
Theoretical Computer Science 326 (2004) 155–185

www.elsevier.com/locate/tcs

Complexity of pairwise shortest path routing
in the grid

Teofilo F. Gonzalez∗, David Serena
Department of Computer Science, University of California, Santa Barbara, CA 95064, USA

Received 14 July 2003; received in revised form 9 June 2004; accepted 18 June 2004
Communicated by G.F. Italiano

Abstract

In parallel and distributed systems many communications take place concurrently. The efficient
delivery of all the messages depends on the routing algorithms as well as the underlying intercon-
nection network topology. The grid is a planar network topology that lends itself for efficient VLSI
implementation and therefore is of interest for theoretical analysis. Frequently, networks and switches
achieve high performance by delivering the messages through shortest paths. In addition, network
fault tolerance improves through insuring that the traversed paths are both edge and/or node disjoint.
The edge disjoint criterion is useful when network links are the predominant constraint, and the node
disjoint criterion becomes important when switches are the fault tolerant bottleneck. Because the latter
necessarily implies the former, it is apparent that node disjointness contributes to fault tolerance and
enhanced performance. In this paper, we examine thek-pairwise node and edge disjoint shortest paths
problem in the undirected graph topology of the grid. Herein it is shown that thek-pairwise node as
well as thek-pairwise edge disjoint shortest paths decision problems are NP-hard, and remain NP-hard
even for many different restrictions on the problem. We also discuss polynomial time algorithms for
restricted versions of our problems.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Grid networks; Fault-tolerance; Node disjoint shortest paths; Edge disjoint shortest paths;
NP-completeness

∗ Corresponding author.
E-mail addresses:teo@cs.ucsb.edu(T.F. Gonzalez),david.serena@navy.mil(D. Serena).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.06.027

http://www.elsevier.com/locate/tcs
mailto:teo@cs.ucsb.edu
mailto:david.serena@navy.mil

156 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

1. Introduction

We establish NP-completeness or NP-hardness for routing problems defined over the
mesh or grid topology, which are common to many applications. Specifically, we show that
thek-pairwise node and edge disjoint shortest path problems in grid graphs are NP-hard.
Before we present our results, we formally define our problems and discuss previous related
work. Thek-pairwise node disjoint shortest paths problemfor the grid is givenp pairs of
nodes andq blocking nodes (k = p + q) denoted by

X = {X1, X2, . . . , Xp,Xp+1, Xp+2, . . . , Xp+q}
whereXi = (si, ti), for 1� i�p, andXi = (ai) for p + 1� i�p + q, find node disjoint
shortest paths in the grid for all the pairsXi , i.e. the paths do not include blocking nodes and
no two such paths have a node in common. Each pairXi = (si, ti) consists of twoendpoints
which are called thesourceandtarget, respectively. The nodesai are calledblocking nodes
or faulty processors. Every node in thegrid is represented by an ordered pair of integers
(j, k) and there is an edge from node(j, k) to nodes(j + 1, k) and(j, k+ 1). The distance
between the source and target nodes of pairXi (or pair distance) in the grid is denoted
by d(Xi) = d(si, ti) and it is|j − �| + |k − m| wheresi = (j, k) andti = (�,m). This
distance is usually calledManhattandistance. By ashortest pathfor the pairXi we mean
any path fromsi to ti with length equal tod(Xi), i.e. the path is the shortest path in the
graph between the two nodes independent from any other blocking nodes or endpoints of
pairsXi′ for i′ 	= i. Theedge disjoint shortest paths problemis givenX (without faulty
nodes orq = 0) in the grid, find shortest paths connecting eachsi to ti such that no two
paths have an edge in common.

Note that in the context of undirected graphs the order of the source to target in the
routing request is not important. Therefore, in this context we consider the undirected pairs
Xi = {si, ti} instead of the directed pair(si, ti). The directed pair problems are studied
in [6]. Both the decision problem and the search problem (generate a solution for yes-
instances) are important for analysis. The problem instance{{(0,0), (1,1)}, {(0,1)}} has
a solution, and search algorithms would generate the path(0,0) ↔ (1,0) ↔ (1,1). The
problem instance{{(1,1), (2,2)}, {(1,2)}, {(2,1)}} in the 4×4 grid has no solution because
of the blocking nodes, but it has a routing with arbitrary length paths:(1,1) ↔ (0,1) ↔
(0,2) ↔ (0,3) ↔ (1,3) ↔ (2,3) ↔ (2,2). For the edge disjoint shortest path problem
the instance{{(1,1), (2,2)}} has a solution; however, the problem instance{{(1,1), (2,2)},
{(2,1), (1,2)}} does not have edge disjoint shortest paths.

Many of the message routing problems mentioned above are known to be computation-
ally difficult for general graphs when one allows arbitrary length paths, rather than just
shortest ones. Karp[10] analyzes thek-pairwise disjoint paths problem in general graphs
and established NP-completeness. Shiloach[20] presented a polynomial time algorithm to
construct node disjoint paths in a graph for two pairs of vertices, and Watkin[21] showed
that(2k− 1)-connectedness is a necessary condition for a graph to admit disjoint paths for
a set ofk pairs of vertices.

The related problem where one seeks to findk-pairwise node disjoint paths (arbitrary
distance pairs) from vertices in set{s1, s2, . . . , sk} to vertices in set{t1, t2, . . . , tk} is called
the set-to-set node disjoint paths problem. In this problem one needs to findk node disjoint

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 157

paths from one set to the other such that the paths are fromsi to t�(i)where� : {1,2, . . . k} →
{1,2, . . . k} and� is any bijective function. Whereas in thek-pairwise problem� is the
identity function, namely�(i) = i. The undirected vertex version of Menger’s theorem
is applicable to the former problem, but not to the latter[16]. It is not applicable to the
set-to-set node disjointshortestpaths problem as Menger’s Theorem may implyarbitrary
length paths.

The node disjoint paths problem for then-cube has been studied even in the presence
of node faults[15,7,8]. Gonzalez and Serena[5,6] studied the node and the edge disjoint
shortestpaths problem for then-cube. Similarly, algorithms for the node-to-set node disjoint
shortestpaths problem for then-cube or hypercube have been developed[3,13,18].

Typically routing requests, like X above, are classified by the occupancy of source and
destination nodes at the vertices. Anh-k routing requestconstrains each source node to
appear at mosth times, and each target node to appear at mostk times at a vertex in the
graph[9]. This routing request problem has also been called the multimessage unicasting
message routing problem[4]. If edge disjoint paths exist for allh-krouting requests in a graph
or digraph, the graph is said to beh-k-rearrangeable. A routing request is�-rearrangeable if
any 1-1 routing request can be partitioned into� routing requests each of which has an edge
disjoint routing[9]. Concerning the concept ofh-k-rearrangeability and�-rearrangeability
the edge disjoint paths are not restricted to shortest paths. Apermutation routing requestis
a 1-1 routing request wherein all vertices are occupied by a source and a target. Apartial
permutation routing requestrelaxes the constraint that all vertices be occupied. An example
of a partial permutation routing request is when vertex occupancy is constrained to a source
or target, but not both. We call this request thepartial half permutation routing request.
Furthermore, the routing request for the problem defined at the beginning of this section is
called thepartial half permutation routing request with singletons.

The problem of finding disjoint paths in two dimensions has been extensively studied in
[1,11,14]because of its applications toVLSI routing. In[11] the classical grid routing model
is used and explores the grid routing problems. Formally, then0 × n1 grid,G = (V ,E),
is a graph structure where vertices are labeled by pairs of integers(a0, a1) ∈ V such that
0� ai < ni for i ∈ {0,1}. Furthermore, edge{(a0, a1), (a2, a3)} ∈ E, if both a0 + � = a2
anda1 + (1 − �) = a3 hold for � ∈ {0,1}. The capacity,c, is the maximum number of
paths that may use any given edge. The number of pinsp describes the occupancy of the
vertices in the grid. The case whenp = 1 corresponds to the partial half permutation routing
request without singleton nodes in the grid. Karp et al.[10] analyzes constant bend routing
methodologies for thek-pairwise edge disjoint case and establishes provably good heuristics.
Furthermore, they have shown that the optimal one turn routing problem is NP-complete
whenc = 2. In other words, they allow two paths to travel along each edge, but every path
has at most one bend. In this paper, we show that whenc = 1 (one path per edge) the one
turn routing problem is polynomially solvable, but the two turn problem is NP-complete.
All of our node and edge disjoint shortest paths problems are defined only forc = 1. In the
literature this corresponds toc-realizability for edges. Edge (node)c-realizability allows at
mostc paths to traverse any edge (node)[19].

We show in Sections2.1 that thek-pairwise edge disjoint shortest paths problem is NP-
hard in the grid (whenc = 1). Bendsin the grid path correspond directly to a change in
the path direction from vertical to horizontal, or from horizontal to vertical. In Section2.2

158 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

we show that the edge disjoint shortest path problem remains NP-complete even when we
restrict all the paths to have no more than some fixed constant number of bends (greater
than or equal to two). However, when every path is restricted to have one bend we show
that the problem is solvable in polynomial time. In addition, we show that thek-pairwise
edge disjoint shortest paths problem remains NP-complete even when every pair distance
is bounded by some fixed constant (Section2.3).

Kramer and vanLeeuwen[12] established that thek-pairwise node disjoint (arbitrary
length) paths problem in the grid is NP-hard. This problem has also been studied for multi-
layer grids[1]. Agrawal et al.[1] also discuss the node disjoint arbitrary length path with
constant number of bends, and establish an upper bound for the trade off between the number
of layers and area in a general multilayer grid model. In this paper the number of layers is
one.

In Section3.1, we discuss the node disjointshortestpaths problem and establish that for
a partial half permutation routing request the problem is NP-hard. In addition in Section3.2
we show that for a sufficiently large constant bound on the pair distance thek-pairwise node
disjoint shortest paths problem remains NP-complete. The grid structure is generalizable
to higher dimensional topologies. Since the grid is embeddable in those topologies, NP-
completeness and NP-hardness results for those structures directly follow from our grid
results.

2. Complexity of grid edge disjoint shortest path problems

We show that the edge disjoint shortest path problem in the (undirected) grid
(Section2.1) is NP-hard. Then we establish that the problem remains NP-hard even when
every path is limited to have at most a constant number of bends (Section2.2), and when
every the pair distance is bounded by a constant (Section2.3). When there is a sufficient
constraint on the number of bends the problem is shown to be polynomial time solvable
(Section2.2, Theorem2). It is interesting to note that the result in Section2.3does in fact
imply a constant bound on the number of bends; however, it is a far larger constant than the
three bends required by the construction in Section2.2.

2.1. Edge disjoint shortest paths

We establish that thek-pairwise edge disjoint shortest path problem in the grid graph is
NP-hard by reducing the SAT problem to it. Our reduction has some architectural similarities
to the reductions for the corresponding problems defined over then-cube[5,6]. From an
instanceI of the SAT problem, we construct an instancef (I) of thek-pairwise edge disjoint
shortest path problem. First we give a general overview of the reduction, specify the pairs
to be introduced for the variables and clauses as well as for additional pairs, called blocking
pairs, that force certain paths for all the variable and clause pairs. We give a couple of
examples to illustrate our informal reduction and then we formally define our reduction.

There are two types of components:settingandclause-checker. Thesettingcomponent
assigns to each variable a value (true or false). For each variableui there is a pair indicated
by thexi ’s in Fig. 1. We will also introduce blocking pairs (which are represented by thick

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 159

Fig. 1. Basic architecture of the construction: (a) Variableui is (uncomplemented) in clauseCj . (b) Variable
(uncomplemented)ui′ or (complemented) variablēui′ are not in clauseCj . (c) Negation of variableui′′ is in the
clauseCj . The thick lines represent the only possible shortest path for blocking pairs.

lines in Fig.1 joining the pair by the only possible shortest path for the pair) that will
guarantee that all thexi pairs can only be connected by a path with one turn or bend in a
shortest path solution. The top–down vertical to horizontal path corresponds to the value
false assigned toxi and the top–down horizontal to vertical path corresponds to the value
true assigned toxi . There is aclause checkerfor each clauseCj . Each checker consists of
two pairs,cj anddj (see Fig.1). Furthermore, shortest paths for pairscj anddj have 2
bends or 4 bends. We will introduceblocking pairs(which are represented by thick lines
in Fig. 1 joining the pair by the only possible shortest path for the pair) in such a way that
shortest paths for pairscj anddj exist if and only if the clause they represent is satisfied, i.e.
at least one of its literals has the value true. The pairscj anddj must have paths that cross
in one position. This is due to the fact that in column 0,cj is abovedj and in the rightmost
columnn0 − 1, dj is abovecj . In Fig. 1 we use vertical ellipses to indicate a continuation
of the ith variable and the location for other clauses. Horizontal ellipses in Fig.1 indicate
the intersection regions of the clause with other variable pairs. Possible paths are indicated
by thin solid or dashed lines.

Let us now discuss in more detail the pairs for the variables and clauses. The pairxi is
located at(a,0) and(a + 2, n1 − 1), for some positive integersa andn1 to be determined
later. Remember that in all of our figures the first coordinate increases from left to right and
the second one increases from top to bottom.The paircj is located at(0, c)and(n0−1, c+2)
and the ones for thedj pairs are located at(0, c+2) and(n0−1, c), for some positive integer
cwhich will be determined later on. For every pair of vertices we define theirshortest path
regionas the set of all the vertices which lie in any shortest path for the pair. We introduce
additional pairs, calledblockingpairs, located at the intersection of the shortest path region
for the ith variable pair and thej th clause pair as well as between adjacent intersection
regions. As mentioned above, these pairs are represented by thick lines along the only
possible shortest path for the blocking pair. These pairs limit the possible paths for the
variable (xi) pairs and/or the clause (ci anddi) pairs. The pairs added in the shortest path
region for theith variable pair and thej th clause pair are different depending upon whether
or not the variable or its complement is present in the clause. In what follows we refer

160 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

to this intersection as theintersection region for the variable and clause pairor simply
the intersection regionif the variable and clause pairs are understood. Theneighborhood
of an intersection region of a variable and a clause includes the intersection region plus
the previous and next columns inside the shortest paths region for the clause. As we shall
see later on, the neighborhood for a clause and two adjacent variables have a column in
common.

In what follows we specify the location of the blocking pairs for the intersection re-
gions. The blocking pairs introduced at the intersection regions for the three different cases
(variable is not in the clause, variable is in the clause and appears uncomplemented, or
complemented) are given in Fig.1. We justify our constructions below.

The neighborhood of the intersection for theith variable and thej th clause pair when
the variable is in the clause is shown in Fig.1(a). The region allows a crossing of the
path for the pairscj anddj when the variable has been assigned the value of true, i.e.,
it is connected by a path that uses the vertical right-hand side of the shortest path region
for the variable. If the path for the variable pairxi traverses the vertical left-hand side
of the shortest path region for the variable, i.e. the variable has the value of false, then
it is not possible for the paths for the pairsdj andcj to cross in this neighborhood. Fig.
2(a) depicts the crossing of the paths forcj anddj when the variable has the value of true.
Fig.2(c) can be used to show that the crossing is not possible when the variable has the value
of false.

The neighborhood region when the negation of a variable is in a clause is given in
Fig. 1(c). The region allows a crossing of the path for the pairscj anddj when the variable
has been assigned the value of false. Fig.2(b) depicts the crossing of the paths forcj and
dj when the variable has the value of false. Fig.2(d) can be used to show that the crossing
is not possible in the neighborhood when the variable has the value of true.

When a variable is not present in a clause the neighborhood region is such that the crossing
of the path for pairscj anddj is not possible. (Fig.1(b)). Fig.2(e) and (f) can be used to
show that it is not possible for the paths for pairscj anddj to cross in the neighborhood no
matter what value the variable is assigned.

The pairscj anddj need only cross at one variable pair in the proper state. Note that two
or more possible crossings may be available forcj anddj (seec1 andd1 in Fig. 3). When
a crossing occurs we know the clause is logically satisfied. If the clause cannot be satisfied
then no crossings occur throughout the structure. There is no solution as the paths have not
crossed. In this case there are no edge disjoint paths for both the pairscj anddj .

Before we formally define our reduction, we give a couple of examples to illustrate
our informal reduction. The instance of SAT,{{u1, u2}, {ū2, ū3}, {u3, ū1}} is satisfiable.
We illustrate our construction for this instance in Fig.3 with a satisfying assignment
u2 = False andu1 = u3 = True.

The instance{{ū1, u2}, {u1, ū2}, {u1, u2}, {ū1, ū2}} is not satisfiable and the problem
instance generated from it is depicted in Fig.4 where we show all configurations of “true”
and “false” values foru1 andu2. As we traverse the figures from left to right, none have
edge disjoint shortest paths for clausesC4, C3, C2 andC1, respectively.

Formally, the construction places for each variablexi a pair at the vertices{(4i −
3,0), (4i − 1, n1 − 1)}. For thej th clause there are two pairs{(0,3j − 2), (n0 − 1,3j)}
and{(0,3j), (n0 − 1,3j − 2)} representing the “cj ”and “dj ” pairs, respectively. Of course

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 161

Fig. 2. (a) and (b) Crossing of clause pairs are possible because the value assigned to the variable satisfies the
clause. (c) and (d) Crossing of clause pairs is impossible because the value assigned to the variable does not satisfy
the clause. (e) and (f) Crossing of clause pairs is impossible because the variable is not in the clause.

n1 is a function ofw, the number of clauses,n1 = 3w + 1 andn0 is a function ofv, the
number of variablesv, n0 = 4v.

The additional blocking pairs are defined as follows: The vertical pairs between the
variable pairsxi and xi+1 are located at{(4i,3j + 2), (4i,3j + 3)}, for 0� j < w.
The vertical pairs inside the shortest path region for each variablexi are located at
{(4i − 2,3j), (4i − 2,3j + 1)}, for 0� j�w.

We assume without loss of generality that none of the clauses contain a variable and its
complement, as otherwise we could just delete the clause without changing the satisfiability
of the clauses. Leth1 < h2 < · · · < hr be the variables that clausej contains. We define
d1, d2, . . . , dr ∈ {0,1} as follows: If the variableuhk , appears negated in the clause then
dk = 0, otherwisedk = 1. Now we define the blocking pairs for clausej as follows:

{(4h1 + d1 − 3,3j − 1), (4h1 + d1 − 2,3j − 1)},
{(4h2 + d2 − 3,3j − 1), (4h2 + d2 − 2,3j − 1)}, . . . ,
{(4hr + dr − 3,3j − 1), (4hr + dr − 2,3j − 1)}.

All other variables,u�, that are not contained in the clauseCj have a blocking pair of the
form {(4�− 3,3j − 1), (4�− 1,3j − 1)}.

162 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

Fig. 3. Problem instance generated from{{u1, u2}, {ū2, ū3}, {u3, ū1}}. The solution shown corresponds to the
truth assignmentu2 = False, andu1 = u3 = True.

Fig. 4. Problem instance generated from{{ū1, u2}, {u1, ū2}, {u1, u2}, {ū1, ū2}} has no solution. A “×” symbol
indicates that the clause pairs do not have shortest paths. (a)u1 = True andu2 = True. (b)u1 = False and
u2 = False. (c)u1 = False andu2 = True. (d)u1 = True andu2 = False.

In Theorem1 we show that thek-pairwise edge disjoint shortest paths problem for the
grid (k-PAIRWISE-GRID-EDSP) is NP-hard. We cannot establish that the problem is NP-
complete because it is not clear whether thek-pairwise edge disjoint shortest paths decision
problem is in NP. The difficulty in proving the problem is in NP is that it may be that for a
grid of sizen0 by n1 the number of bends for a path may be as large as min(n0, n1). But
the input length isk log (n0 +n1), wherek is the number of pairs. Therefore, the amount of
information needed to represent the path might not be polynomial with respect to the input
length.

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 163

Theorem 1. Given the partial half routing request, the k-pairwise edge disjoint shortest
paths problem for the grid(k-PAIRWISE-GRID-EDSP) is NP-hard.

Proof. We use the reduction from SAT given above. We now show that the instance
constructed from SAT has edge disjoint shortest paths for all pairs if and only if the instance
of SAT is satisfiable.

First we connect all blocking pairs by their only shortest path. Now, given any assignment
that satisfies all the clauses, we just connect each pairxi by the path that corresponds to
the truth assignment for the corresponding variable. Since the satisfying assignment is such
that every clause is satisfied, then we know that edge disjoint shortest paths exist for each
of the two pairs for each clause. The paths will cross as indicated in Fig.2. Therefore, edge
disjoint shortest paths exist for all pairs.

On the other hand, if edge disjoint shortest paths exist for the instance of thek-pairwise
edge disjoint shortest paths problem that we defined, we need to show that the instance of
SAT that we started from is satisfiable. Consider first the path for theith variablexi . Since
the path is a shortest path it must be inside the shortest path region for the variable. If it
starts by moving to the right, then it cannot move down on the next column because there is
a blocking pair that uses that edge. So it must move to the right to the next column and then
down. This corresponds to assigning the value of true to the corresponding variable. If the
path starts by moving down first, then it must continue moving down until rown1 − 1 and
then continues to the right. This corresponds to the variable having the value of false. The
reason why the path must continue moving down is that in the shortest path region for pairxi
between the intersection regions for adjacent clauses the path forxi must be on the left side
or the right side of the shortest path region for pairxi because of the vertical blocking pairs
inside the region. So if the path is not continually moving down, then inside an intersection
region with a clause it must move to the right side. This is not possible because two rows
must be used by the paths for thecj anddj pairs and one row for the path for thex pair.
There are three rows, but at least part of the middle row is blocked. Therefore, the path
for xi must continue moving down until rown1 − 1. Now lets consider the paths for any
pair ci anddi . Since these are connected by edge disjoint paths then they must cross at the
neighborhood of the intersection of a variable and theith clause. By construction, it is easy
to show that the crossing is not possible in regions that represent variables that are not in the
clause. In addition, by construction one can easily show that such crossing is only possible
at the neighborhood region where a variable that has the value true appears in the clause,
or the variable has the value of false and it appears complemented in the clause. Therefore,
the existence of edge disjoint shortest paths implies the satisfiability of the instance of SAT
we started with.

Furthermore, the reduction is polynomial as the number of pairs introduced is O(vw).
The representation of pairs for the grid requires aboutvw log (v + w) bits, and thus the
reduction is polynomial. This completes the proof of the theorem.�

Whend(Xi)� 2 the algorithm by Gonzalez and Serena[5,6] for the corresponding prob-
lem in then-cube works also for this problem simply because there are only two possible
paths for each pair. This problem is solved by reducing it to the 2SAT problem. It is well
known that 2SAT is polynomially solvable[2,17]. We have also developed a polynomial
time algorithm for the case whend(Xi)� 3. This algorithm is tedious, so for brevity we do

164 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

not include it. In the next section we discuss thek-pairwise edge disjoint problem when we
restrict paths to have a constant number of bends.

2.2. Restricting the number of path bends

The algorithm in the previous section can be easily adapted for arbitrary values ofd(Xi)

as long as the only valid paths have just one bend, i.e., the path consists of a vertical
line followed by a horizontal one or vice versa. The reduction to 2SAT is quite simple.
A variable is used to indicate one of the possible two paths and two-literal clauses are added
to avoid possible pairs of paths that overlap. We state our result in Theorem2 without
discussing further details.

Theorem 2. Given the partial half routing request, the k-pairwise edge disjoint shortest
paths problemwith at most one bend allowed per path is polynomially solvable for a partial
half permutation routing request in the grid.

Proof. The problem is reduced to 2SAT (see the comment just before this theorem) which
in turn can be solved in polynomial time with respect to the number of pairs.�

In the previous subsection we have established NP-hardness for thek pair edge disjoint
shortest paths problem in the grid without a restriction on the number of bends or turns. A
careful examination of the reduction for Theorem1 reveals that when there is a solution
every pair is connected by a path with at most four bends. Given any set of paths, each with
at most four bends, once can easily verify in polynomial time whether or not the paths are
shortest, and are edge disjoint. Therefore, this restricted version of the problem is in NP.
The following corollary is a consequence of the previous theorem and the above comments.

Corollary 1. Given the partial half routing request, the k-pairwise edge disjoint short-
est paths problem for the grid(k-PAIRWISE-GRID-EDSP-3TURNS) when every path is
restricted to have at most four bends is an NP-complete problem.

None of the previous theorems cover the case when one limits each path to have at most
two turns. We now show that even this problem is an NP-complete problem. To prove this
result we polynomially reduce 3SAT to the edge disjoint shortest paths problem in the grid
when every path is allowed at most two bends. We start by discussing the transformation
details which are similar in nature to the ones in the previous section.The setting components
are similar. The main difference is that in the reduction we use 3SAT rather than SAT, and the
clause checkers are different. We use 3SAT in order to simplify our clause checker structure.
The clause checker pairs need to be changed because half of the clause pairs in the previous
reduction required paths with four bends. From an instanceI of the 3SAT problem, we
construct an instancef (I) of thek-pairwise edge disjoint shortest path problem as follows.
First we give a general idea about our reduction and give an example. Then we formally
define the reduction and prove our result.

As in the construction given in the previous section, there are two types of components:
settingandclause-checker. Thesettingcomponent assigns to each variable a boolean value.
For each variableui there is a pair indicated by thexi ’s in Fig. 5. We will also introduce

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 165

Fig. 5. Placement of the leftmost point in thecj,3 pair. (a) Whenūi is the third variable in clauseCj . (b) When
ui is the third variable in clauseCj . The thick lines represent the only possible path for blocking pairs.

someblockingpairs (which are represented by thick lines in Fig.5 joining the pair by the
only possible shortest path for the pair) that will guarantee that all thexi ’s pairs can only
be connected by paths that move to the right, then down, and then again to the right. We
say that the path whose vertical segment is on the left side represents the value of false and
the other one represents the value of true (Fig.5). For each clause we introduce three pairs,
one for each literal. The pairs for thej th clause are denoted by:cj,1, cj,2, andcj,3. Notice
the difference from the previous reduction. In the previous reduction we had two pairs per
clause, where as now we have one pair per literal in a clause. Each of these pairs will have
two different possible rows for the path. If a variable is the third literal of thej th clause,
then the pair originates as indicated in Fig.5. This implies that if the value assigned to the
variable does not satisfy the clause, then the path for the corresponding clause pair must
be on the upper row for the pair, where as if the value assigned to the variable satisfies the
clause then the path may be on the upper or lower row for the pair. The idea is that if a
clause is satisfied by the values assigned to the variables, then at least one of the paths for
the clause pairs will be on its lower row and the remaining paths will use their upper rows.
On the other hand if the values do not satisfy the clauses, then the paths for the three pairs
for the clauses must be on their upper rows, but our construction will not allow one of these
paths to connect to its destination, as we shall see later on. Let us now discuss the other
endpoints for the clause pairs.

Consider thej th clause. Fig.6 shows the rightmost endpoints for the three pairs. The
one unit thick black lines represent the only possible shortest paths for the blocking pairs
that are used to prevent a connection without a bend near the neighborhood of a clause
pair, or prevent connections from three pairs using the upper rows of the clause pairs. If
one allows the former case, then a clause that is not satisfied can have its three pairs con-
nected by shortest paths by just introducing a bend along one of the unused columns of

166 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

Fig. 6. Size three clause: the three valid rightmost configurations in the grid ofcj,1, cj,2, andcj,3.

other variable pairs. The latter case prevents connections when all the three paths use their
upper rows which occurs when a clause is not satisfied. The leftmost diagram in Fig.6
shows the connections when the clause is satisfied by the first variable, the middle diagram
is for the case when the second literal satisfies the clause, and the rightmost is when
the third literal satisfies the clause. Note that two or more literals may satisfy a clause.
However, it is sufficient to show that connections are possible if only one pair uses its
lower row.

Before we formally define our reduction it is important that we apply the reduction to
the following instance of 3SAT:{{u1, u2, u3}, {ū1, ū2, u4}, {ū2, ū3, ū4}, {u1, u2, u4}}. The
solution shown in Fig.7 for the case whenu1 andu4 have the value of true and the other
variables the value of false.

Let us now formally define our reduction. The pair introduced for theith variable, for
0 < i�w, has its end points located at{(4i − 4,0), (4i − 1, n1 − 1)}. To insure variable
consistency introduce two vertical blocking pairs (thick black lines in Fig.5) for the ith
variable{(4i − 4,1), (4i − 4,2)} and{(4i − 1, n1 − 2), (4i − 1, n1 − 3)}.

If variableuhk is thekth variable in clauseCj then let the variable�k be 1; otherwise if
the negation of the variableuhk is in the clause let the variable�k be 0. Each of the most
three variables in the clauseCj are represented by pairs.

cj,k pair is{(4hk − 3 + �k,9j − 6 + k), (n0 − 4 + k,9j + 5 − 2k)}

The additional blocking pairs are:{(n0 −5,9j −3), (n0 −5,9j −2)}, {(n0 −4,9j −3),
(n0 −4,9j −2)}, {(n0 −1,9j −3), (n0 −1,9j −2)}, {(n0 −5,9j −1), (n0 −4,9j −1)},
{(n0 − 5,9j + 1), (n0 − 4,9j + 1)}, and{(n0 − 5,9j + 3), (n0 − 4,9j + 3)}.

We now establish the main result for this subsection.

Theorem 3. The edge disjoint shortest paths problem for k pairs of vertices is NP-complete
when every path is restricted to have no more than two turns or bends.

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 167

Fig. 7. Problem instance constructed from{{u1, u2, u3}, {ū1, ū2, u4}, {ū2, ū3, ū4}, {u1, u2, u4}}. The solution
given isu1 andu4 with value of true and the remaining variables have the value of false.

Proof. Since there are at most three straight line segments per path, we can verify in
polynomial time that any set of paths, each with at most two turns, whether they are pairwise
disjoint shortest paths. Therefore, the problem is in NP.

168 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

We reduce 3SAT to our problem as shown above. We now show that the instance con-
structed from 3SAT has edge disjoint shortest paths for all pairs if and only if the instance
of 3SAT that we started from is satisfiable.

First we connect all blocking pairs since they have exactly one shortest path. Now, given
any assignment that satisfies all the clauses, we just connect each pairxi by the path that
corresponds to the truth assignment for the corresponding variable. Since the satisfying
assignment is such that every clause is satisfied, then at least one of the three pairs for each
clause can be connected through its lower row. Therefore, edge disjoint shortest paths exist
for the three pairs for each clause as shown in Fig.6. Hence, edge disjoint paths exist for
all pairs.

On the other hand, if edge disjoint shortest paths exist for the instance of thek-pairwise
edge disjoint shortest paths problem that we defined, we need to show that the instance
of 3SAT that we started from is satisfiable. Consider first the path for theith variablexi .
Since the path is a shortest path with at most two turns, it must be of one of the two forms
shown in Fig.7. Each of these two possible paths represents the value of true or false as
indicated in Fig.5. Now, the three pairs for each clause must be such that at least one of
them is connected by a path on its lower track, as otherwise the pairs cannot be connected
by shortest paths with at most two bends, because if the three pairs are joined by paths using
their upper tracks then the component given in Fig.6 will not allow for their connection
using shortest paths with at most two bends. This implies that at least one of the pairs for
each clause is connected by a path that starts moving down (when viewing the path from
left to right) which means that the corresponding variable satisfies the clause. Therefore, the
existence of edge disjoint shortest paths implies the satisfiability of the instance of 3SAT
we started with.

The reduction can be carried out in polynomial time as the number of pairs introduced is
O(vw). The representation of pairs in the grid requires aboutvw log (v+w) bits. Therefore,
the reduction takes polynomial time and our problem is NP-complete.�

A slight modification to the above reduction, namely the introduction of blocking edges
that force one additional turn on the left side of the path of each pair can be used to show
that the problem, when we limit the number of turns or bends to at most three, remains
NP-compete. A similar modification, but forcing the introduction oft − 2 turns on the
leftmost side of every path shows that the problem remains NP-complete when one limits
the total turns allowed per path to any constant numbert. This structure also shows that
the problem of findingarbitrary length paths with a (given) constant number of bends is
also an NP-complete problem. We should point out that Kramer and vanLeeuwen[12] have
already established this result, namely that the node disjoint paths for arbitrary length paths
in the grid is an NP-complete problem, they limit neither the number of bends nor the path
length to the shortest one.

2.3. Restricting the pair distance

In this subsection we consider the restricted version of the problem when the distance
between the endpoints of every pair is bounded by a constant, i.e., for alli, d(Xi) is less or
equal than some fixed constant. We show that even under this condition the edge disjoint
shortest paths problem fork-pairs in the grid remains NP-complete. To establish this result

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 169

we make non-trivial modifications to the reduction given in Section2.1. A closer inspection
of that reduction reveals that the only pairs whose endpoints are not at a distance bounded
by some fixed constant are the ones for the variables (xi in Fig. 1), and the clause checkers
(ci anddi in Fig. 3). Our approach is to replace each of these pairs by a set of pairs whose
shortest paths have properties similar to the ones for the previous pairs, and the endpoints
of each of the new pairs are at a distance bounded by some fixed constant.

Consider first a replacement for eachxi pair. As you recall from Section2.1 (Fig. 1)
each variable in SAT is represented by a pair and the connecting path specifies whether the
variable has the value of true or false. The distance between the two endpoints is proportional
to the number of clauses and therefore is not bounded by a constant. The idea is to introduce
a number of pairs equal to the number of clauses. The paths used to connect all of these
pairs need to be consistent and each pair will cover the area for one clause.

Figs.8(a) and (b) give an example of our reduction for an instance of SAT with three
clauses. The interpretation of the paths for the odd numbered clause regions is exactly as in
Section2.1. The interpretation for the even numbered clause regions is the opposite of the
one for the odd ones. I.e., from top to bottom, a connecting path consisting of a vertical line
segment and then a horizontal line segment represents the value of false, and a connecting
path consisting of a horizontal line segment followed by a vertical one represents the value
of true.

All the pairs introduced (Fig.8) to replace one of the variable pairs in Fig.1 have their
endpoints at a distance bounded by a constant and all of them have consistent values. For
example, if a variable pair is connected by a top to bottom path consisting of a vertical line
segment followed by a horizontal one, then the next pair below it is connected by a path
consisting of a vertical line segment followed by a horizontal line segment, and the same
pattern keeps on repeating periodically until we reach the bottom of the grid. In order to see
that this holds one must take into account the pairs which supplant theci anddi clause pairs
in the construction in Section2.1. The pairs replacing the clause pairs in this construction
are such that the upper and lower row for the clause will be used by the clause pairs. The
middle line (row) for the clause will be used by some blocking pairs to be introduced
later on. As we shall see later on, the pairs replacing the clause pairs in this construction
enforce variable consistency by precluding paths other than the two configurations shown in
Figs.8(a) and (b).

When one defines the neighborhood region for the intersection of a variable and a clause
one needs to introduce mirror images about a vertical axis for Figs.1(a)–(c) for the even
numbered clauses. I.e., for even numbered clauses Figs.1(a) and (c) are swapped. In
Fig.9(a) we present the instance generated for the set of clauses{{u1, u2}, {ū2, ū3}, {u3, ū1}}.
At this point ignore the clause pairs in the figure. We will discuss them later on. The in-
tersection regions have the same property for flow in the grid as those in the Section2.1.
With the exception that the crossing information is propagated with constant distance clause
pairs from left to right in the grid. The intersection given in Fig.1(a) is used at the inter-
section region of clause 1 with the variable pairs associated withu1 andu2, and clause 3
with variableu3. Now the negations ofu2 andu3 in clause 2 appear as the mirror image of
Fig. 1(c). In other words, while in Section2.1 the segments appear as Fig.1(c), here they
appear in clause 2 as Fig.1(a). Fig.1(c) is used at the intersection region of clause 3 and
variableu3. Fig.1(b) is used at the intersection region of clause 1 and variableu3, clause 2

170 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

Fig. 8. Consistent variable state is communicated vertically throughout the grid with finite distance pairs. (a) True
state of variablei. (b) False state of variable�.

and variableu1, and clause 3 and variableu2. In Fig. 9(b) we give actual paths that cor-
respond to the assignmentsu2 = False andu1 = u3 = True. The paths correspond to the
paths given in Fig.2 for odd numbered clauses, and the mirror images of the same figure
for the even numbered ones.

As you recall from Section2.1 (see Fig.1) thej th clause in SAT is represented by the
pairscj anddj . The distance between the endpoints in these two pairs is proportional to the
number of variables. As in the case for the variables, the idea is to introduce a number of
pairs equal to twice the number of variables. I.e., onecj anddj pair for each variable. The
paths used to connect all of these pairs need to be consistent. Furthermore, each pair will
cover the area for a variable. Figs.10(a) and (b) give an example of how this works without
any pair for the variables shown. The idea is that if at some point the value of a variable
satisfies the clause then the crossing of theci anddi paths will be made at the intersection
region with the pairs for the variable. Fig.11 shows the zoomed section for the clause 1,
{u1, u2}, for the the example given in Fig.9. From left to right if the value of a variable
and all the previous variables do not satisfy a clause, then the crossing of the pair occurs

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 171

Fig. 9. Problem instance generated from{{u1, u2}, {ū2, ū3}, {u3, ū1}}. (a) Solid lines indicate the shortest path
for pairs with a unique path (vertical or horizontal line), and the other symbols are the endpoints of clause and
variable pairs. (b) Shows the solution foru2 = False andu1 = u3 = True.

Fig. 10. (a) Shows clause pairs independent from (b) and (c). (b) Illustrates post-crossing region. (c) Illustrates
pre-crossing region.

just after the intersection region, and the next two pairs start precisely as the first one did.
Eventually, if none of the values of the variables satisfies a clause then there is no possible
path for the last pair.

The instance{{ū1, u2}, {u1, ū2}, {u1, u2}, {ū1, ū2}} is not satisfiable and the problem
instance generated from it is depicted in Fig.12where we show all configurations of “true”
and “false” values foru1 andu2. As we traverse the figures from left to right, none have
edge disjoint shortest paths for clausesC4, C3, C2 andC1, respectively.

For brevity we will not formally specify the location of all the pairs. Interested
readers may find the details in[6]. The pairs for the variables are denoted byx(k)i and the

172 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

Fig. 11. Constant constraint on pair distance. Shows only clause{u1, u2} whenu2 = False andu1 = True. Shows
labeling of the constant distance pairs below the grid.

Fig. 12. Problem instance generated from{{ū1, u2}, {u1, ū2}, {u1, u2}, {ū1, ū2}} has no solution. A “×” symbol
indicates that the clause pairs cannot be connected via shortest paths. (a)u1 = True andu2 = True. (b)u1 =
False andu2 = False. (c)u1 = False andu2 = True. (d)u1 = True andu2 = False.

ones for the clause pairs byc(k)j and d(k)j . Let us now state the main result in this
subsection.

Theorem 4. Given a partial half routing request on the grid,when pair distances are con-
strained by a constant, the k-pairwise edge disjoint shortest paths problem(k-PAIRWISE-
GRID-CEDSP) is NP-complete.

Proof. As beforev andw are the number of variables and clauses, respectively. Given a set
of paths for all the pairs, one can easily check to see if each path is shortest path (number
of edges must be equal to the pair distance) and check that all of the edges in the paths
are different. Since all pairs have at most of distancec, then each path has no more than

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 173

c edges and all the above checks can be performed in polynomial time with respect to the
input length (O(vw log2(vw))). Therefore, the problem is in NP.

Now to show NP-completeness we use the reduction from SAT given above. We now
show that the instance constructed from SAT has edge disjoint shortest paths for all pairs if
and only if the instance of SAT is satisfiable.

Given any assignment that satisfies all the clauses, we just construct the corresponding
paths for pairsx(k)i and the paths for all thec(k)j andd(k)j paths exist because each clause is
satisfied. If a variable in a clause is in the proper state a crossing of thecj anddj occurs at

an intersection region, then that is propagated by pairsc
(�)
j andd(�)j , � > k to the rightmost

extent of the grid (Fig.10). As in the previous proof, if the instance we constructed from
an instance of SAT has a solution, then the instance of SAT we started from is satisfiable.
The proof for this is based on the result in the previous section and the properties of the
construction given above.

Furthermore, the reduction is polynomial as the number of pairs introduced is O(vw).
The representation of pairs in the grid requires aboutvw log (v+w) bits. Thus the reduction
takes polynomial time, and the problem is NP-complete.�

3. Complexity of grid node disjoint shortest path problems

We show that thek-pairwise node disjoint shortest paths problem in the grid is an NP-hard
problem by reducing SAT to this problem. Our reduction is similar in nature to the one in
Section2.1, but it is slightly more complex. The main difference is that the crossing of the
shortest paths is not allowed because they must be node disjoint. Edge disjoint paths may
cross through a given node; however, node disjoint paths may not. One might conjecture
that this topological constraint implies that paths for pairs should be decided solely on local
information. However, this is not the case because there are problem instances in which
the direction of a path in one part of the grid forces changes in certain types of path in
another remote part of the grid. This communication of routing decisions throughout the
graph many times is qualitatively indicative of NP-hardness. In Section3.2we show that the
problem remains computationally intractable (NP-complete) even when every pair distance
is bounded by a (small) constant.

3.1. Node disjoint shortest paths

Instead of representing a variable by a pair and the value of the variable by the direction
of the path connecting the pair, we use a sequence of pairs. These pairs are designed in such
a way that all of them are connected by paths that follow a certain pattern (like the ones in
Section2.3, see Fig.8). In Fig. 13 we depict the general architecture of our construction.
The chainsx1, x2, x3, x4, . . . are used to represent the value of the variables. The paths for
x1, x2 andx4 indicate the value of true for the variable, and the one forx3 indicates the value
of false. As we show later on, these values are propagated consistently across the grid. On
the top portion we introduce one pair for the first clause such that it has a shortest path if
and only if the first clause is satisfied. This is called aclause-checkerpair. Then in the next
region below we introduce another pair for the second clause which has similar properties

174 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

Fig. 13. Overall architecture: diagonal pairs are variable states. Dashed lines show possible paths. The upper path
cannot connect (a “×” indicates no connection is possible). The lower path can connect.

(second clause checker), and so on. These pairs are spaced sufficiently apart so that clause
checking pairs do not overlap with each other. This guarantees that the clause checking
pairs interact only with the horizontal and vertical blocking pairs that we introduce later on
and with the variable state information (i.e. the chains forx1, x2, x3 andx4).

Once that the direction of the paths for the variables has been decided (which means
that the variables have been assigned boolean values), shortest paths for the clause-checker
pairs may or may not exist. if they exist then they will be of the form given in Fig.13 for
the clause checker pairc1. The form of the path is such that if the variables do not satisfy a
clause, every possible path forc1 will advance to the other side of the chains representing
the variables, but its vertical distance will only drop by a value equal to 12 times the number
of variables. On the other hand, when at least one variable has a value that satisfies the
clause, then the path will escape vertically to the other side of the chains for a distance
equal to 12 times the number of variables plus a small constant, and then it will be able to
connect to the otherc1 point. The scenario when there is a path for the clause pair is shown
with the dashed and dotted line in Fig.13. If none of the values for the variables satisfy
the clause, then every path for pairc1 ends up at a region where it is impossible to reach
the other endpoint ofc1, because there is a blocking pair whose only path will not allow it
to move lower. This clause path which cannot connect to the other endpoint is marked by
“×” and is represented by dashed lines in Fig.13. For brevity we will not specify the actual
positions of all the pairs in the reduction. Interested readers are referred to[6] for additional
details. However, we will discuss additional details of the reduction in what follows.

From left to right in the grid, as the clause path crosses a chain for a variable that is not
in the clause, the path will move downward in the vertical direction by at most 12 units
per each variable. The same holds when a variable or its complement does not satisfy the
clause. However, if the value of the variable or its negation satisfies the clause, then either
the vertical movement may be more than 12 units or the path may only drop the usual
twelve vertical units. Let us now explain the general implementation framework and then
give additional details.

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 175

Fig. 14. Variableui or its complement is not in clauseCj . (a) Variableui has the value of false. (b) Variableui
has the value true.

Fig. 14 shows the case when a variable or its complement is not in the clause. The
only possible path for the additional blocking pairs is indicated with thick black lines.
The dashed lines indicate one or more of the possible clause paths. Fig.16 depicts the
case when the variable’s negation is in the clause. Notice that this figure is different from
Fig.14. Fig.16has five columns between the two endpoints of the horizontal blocking pairs,
but Fig.16 has six. The only possible path for the additional blocking pairs are indicated
with solid bold lines. The dashed lines indicate one or more of the possible paths. The case
when the uncomplemented variable is in the clause is given in Figs.17 and18. Figs.14,
16–18actually admit more paths than those that are shown with the dashed lines; however
the exit location is invariant. To facilitate the exposition both the “true” and “false” variable
states for variablexi are shown by curved lines. These also are indicative of a collection of
possible paths.

In Figs.14, 16–18 the region between the two horizontal thick lines (the only paths for
the blocking pairs) is called thepassage to the lower region. If a path begins on the left
side of the region above the left horizontal thick line and ends below the right horizontal
line on the right side of the region it will exceed the 12 vertical unit step for this variable.
This is only allowed if the variable pairs are in the appropriate state. In Figs.14(a) and (b)
the clause path cannot go through the passage to the lower region. The main reason for
this is that the paths, for the four pairs with endpoints on opposite sides of the passage to
the lower region, do not leave enough space for a clause pair to move to the lower region.
This is illustrated in more detail in Figs.15(a) and (b). In Figs.14, 16–18 a clause path
will enter five units below the top-left corner or below the left horizontal thick line. The
path will leave on the right side one unit above the right horizontal thick line or below it.
When either the current variable value or one of the previous ones satisfies the clause, then
the path may leave above or below the right horizontal thick line. On the other hand if the
values assigned to these variables do not satisfy the clause, then path can only leave above
the right horizontal thick line.

176 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

Fig. 15. Specific paths when variable or its complementui is not in clauseCj . (a) Variableui has the value false.
(b) Variableui has the value true.

Fig. 16. Negation of variableui is in clauseCj . (a) Variableui has the value false. (b) Variableui has the value
true.

Fig. 16 shows our construction when the negation of a variable is in clauseCj (notice
that the number of columns in the passage to the lower region is more than the ones in
Fig. 14). In Fig. 16(a) shows two possible configurations for the clause path. One of these
paths goes through the passage to the lower region. This is possible because the value of the
variable satisfies the clause. The passage region is shown in more detail in Fig.19(a). The
configuration in Fig.16(b) does not allow the clause path to go through the passage to the
lower region because the value of the variable does not satisfy the clause. This blockage is
illustrated in Fig.20(a).

The reason for this blockage is simple (Fig.16(b)). In the “true” state for the variable the
paths associated with the pairs labeled with a square must go below paths for pairs labeled
with “◦.” It is simple to see that every path that goes through the passage to the lower region
must use one of the four solid “•” in Fig. 16(b). Since the paths for the two pairs labeled with
“◦.” and the two paths labeled with a square must go through the passage, it then follows
that no other path may use the passage.

Fig. 17 gives the construction when the variableui is in the clause and it has the value
false. In this case the clause path must exit to the right at the level indicated in the figure.
The passage to the lower region is depicted in more detail in Fig.20(b) where one can see

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 177

Fig. 17. Variableui has the value false and it is in the clauseCj .

Fig. 18. Variableui is in a clauseCj . Variableui has the value true and the path for clauseCj exits through the
(a) upper portion or (b) lower portion.

that the passage to the lower region is blocked by the paths for the variable pairs. In this
case one can prove that clause path must exit in the upper region.

Fig. 18 shows two possible paths when the variableui is in clauseCj and has the value
true. In Fig.18(a) the path exists through the upper region and in Fig.18(b) it exits through

178 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

Fig. 19. Clause path (dashed line) passage to the lower region. (a) Variableūi is in clauseCj and has the value
false. (b) Variableui is in clauseCj and has the value true.

Fig. 20. (a) Specific path when negation of variableui is in Cj and variable has the value true. (b) Specific path
when variableui is inCj and the variable has the value false.

the bottom region. Fig.19(b) shows the passage to the lower region in more detail. As in
the previous cases one can prove that the clause path may advance to the lower region via
the passage only if a variable has the value that satisfies the clause. For brevity we will not
prove our result. However, in the following two examples we give additional details needed
to assemble all the components in our reduction.

Fig.21shows the segment of clauseC1 = {ū1, u2}. The solution is shown foru1 = u3 =
False andu2 = True. The three larger squares, which we now calll-squares, correspond to
the intersection of a variable with the clause. The top-left corner of theith l-square is 16
units to the right and 12 units below the top-right corner of thei − 1st l-square. Notice the
dashed–dotted line joining the horizontal blocking pairs of adjacent l-squares. These paths
are introduced to guarantee that if a path leaves theith l-square above the right horizontal
blocking pair, then it will enter thei − 1st l-square above its left horizontal blocking pair.
This also guarantees that if a path leaves below the right horizontal blocking pair, then it
will enter below the left horizontal blocking pair of the next l-square. These paths can be
realized by either introducing a new pair or by combining the blocking pairs of adjacent
l-squares into one pair. Now, the first l-square corresponds to variableū1 belonging to the
clause. The blocking pairs are the ones given in Figs.16(a) and (b), the clause path is given
by Fig.16(a), and the actual passage to the lower region is given by Fig.19(a). The second
l-square corresponds to the variableu2 being a literal of the clause. Figs.17and18(a) and
(b) show the blocking pairs for this l-square, the clause path is given by Figs.18(a) and (b),
and the actual passage to the lower region is given by Fig.19(b), except if the path entered
from below the left blocking pair for the l-square. The third l-square corresponds to the third

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 179

Fig. 21. Segment of clauseC1 = {ū1, u2}. The solution is shown foru1 = u3 = False andu2 = True.

variable not being part of the clause. The blocking pairs are the ones given in Figs.14(a)
and (b), the clause path is given by Fig.14(a), and the actual passage to the lower region is
given by Fig.15(a).

Fig. 22 shows the same clauseC1 when the values of the variables are not set correctly
(u2 = u3 = False andu1 = True). Note there is no way for the clause path to pass to
the lower region and thus there is no solution for this variable state configuration. The first
l-square corresponds to variableū1 belonging to the clause. The blocking pairs are the ones
given in Figs.16(a) and (b), the clause path is given by Fig.16(b), and the actual passage
to the lower region is given by Fig.20(a). The second l-square corresponds to the variable
u2 being a literal of the clause. Figs.17 and18(a) and (b) show the blocking pairs for this
l-square, the clause path is given by Fig.17, and the actual passage to the lower region is
given by Fig.20(b). The third l-square corresponds to the third variable not being part of
the clause. The blocking pairs are the ones given in Figs.14(a) and (b), the clause path is
given by Fig.14(a), and the actual passage to the lower region is given by Fig.15(a).

The main reason why we have not been able to show that this problem is in NP is that
the input size isk log(v + w), but there may be a pair with distancev + w that hasv + w
bends. The amount of space needed to represent the occupied vertices may be exponential
with respect to the input length. So it seems that polynomial time verification may not be
possible.

Theorem 5. The partial half permutation routing request for the k-pairwise node disjoint
shortest paths problem for the grid(k-PAIRWISE-GRID-NDSP) is NP-hard.

Proof. To prove NP-hardness, we use the above reduction from SAT, wherev is the number
of variables andw is the number of clauses. The only way that a path may escape from the
12 vertical unit step function is if the variable or its negation is in the clause and the variable
is in the proper state. The previous discussion demonstrates that the path for a given clause
exists only if one of the paths for its variables allows it to do so. If a variable in the SAT
clause has the appropriate value, then Figs.18(b) and16(a) and their attendant discussions

180 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

Fig. 22. Segment of clauseC1 = {ū1, u2}. There is no solution foru2 = u3 = False andu1True. “×” indicates
that no path exists below this point.

demonstrate that a clause path may pass to the lower region. However if no variable in the
clause is the appropriate value then the clause path may not move below the level 12v below
its starting point. This is observed merely because the path for traversal is blocked by the
individual variable states and constructions described above.

Once the clause path has moved to the lower region, it still must move downward 12
vertical units for each variable state construction crossed horizontally. The path for the
clause shown in Fig.14indicates that no more than 12 units are required for each individual
variable crossed. Therefore, if any one construction allows the clause path to move into the
lower region it may connect to the terminal point of the clause path at the far right of the
grid.

Furthermore, the transformation is of polynomial time complexity as the number of
pairs generated from an instance of SAT is O(vw). Each pair is labeled by a node label of
maximum length O(vw). The length of the input to thek-pairwise shortest path problem in
the grid is therefore polynomial in the input length. So the problem is NP-hard.�

3.2. Constant constraint on the pair distance

We show that when the problem outlined in Section3.1 is such that pair distances are
constrained by a sufficiently large constant the problem remains NP-hard. Since the pair
distance is constrained we can easily prove that the problem is in NP. Hence the prob-
lem is NP-complete. Our result (Theorem6) implies that the constant number of bends
problem is also NP-complete. The reduction we use in this section is similar to the one in
Section3.1. The only parts we need to change are the clause checker pairs since they have
a pair distance that is not bounded by a constant.

The clause checker in the previous Section3.1consists of a pair whose vertices are at a
distance that is linearly dependent on the number of variables. We need to modify this so
that the clause checker pair distance is bounded above by a small constant. Our modified
architecture involves multiple pairs for each pairCi . Note thatC1 andC2 shown in Fig.23

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 181

Fig. 23. Overall architecture: diagonal pairs are variable states. Dashed lines show possible paths. The upper path
for c1 pairs cannot connect (“×” indicates no connection is possible). The lower path composed of thec2 pairs
which can connect.

Fig. 24. Overall architecture: adjacent connecting cells for the multiple clause pairs.

are now multiple pairs whereas in Section3.1 only one pair crossed the entire horizontal
expanse of the grid. Fig.24shows an example of the placement of multiple pairs instead of
just c1 as in Section3.1.

The way the pair(si, ti) is routed affects the way pair(si+1, ti+1) is routed. The area where
each pair is routed is like the ones in the previous section in the sense that if the corresponding
variable satisfies the given clause, then the pair is routed through a path that ends below the
“passage to the lower region” as in the left-hand side of Fig.25(a). On the other hand, if the
corresponding variable does not satisfy the clause then the pair can only be routed through
a path that ends above the passage to the lower region and it needs to use the gap to the right
side in order to connect to its destination (see left-hand side of Fig.25(b)). Henceforth we
will call the gap on the right side of each component the “gap to the right”. In the former
case the next pair may use the gap to the right as passage to the lower region and start in
the bottom of the component and then connect to its destination (see right-hand side of the
Fig.25(a)). In the latter case the next pair must be routed by a path going through the upper
portion of the area. The gap to the right is occupied in this case. However, it may use the
passage to the lower region in the next area (see right-hand side of Fig.25(b)). The lower
path shown here represents a variable or its negation in the proper state. The upper path
represents a variable not in its proper state or a variable not in the clause. The upper path uses

182 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

Fig. 25. (a) Clause pair(s1, t1) is routed by a path through the lower region and thus the clause path for(s2, t2)

may move downward first. (b) No clause pair to the left has been routed to the lower region therefore the next
clause path for(s2, t2) moves to the right first.

the gap to the right. The idea is that if a variable satisfies the clause, then the corresponding
pair will be routed as in the left part of Fig.25(a) and the same routing that appears on the
right side of Fig.25(a) will be possible for the path for the remaining pairs. When none
of the variables satisfies the clause then the rightmost pair will not have a connecting path
because there is no gap to the right in the rightmost pair ((s5, t5) in Fig. 24).

Fig. 26(a) illustrates the case where a variableui is not in the clausej and the variable
ui is in the “true” state. Similarly Fig.26(b) indicates the case when a variableui is not
in the clause and the variable is in the “false” state. In both cases if the gap is not used at
the starting point of the path for the pair there will be no passage to the lower region as in
the proof in Section3.1 in particular Figs.14, 18 and16(b). Figs.27(a) and (b) show the
variable paths in the “false” and “true” states, respectively. The negation of the variableui
is in the clause and if the variable is in the “false” state there will be a passage to the lower
region (as indicated in Fig.27(a)). However, as Fig.27(b) indicates there will not be such a
passage for the clause path when the variable paths are in the “true” state. Figs.28(a) and
(b) show the variable paths in the “false” and “true” states, respectively. The variableui is
in the clause and if the variable is in the “true” state there will be a passage to the lower
region (as indicated in Fig.28(b)). However, as Fig.28(a) indicates there will not be such
a passage for the clause pair when the variable paths are in the “false” state.

Theorem 6. Thepartial half permutation routing requestwith a constant constraint on pair
distance for the k-pairwise node disjoint shortest paths problem for the grid(k-PAIRWISE-
GRID-CNDSP) is NP-complete.

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 183

Fig. 26. (a) Variableui or its complement is not in clauseCj . Variableui has the value true. (b) Variableui or its
complement is not in clauseCj . Variableui has the value false.

Fig. 27. Negation of variableui is in clauseCj . (a) Variableui has the value false. (b) Variableui has the value
true.

Proof. As the pair distance is constrained by a constant, each path can be characterized by
constant amount of information. So the given a set of paths checking pairwise disjointness
can be performed in polynomial time. Therefore, the problem is in NP. The remaining part
of the proof follows from the one in Theorem5 after taking care of the modification dis-
cussed above. �

The constant constraint on the pair distance result (Theorem6) also implies the following
result.

Corollary 2. The partial half permutation routing request with a constant on the number
of bends for the k-pairwise node disjoint shortest paths problem for the grid(k-PAIRWISE-
GRID-CBENDS-NDSP) is NP-complete.

184 T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185

Fig. 28. Variableui is in a clauseCj . (a) Variableui has the value false. (b)ui has the value true and the path for
clauseCj and exists through the lower region.

4. Discussion

While not employed in as many high performance systems as then-cube, the network
architecture of the grid, and its higher dimensional generalizations, are important network
topologies. The results stated in this paper for the grid are applicable to the higher dimen-
sional generalizations of the grid, because we are considering shortest paths and the grid is
embeddable in its higher dimensional generalizations. In Section2.1we show that the edge
disjoint shortest paths in the grid is an intractable problem. Even with a constant constraint
on the number of bends the problem remains NP-hard (Section2.2). When there is a limit of
one on the number of bends for each route the problem can be solved efficiently (Section2.2,
Theorem2). When a constant constraint on pair distance is applied, the problem remains
intractable (Section2.3). While counter-intuitive, when doubling the grid topology and
maintaining the partial half permutation routing request we find that the problem remains
intractable[6]. When node disjoint shortest paths are considered, the basic topology of
the grid continues to imply intractability for the partial half permutation routing request
(Section3.1) and further constant constraints or constraints on number of bends do little
to eliminate the characteristics of intractability (Section3.2). Similar results apply for the
doubled grid; however, for brevity we do not include all of this work in this paper.

References

[1] A. Aggarwal, J. Kleinberg, D.P. Williamson, Node-disjoint paths on the mesh and a new trade-off in VLSI
layout, SIAM J. Comput. 29 (4) (2000) 1321–1333.

[2] W.F. Dowling, J.H. Gallier, Linear-time algorithms for testing the satisfiability of propositional horn formulae,
J. Logic 3 (1984) 267–284.

[3] S. Gao, B. Novick, K. Qui, From Hall’s matching theorem to optimal routing on hypercubes, J. Combin.
Theory Ser. B 74 (2) (1998) 291–301.

[4] T.F. Gonzalez, Complexity and approximations for multimessage multicasting, J. Parallel Distributed Comput.
55 (1998) 215–235.

T.F. Gonzalez, D. Serena / Theoretical Computer Science 326 (2004) 155–185 185

[5] T.F. Gonzalez, F.D. Serena, Node disjoint shortest paths for pairs of vertices in ann-cube network, in: Proc.
Internat. Conf. Parallel and Distributed Computing and Sytems (PDCS2001), 2001, IASTED, pp. 278–282
(full version appears as UCSB TRCS-2001-16, September 2001).

[6] T.F. Gonzalez, F.D. Serena, Complexity ofk-pairwise disjoint shortest paths in the undirected hypercubic
network and related problems, in: Proc. Internat. Conf. Parallel and Distributed Computing and Systems
(PDCS 2002), 2002, IASTED, pp. 61–66 (full version appears as UCSB TRCS-2001-14, May 2002).

[7] Q.-P. Gu, S. Peng,k-Pairwise cluster fault tolerant routing in hypercubes, IEEE Trans. Comput. 46 (9) (1997).
[8] Q.-P. Gu, S. Peng, Node-to-set and set-to-set cluster fault tolerant routing in hypercubles, Parallel Comput.

24 (1998) 1245–1261.
[9] Q.-P. Gu, H. Tamaki, Routing a permutation in the hypercube by two sets of edge-disjoint paths, J. Parallel

Distributed Comput. 44 (1997) 147–152.
[10] R. Karp, On the computational complexity of combinatorial problems, Networks 5 (1975) 45–68.
[11] R. Karp, F.T. Leighton, R.L. Rivest, C.D. Thompson, U. Vazirani, V. Vazirani, Golbal wire routing in two-

dimensional arrays, in: 24thAnn. Symp. on Foundations of Computer Science,IEEE Computer Society Press,
1983, pp. 453–459.

[12] M.R. Kramer, J. van Leeuwen, The complexity of wirerouting and finding minimum area layouts for arbitrary
VLSI circuits, Adv. Comput. Res. 2 (1984) 129–146.

[13] S. Latifi, H. Ko, P.K. Srimani, Note-to-set vertex disjoint paths in hypercube networks, Computer Science
Tech. Rep. CS-98-107, Colorado State University, 1998.

[14] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley, New York, 1990.
[15] S. Madhavareddy, I.H. Sudborough, A topological property of hypercubes: node disjoint paths, in: Proc.

Second IEEE Symp. Parallel and Distributed Processing,1990, pp. 532–539.
[16] K. Menger, Zur allgemeinene kurventheorie, Fund. Math. 10 (1927) 95–115.
[17] D. Pretolani, A linear time algorithm for unique horn satisfiability, Inform. Process. Lett. 48 (1993) 61–66.
[18] M.O. Rabin, Efficient dispersal of information for security, load balancing, and fault tolerance, J. Assoc.

Comput. Machinery 36 (2) (1989) 335–348.
[19] X. Shen, Q. Hu, W. Liang, Realization of an arbitrary permutation on a hypercube, Inform. Process. Lett. 51

(51) (1994) 237–243.
[20] Y. Shiloach, To paths problem is polynomial, Tech. Rep. TR-CS-78-654, Stanford University, 1978.
[21] M. Watkin, Graph is(2k − 1)-connected is a necessary condition to admitk paths, Duke Math. J. (1968).

	Complexity of pairwise shortest path routingin the grid
	Introduction
	Complexity of grid edge disjoint shortest path problems
	Edge disjoint shortest paths
	Restricting the number of path bends
	Restricting the pair distance

	Complexity of grid node disjoint shortest path problems
	Node disjoint shortest paths
	Constant constraint on the pair distance

	Discussion
	References

