Fig. 17. Variabley; has the value false and itis in the clausg

] T { R i T
1 | | | |] | |
T I T [
N | =
N X | N
| | Y
I I T
| I] | | |
T s \ St]
] — L' N N
TTTIN A W|
Im [
| -
I It I T TS
(a) (b)

Fig. 18. Variabley; is in a clauseC ;. Variablex; has the value true and the path for claggeexits through the
(a) upper portion or (b) lower portion.

that the passage to the lower region is blocked by the paths for the variable pairs. In this
case one can prove that clause path must exit in the upper region.

Fig. 18 shows two possible paths when the variahlés in clauseC; and has the value
true. In Fig.18(a) the path exists through the upper region and in B) it exits through

178 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

[1] = [1]
Te A —

[

(a) (b)

Fig. 19. Clause path (dashed line) passage to the lower region. (a) Varjablé clauseC; and has the value
false. (b) Variabler; is in clauseC; and has the value true.

=1
L=l }

O

i 1l
=)

(a) (b)

Fig. 20. (a) Specific path when negation of variabjés in C; and variable has the value true. (b) Specific path
when variable; is in C; and the variable has the value false.

the bottom region. Figl9(b) shows the passage to the lower region in more detail. As in
the previous cases one can prove that the clause path may advance to the lower region via
the passage only if a variable has the value that satisfies the clause. For brevity we will not
prove our result. However, in the following two examples we give additional details needed
to assemble all the components in our reduction.

Fig.21shows the segment of clau€e = {u1, u2}. The solution is shown far; = uz =
False andi, = True. The three larger squares, which we now lestjuares correspond to
the intersection of a variable with the clause. The top-left corner oftthesquare is 16
units to the right and 12 units below the top-right corner ofithelst I-square. Notice the
dashed—dotted line joining the horizontal blocking pairs of adjacent I-squares. These paths
are introduced to guarantee that if a path leavestthésquare above the right horizontal
blocking pair, then it will enter thé — 1st I-square above its left horizontal blocking pair.
This also guarantees that if a path leaves below the right horizontal blocking pair, then it
will enter below the left horizontal blocking pair of the next I-square. These paths can be
realized by either introducing a new pair or by combining the blocking pairs of adjacent
I-squares into one pair. Now, the first I-square corresponds to vaiialiielonging to the
clause. The blocking pairs are the ones given in Fig&) and (b), the clause path is given
by Fig.16(a), and the actual passage to the lower region is given bylBfg). The second
I-square corresponds to the variablebeing a literal of the clause. Figk7 and18(a) and
(b) show the blocking pairs for this I-square, the clause path is given by H@s.and (b),
and the actual passage to the lower region is given bylR(@), except if the path entered
from below the left blocking pair for the I-square. The third I-square corresponds to the third

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 179

imam s HHE HE R PN

Fig. 21. Segment of clause; = {i1, up}. The solution is shown far; = uz = False andip = True.

variable not being part of the clause. The blocking pairs are the ones given irl&a}.
and (b), the clause path is given by Fig(a), and the actual passage to the lower region is
given by Fig.15(a).

Fig. 22 shows the same claugi when the values of the variables are not set correctly
(u2 = uz = False andt1 = True). Note there is no way for the clause path to pass to
the lower region and thus there is no solution for this variable state configuration. The first
I-square corresponds to varialdgbelonging to the clause. The blocking pairs are the ones
given in Figs.16(a) and (b), the clause path is given by Fi¢(b), and the actual passage
to the lower region is given by Fi@0(a). The second |-square corresponds to the variable
u being a literal of the clause. Figs7 and18(a) and (b) show the blocking pairs for this
I-square, the clause path is given by FiJ, and the actual passage to the lower region is
given by Fig.20(b). The third I-square corresponds to the third variable not being part of
the clause. The blocking pairs are the ones given in Big®) and (b), the clause path is
given by Fig.14(a), and the actual passage to the lower region is given bylb{g).

The main reason why we have not been able to show that this problem is in NP is that
the input size i% log(v + w), but there may be a pair with distance- w that hasy + w
bends. The amount of space needed to represent the occupied vertices may be exponential
with respect to the input length. So it seems that polynomial time verification may not be
possible.

Theorem 5. The partial half permutation routing request for the k-pairwise node disjoint
shortest paths problem for the gr{-PAIRWISE-GRID-NDSRs NP-hard

Proof. To prove NP-hardness, we use the above reduction from SAT, whethe number

of variables andv is the number of clauses. The only way that a path may escape from the
12 vertical unit step function is if the variable or its negation is in the clause and the variable
is in the proper state. The previous discussion demonstrates that the path for a given clause
exists only if one of the paths for its variables allows it to do so. If a variable in the SAT
clause has the appropriate value, then Figéh) and16(a) and their attendant discussions

180 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

T

TR
t
13

HH HH T i
ESaazasadinaifEspEsEE: HH N HHHH HNR

Fig. 22. Segment of clauge; = {ii1, u2}. There is no solution forp = u3z = False andi1 True. “x” indicates
that no path exists below this point.

demonstrate that a clause path may pass to the lower region. However if no variable in the
clause is the appropriate value then the clause path may not move below the ieveld2

its starting point. This is observed merely because the path for traversal is blocked by the
individual variable states and constructions described above.

Once the clause path has moved to the lower region, it still must move downward 12
vertical units for each variable state construction crossed horizontally. The path for the
clause shown in Figl4indicates that no more than 12 units are required for each individual
variable crossed. Therefore, if any one construction allows the clause path to move into the
lower region it may connect to the terminal point of the clause path at the far right of the
grid.

Furthermore, the transformation is of polynomial time complexity as the number of
pairs generated from an instance of SAT i@®). Each pair is labeled by a node label of
maximum length Quw). The length of the input to thepairwise shortest path problem in
the grid is therefore polynomial in the input length. So the problem is NP-hardl

3.2. Constant constraint on the pair distance

We show that when the problem outlined in Sectbhis such that pair distances are
constrained by a sufficiently large constant the problem remains NP-hard. Since the pair
distance is constrained we can easily prove that the problem is in NP. Hence the prob-
lem is NP-complete. Our result (Theoregpimplies that the constant number of bends
problem is also NP-complete. The reduction we use in this section is similar to the one in
Section3.1 The only parts we need to change are the clause checker pairs since they have
a pair distance that is not bounded by a constant.

The clause checker in the previous Sectiohconsists of a pair whose vertices are at a
distance that is linearly dependent on the number of variables. We need to modify this so
that the clause checker pair distance is bounded above by a small constant. Our modified
architecture involves multiple pairs for each p@jr Note thatC; andC» shown in Fig.23

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

1 T2 T3 T4

o AN\ \s
.

I

NN
DRI

\s
' \KC; NO PATH

IR .

AENEN

s

181

I C

4
N -

Fig. 23. Overall architecture: diagonal pairs are variable states. Dashed lines show possible paths. The upper path
for ¢1 pairs cannot connect £” indicates no connection is possible). The lower path composed ahthairs

which can connect.
Ry, ﬁ
\. tq \\ ts

t3

Ty
& - \\\

t1

)
-

Fig. 24. Overall architecture: adjacent connecting cells for the multiple clause pairs.

to

are now multiple pairs whereas in Secti®ri only one pair crossed the entire horizontal
expanse of the grid. Fi®@4 shows an example of the placement of multiple pairs instead of
justcr as in Sectior8.1

The way the pai(s;, ¢;) is routed affects the way pait; 1, #;+1) isrouted. The area where
each pairisrouted is like the ones in the previous section in the sense thatif the corresponding
variable satisfies the given clause, then the pair is routed through a path that ends below the
“passage to the lower region” as in the left-hand side of Zifg). On the other hand, if the
corresponding variable does not satisfy the clause then the pair can only be routed through
a path that ends above the passage to the lower region and it needs to use the gap to the right
side in order to connect to its destination (see left-hand side o25{h)). Henceforth we
will call the gap on the right side of each component the “gap to the right”. In the former
case the next pair may use the gap to the right as passage to the lower region and start in
the bottom of the component and then connect to its destination (see right-hand side of the
Fig. 25(a)). In the latter case the next pair must be routed by a path going through the upper
portion of the area. The gap to the right is occupied in this case. However, it may use the
passage to the lower region in the next area (see right-hand side @9ti). The lower
path shown here represents a variable or its negation in the proper state. The upper path
represents avariable notin its proper state or a variable not in the clause. The upper path uses

182 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

S1 52

(@)

S1 $2

or

t1 T 52

(b)

Fig. 25. (a) Clause pais1, 71) is routed by a path through the lower region and thus the clause patipfos)
may move downward first. (b) No clause pair to the left has been routed to the lower region therefore the next
clause path fotso, r2) moves to the right first.

the gap to the right. The idea is that if a variable satisfies the clause, then the corresponding
pair will be routed as in the left part of Fig5(a) and the same routing that appears on the
right side of Fig.25(a) will be possible for the path for the remaining pairs. When none
of the variables satisfies the clause then the rightmost pair will not have a connecting path
because there is no gap to the right in the rightmost g&jr) in Fig. 24).

Fig. 26(a) illustrates the case where a variab)ds not in the claus¢ and the variable
u; is in the “true” state. Similarly Fig26(b) indicates the case when a variableis not
in the clause and the variable is in the “false” state. In both cases if the gap is not used at
the starting point of the path for the pair there will be no passage to the lower region as in
the proof in SectiorB8.1in particular Figs14, 18 and16(b). Figs.27(a) and (b) show the
variable paths in the “false” and “true” states, respectively. The negation of the varjable
is in the clause and if the variable is in the “false” state there will be a passage to the lower
region (as indicated in Fi@7(a)). However, as Fi7(b) indicates there will not be such a
passage for the clause path when the variable paths are in the “true” stat@8@agsand
(b) show the variable paths in the “false” and “true” states, respectively. The vauiaisle
in the clause and if the variable is in the “true” state there will be a passage to the lower
region (as indicated in Fi®8(b)). However, as Fig28(a) indicates there will not be such
a passage for the clause pair when the variable paths are in the “false” state.

Theorem 6. The partial half permutation routing request with a constant constraint on pair
distance for the k-pairwise node disjoint shortest paths problem for thgkpfAIRWISE-
GRID-CNDSPR is NP-complete

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 183

“— I .
\ o,
X
L}
N |
A \ ¥
N N
K - -
L}
i
(@) (b)

Fig. 26. (a) Variable:; or its complement is not in clauge; . Variableu; has the value true. (b) Variabie or its
complement is not in clausg; . Variablex; has the value false.

o T "= =
X N
| |
| |
A N | |
| |
| | N N
] - -
T A h
(a) (b

Fig. 27. Negation of variable; is in clauseC;. (a) Variablex; has the value false. (b) Variahig has the value
true.

Proof. As the pair distance is constrained by a constant, each path can be characterized by
constant amount of information. So the given a set of paths checking pairwise disjointness
can be performed in polynomial time. Therefore, the problem is in NP. The remaining part
of the proof follows from the one in Theorefafter taking care of the modification dis-
cussed above. [

The constant constraint on the pair distance result (The6jafso implies the following
result.

Corollary 2. The partial half permutation routing request with a constant on the number
of bends for the k-pairwise node disjoint shortest paths problem for th&lAIRWISE-
GRID-CBENDS-NDSHs NP-complete

184 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185

1
L
th

]
L

LA
¥
7
vy

P/ s

{7
—__ il

rird

53]

sBCICIL I

e
el

@ (b)

Fig. 28. Variabley; is in a clauseC ;. (a) Variableu; has the value false. (l} has the value true and the path for
clauseC; and exists through the lower region.

4. Discussion

While not employed in as many high performance systems as-tube, the network
architecture of the grid, and its higher dimensional generalizations, are important network
topologies. The results stated in this paper for the grid are applicable to the higher dimen-
sional generalizations of the grid, because we are considering shortest paths and the grid is
embeddable in its higher dimensional generalizations. In Se2tlome show that the edge
disjoint shortest paths in the grid is an intractable problem. Even with a constant constraint
on the number of bends the problem remains NP-hard (Sez#priwhen there is a limit of
one on the number of bends for each route the problem can be solved efficiently (egtion
Theorem?2). When a constant constraint on pair distance is applied, the problem remains
intractable (Sectior2.3). While counter-intuitive, when doubling the grid topology and
maintaining the partial half permutation routing request we find that the problem remains
intractable[6]. When node disjoint shortest paths are considered, the basic topology of
the grid continues to imply intractability for the partial half permutation routing request
(Section3.1) and further constant constraints or constraints on number of bends do little
to eliminate the characteristics of intractability (Sect®8). Similar results apply for the
doubled grid; however, for brevity we do not include all of this work in this paper.

References

[1] A. Aggarwal, J. Kleinberg, D.P. Williamson, Node-disjoint paths on the mesh and a new trade-off in VLSI
layout, SIAM J. Comput. 29 (4) (2000) 1321-1333.

[2] W.F. Dowling, J.H. Gallier, Linear-time algorithms for testing the satisfiability of propositional horn formulae,
J. Logic 3 (1984) 267—284.

[3] S. Gao, B. Novick, K. Qui, From Hall'’s matching theorem to optimal routing on hypercubes, J. Combin.
Theory Ser. B 74 (2) (1998) 291-301.

[4] T.F. Gonzalez, Complexity and approximations for multimessage multicasting, J. Parallel Distributed Comput.
55 (1998) 215-235.

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155-185 185

[5] T.F. Gonzalez, F.D. Serena, Node disjoint shortest paths for pairs of vertices-ioure network, in: Proc.
Internat. Conf. Parallel and Distributed Computing and Sytems (PDCS2001), 2001, IASTED, pp. 278-282
(full version appears as UCSB TRCS-2001-16, September 2001).

[6] T.F. Gonzalez, F.D. Serena, Complexitylepairwise disjoint shortest paths in the undirected hypercubic
network and related problems, in: Proc. Internat. Conf. Parallel and Distributed Computing and Systems
(PDCS 2002), 2002, IASTED, pp. 61-66 (full version appears as UCSB TRCS-2001-14, May 2002).

[7] Q.-P. Gu, S. Pend;Pairwise cluster fault tolerant routing in hypercubes, IEEE Trans. Comput. 46 (9) (1997).

[8] Q.-P. Gu, S. Peng, Node-to-set and set-to-set cluster fault tolerant routing in hypercubles, Parallel Comput.
24 (1998) 1245-1261.

[9] Q.-P. Gu, H. Tamaki, Routing a permutation in the hypercube by two sets of edge-disjoint paths, J. Parallel
Distributed Comput. 44 (1997) 147-152.

[10] R. Karp, On the computational complexity of combinatorial problems, Networks 5 (1975) 45-68.

[11] R. Karp, F.T. Leighton, R.L. Rivest, C.D. Thompson, U. Vazirani, V. Vazirani, Golbal wire routing in two-
dimensional arrays, in: 24th Ann. Symp. on Foundations of Computer Science,|EEE Computer Society Press,
1983, pp. 453—-459.

[12] M.R. Kramer, J. van Leeuwen, The complexity of wirerouting and finding minimum area layouts for arbitrary
VLSI circuits, Adv. Comput. Res. 2 (1984) 129-146.

[13] S. Latifi, H. Ko, P.K. Srimani, Note-to-set vertex disjoint paths in hypercube networks, Computer Science
Tech. Rep. CS-98-107, Colorado State University, 1998.

[14] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley, New York, 1990.

[15] S. Madhavareddy, I.H. Sudborough, A topological property of hypercubes: node disjoint paths, in: Proc.
Second |IEEE Symp. Parallel and Distributed Processing,1990, pp. 532-539.

[16] K. Menger, Zur allgemeinene kurventheorie, Fund. Math. 10 (1927) 95-115.

[17] D. Pretolani, A linear time algorithm for unique horn satisfiability, Inform. Process. Lett. 48 (1993) 61—66.

[18] M.O. Rabin, Efficient dispersal of information for security, load balancing, and fault tolerance, J. Assoc.
Comput. Machinery 36 (2) (1989) 335—348.

[19] X. Shen, Q. Hu, W. Liang, Realization of an arbitrary permutation on a hypercube, Inform. Process. Lett. 51
(51) (1994) 237-243.

[20] Y. Shiloach, To paths problem is polynomial, Tech. Rep. TR-CS-78-654, Stanford University, 1978.

[21] M. Watkin, Graph is2k — 1)-connected is a necessary condition to adapiaths, Duke Math. J. (1968).

	Complexity of pairwise shortest path routingin the grid
	Introduction
	Complexity of grid edge disjoint shortest path problems
	Edge disjoint shortest paths
	Restricting the number of path bends
	Restricting the pair distance

	Complexity of grid node disjoint shortest path problems
	Node disjoint shortest paths
	Constant constraint on the pair distance

	Discussion
	References

