
Theoretical Computer Science 369 (2006) 427–435
www.elsevier.com/locate/tcs

Note

Pairwise edge disjoint shortest paths in the n-cube
Teofilo F. Gonzalez∗, David Serena

Department of Computer Science, University of California, Santa Barbara, CA 93106-5110, USA

Received 23 April 2005; received in revised form 18 July 2006; accepted 19 July 2006

Communicated by G. Ausiello

Abstract

Complexity issues intrinsic to certain fundamental data dissemination problems in high-performance network topologies are
discussed. In particular, we study the p-pairwise edge disjoint shortest paths problem. An efficient algorithm for the case when every
source point is at a distance at most two from its target is presented and for pairs at a distance at most three we show that the problem
is NP-complete.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Hypercube; n-cube; Edge disjoint shortest paths; NP-completeness

1. Introduction

The n-cube is a fundamental structure for parallel computing. Several systems with this communication architecture
have been built. The SGI Origin2000 and Onyx2 computing systems are platforms whose interconnection network is
a variation of the n-cube. Different message routing problems arise while executing parallel programs on an n-cube
connected machine. One type of these problems consists of transmitting messages concurrently from source nodes
to their corresponding target nodes. In this paper we study the offline version of one such problem: the p-pairwise
edge disjoint shortest paths problem. Path disjointness allows messages with different origin/destination to be routed
concurrently and shortest paths are likely to minimize communication time. The above communication patterns arise
when executing parallel versions of many well-known algorithms. These algorithms include: fast Fourier transform;
transposing a matrix; permuting the elements stored at the nodes of an n-cube, which is the final operation in a count
sort (permutation routing); concentrating (in the first k nodes of an n-cube) a sequence of elements stored in the nodes
of an n-cube (data concentration), or the reverse process which is called data spreading. More complex communication
operations that include the above communication patterns arise while multiplying matrices or solving systems of linear
equations iteratively.

A routing request consists of p pairs of nodes denoted by

X = {X1, X2, . . . , Xp},

∗ Corresponding author.
E-mail address: teo@cs.ucsb.edu (T.F. Gonzalez).

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.07.058

http://www.elsevier.com/locate/tcs
mailto:teo@cs.ucsb.edu

428 T.F. Gonzalez, D. Serena / Theoretical Computer Science 369 (2006) 427–435

where Xi = (si, ti), for 1� i�p, and all the si’s and ti’s are distinct. Each pair Xi = (si, ti) consists of two endpoints
which are called the source and target, respectively. By the above definition the number of source and target assigned to
a vertex in the n-cube in a routing request is at most one. Every node in the n-cube is represented by an n-bit string and
there is an edge in the n-cube between two nodes if their bit representation disagrees in exactly one bit. The distance
between the source and target nodes of pair Xi (or pair distance) is denoted by d(Xi) = d(si, ti) and in the n-cube it is
simply the number of bits that differ in the bit representation of si and ti . The distance d(a, b) is frequently referred to
as the “Hamming distance” between the nodes a and b in the n-cube. By a shortest path for the pair Xi we mean any
path from si to ti with length equal to d(Xi), i.e., the path must be a shortest path in the n-cube between the two nodes
independent from any other paths. Routing requests, by definition, limit the number of source and target assigned to
each vertex to at most one, therefore d(Xi)�1 for every pair Xi .

The p-pairwise edge disjoint shortest paths problem for the n-cube is given a routing request X = {X1, X2, . . . , Xp},
find edge disjoint shortest paths in the n-cube for all the pairs Xi . That is, for every pair Xi find a path with d(Xi)

edges such that no two paths have an edge in common. The node disjoint shortest paths problem is given a routing
request X in the n-cube, find shortest paths connecting each si to ti such that no two paths have a node (including
the source and target) in common (see [5] for results on node disjoint shortest paths and related problems). In the
context of the (undirected) n-cube the order of the source to target in the routing request is not important. Therefore, we
could have used undirected pairs Xi = {si, ti} instead of the directed pairs (si, ti). In what follows when we establish
NP-completeness and NP-hardness results it is for the decision version of our problems.

For the 2-cube the routing request X = {(00, 01), (10, 11)} has edge disjoint shortest paths (00 ↔ 01 and 10 ↔ 11).
However, the problem instance Y = {(00, 11}, (10, 01)} does not have edge disjoint shortest paths. The instance X
has node disjoint shortest paths, but Y does not have node disjoint shortest paths. For the 3-cube the routing request
X = {(000, 101), (010, 001), (100, 111)} has edge disjoint shortest paths (000 ↔ 001 ↔ 101, 010 ↔ 011 ↔ 001,
100 ↔ 110 ↔ 111), but it does not have node disjoint shortest paths because the three adjacent vertices to node 000
are source or target nodes for other pairs.

Message routing problems are known to be computationally intractable for general graphs when one allows arbitrary
length paths, rather than just shortest path ones. Madhavapeddy and Sudborough [7] show that the p-pairwise edge
disjoint (arbitrary length) paths problem for the n-cube is NP-complete. Unfortunately they did not include a proof
that the problem is in NP and we are unable to independently validate that proposition. Their version of the problem
allows for nodes to be the source and target of many pairs [7]. In this paper we consider the shortest paths version of the
problem when each vertex can be either the source or target of at most one pair. This corresponds to the case when each
n-cube node either sends or receives at most one message. We show that the p-pairwise edge disjoint shortest paths
problem for the n-cube is NP-complete even when every pair has pair distance at most three (Section 2.2), but solvable
in polynomial time when all the pair distances are at most two (Section 2.1). Gonzalez and Serena [4] considered the
extreme version of the p-pairwise edge disjoint shortest paths problem where d(Xi) = n, for 1� i�p. For the extreme
version of the problem a polynomial time algorithm for all possible values of p, as long as n is odd, is given in [4].

Madhavapeddy and Sudborough [7] conjecture that the p-pairwise node disjoint paths problem is also NP-complete.
In [5] a reduction, based on the construction in Section 2.2, is used to show this problem is NP-hard. The techniques
used in this paper to establish our NP-completeness results have been extended to the p-pairwise edge disjoint shortest
paths problem in the doubled n-cube [2]. The basic component used in [2] is a variation of Lubiw’s [6] construction.
Gonzalez and Serena [3] show that the node and the edge disjoint shortest paths problems in the grid (mesh) are
NP-complete.

2. Edge disjoint shortest paths

We present a simple polynomial time algorithm for routing requests where all pairs have distance at most two, and
then we show that for routing requests with pair distance at most three the p-pairwise edge disjoint shortest paths
problem in the n-cube is NP-complete.

2.1. Algorithm for pairs at distance at most two

Given an instance (X, p, n) of the p-pairwise edge disjoint shortest paths problem in the n-cube, we construct an
instance (U, C) of 2-SAT as follows. For each pair Xi ∈ X there is a Boolean variable ui . For every pair Xi with

T.F. Gonzalez, D. Serena / Theoretical Computer Science 369 (2006) 427–435 429

d(Xi) = 2, there are two possible shortest paths from si to ti . Let us denote such paths by Pi,0 and Pi,1. A satisfying
assignment where Boolean variable ui has the value true means that the pair Xi is connected by path Pi,1, otherwise
it is connected by the path Pi,0. For every pair Xi with d(Xi) = 1 we add the clause {ui} the path Pi,1 consists of the
(only) edge between the source and target of the pair.

For every two paths Pi,a and Pj,b, i �= j , defined above with at least one edge in common, we add the clause {ūi , ūj }
if a = b = 1; {ūi , uj } if a = 1 and b = 0; {ui, ūj } if a = 0 and b = 1; and {ui, uj } if a = b = 0.

It is simple to prove that the p-pairwise edge disjoint shortest paths problem in which each pair has pair distance at
most two has a solution if and only if the instance constructed from it, (U, C), is satisfiable. A simple algorithm (which
we call 2-EDSP) can implement the above strategy. The following theorem, which we state without a proof, formalizes
this result. Implementation details for algorithm 2-EDSP and the proof of the theorem appear in [5].

Theorem 1. Given any instance of the p-pairwise edge disjoint shortest paths problem for the n-cube, Algorithm
2-EDSP constructs a valid set of paths, whenever such paths exist, in O(pn) time.

2.2. Complexity for the problem with pairs at distance at most three

In Theorem 2 we show that the p-pairwise edge disjoint shortest paths problem is NP-complete. We establish this
result by reducing the L3-SAT problem to it. The L3-SAT problem is defined as follows.

Input: Given a set U of Boolean variables {u1, u2, . . . , uv}, and a collection of clauses C = (c1, c2, . . . , cw) over U
with each clause having two or three literals, such that all clauses include at most three literals corresponding to same
variable, and every literal is in at most two clauses.

Question. Is (U, C) satisfiable?

The 3-SAT problem is L3-SAT without the last two conditions and the removal of two-literal clauses. L3-SAT and
3-SAT are NP-complete problems [1].

We begin by discussing our polynomial time transformation from L3-SAT to the decision version of the p-pairwise
edge disjoint shortest paths problem. There are three types of components: setting-and-fan-out, conveyor, and clause-
checking, as well as an auxiliary component called the edge-blocking component. The setting-and-fan-out component
assigns to each variable a value, making two copies of the variable and its negation. This component includes two
edge-blocking components whose purpose is to block an edge by using only one of the edge’s endpoints in its pairs.
The conveyor component transports the value of a Boolean variable or its negation from one area in the n-cube to
another. The clause-checking component makes sure that a clause is satisfied if at least one of its literals has the value
true.

Fig. 1 depicts the setting-and-fan-out component that assigns values to two copies of a Boolean variable and its
complement. The construction consists of a length three pair (s′, t ′) = (000, 111) and two blocking edges (t ′′, s′) =
(010, 000) and (s′′, t ′) = (101, 111). We explain in Section 2.2.1 how we can force an edge to be a blocking edge
by using an edge-blocking component. This is not a trivial matter because nodes 000 and 111 are already occupied
by a setting-and-fan-out component pair. Note that when excluding the blocking edges there are only two possible
edge disjoint shortest paths for the pair: 000 ↔ 100 ↔ 110 ↔ 111 and 000 ↔ 001 ↔ 011 ↔ 111. The con-
struction provides two consistent copies of the value of the variable and its negation. In particular, when the edges
(000, 100) and (110, 111) are in the path for pair {000, 111} the Boolean variable u has the value false, and when
the edges (000, 001) and (011, 111) are in the path for the pair then the variable u has the value true. The reason
one needs only two copies of each value of a variable and its negation is that we are reducing from the L3-SAT
problem which has the property that no literal is in more than two clauses. The edges labeled x or x̄ in Fig. 1 will
be used later on by the conveyor components to transmit to the clause-checking component the value assigned to the
variable.

2.2.1. The edge-blocking component
To complete the functionality of the setting-and-fan-out component we need a component to block an edge without

using both of its vertices to do it.

430 T.F. Gonzalez, D. Serena / Theoretical Computer Science 369 (2006) 427–435

x

x x̄

t′ = {111}

s′ = {000}

s2 = {001}′

t′ = {011}

s1 = {100}′

t1 = {110}′

t′′ = {010}

s′′ = {101}

x
_

2

Fig. 1. Setting-and-fan-out component. The symbol × represents a blocked edge.

u
sA

sC

sB

tA

tB

tC

z

Fig. 2. Edge-blocking component. The symbol × represents a blocked edge.

Consider the edge-blocking component given in Fig. 2. The routing request is given by {(sA, tA), (sB, tB), (sC, tC)}.
We claim that the only possible routing must use the edge between nodes z and tA. When the route sA ↔ z ↔ tA is
selected for the pair (sA, tA), then the following edge disjoint shortest paths exist for all the pairs in the 3-cube:

sA ↔ z ↔ tA
sB ↔ tC ↔ sA ↔ tB
sC ↔ u ↔ tC.

On the other hand, when the path sA ↔ tB ↔ tA is used for pair (sA, tA), then the path for (sB, tB) must be either

sB ↔ tC ↔ u ↔ tB

or

sB ↔ sC ↔ u ↔ tB .

Since the possible paths for the pair {sC, tC} are either sC ↔ u ↔ tC or sC ↔ sB ↔ tC , it then follows that there are
no edge disjoint paths for the edge-blocking component, because each path for the pair (sB, tB) has an edge in common
with each of the possible paths for (sC, tC).

Therefore, there are edge disjoint paths for all the pairs in an edge-blocking component if, and only if, the edge
between node z and tA is used by the path for the {sA, tA} pair.

2.2.2. Joining the edge-blocking component with the setting-and-fan-out component
Now we need to incorporate two edge-blocking components (denoted by (z, sA, tA, sB, tB, sC, tC, u) and (z′, s′

A,

t ′A, s′
B, t ′B, s′

C, t ′C, u′)) with a setting-and-fan-out component. The setting-and-fan-out component is defined using the
bits F0G0H0 for the 3-cube in Fig. 1. The two edge-blocking components are defined by means of bits G0, F1, and
G1, while keeping F0 = H0 = 0 for one edge-blocking component and F0 = H0 = 1 for the other edge-blocking
component. For the nodes in the setting-and-fan-out component F1 = G1 = 0.

T.F. Gonzalez, D. Serena / Theoretical Computer Science 369 (2006) 427–435 431

* * * 0 0 * * * 0 1 * * * 1 1 * * * 1 0

0 0 0 * *

0 1 0 * *

1 1 1 * *

1 0 1 * *

sA tC

t′′ = tA tB sC

sB

u

tB
u′s′′ = t′A

sA sB

sC

tC

s′ = z

t′ = z′
x̄

x̄

x
t2t1 s2

s1

x

′
′

′ ′

′ ′

′′′

Fig. 3. The 5-cube composed of one setting-and-fan-out component and two edge-blocking components.

b3b1

s

t

b2

b2b1

s

t(a) (b)

Fig. 4. Clause-checking component for clauses with three (a) and two (b) literals.

Each edge labeled in Fig. 1 with an × symbol is coincident with the edge labeled × in one of the two edge-blocking
components. More specifically, the edge (s′, t ′′) is the same as (z, tA), and edge (t ′, s′′) is (z′, t ′A). The setting-and-
fan-out component has s′ = 000 00, t ′′ = 010 00, s′′ = 101 00, and t ′ = 111 00, where the first three bits are
F0G0H0 and the remaining two bits are F1 and G1. The edge-blocking components are defined by as (z = s′, sA,

tA = t ′′, sB, tB, sC, tC, u) = (000 00, 000 01, 010 00, 000 10, 010 01, 010 10, 000 11, 010 11) and (z′ = t ′, s′
A,

t ′A = s′′, s′
B, t ′B, s′

C, t ′C, u′) = (111 00, 111 01, 101 00, 111 10, 101 01, 101 10, 111 11, 101 11). Bits F0 and H0
form a distinct signature that guarantees that both of the edge-blocking components are distinct. The two bits F1 and
G1 make the edge-blocking components different from the setting-and-fan-out components, except at the two nodes
where they overlap. Fig. 3 shows the resulting 5-cube. The outermost dash-line quadrilateral and its interior form the
setting-and-fan-out component 3-cube with the solid edges being the edges labeled × in Fig. 1. The two ovals and solid
dark lines on the top side of the figure represent the edge-blocking component (z, sA, . . . , u), and the corresponding
objects on the bottom side of the figure represent the edge-blocking component (z′, s′

A, . . . , u′).

2.2.3. The clause-checking component
The clause-checking component is a single pair (s, t) in a 3-cube with edges (b1, t), (b2, t), and (b3, t) which may be

included in a path from either a clause-checking pair or another pair (conveyor pair). For clause-checking components
representing clauses with two literals there is no (b3, t) edge. Clearly, there is no feasible shortest path from s to t if
all the edges of t are in paths for pairs that are not the clause-checking pair. Note that t = 111 and s = 000 in Fig. 4(a)
and t = 11 and s = 00 in Fig. 4(b). In other words, t has one more bit set to one than b1, b2, or b3.

2.2.4. The conveyor component
The conveyor component is used for connecting setting-and-fan-out components to the appropriate clause-checking

components. At most three different conveyor components will be joined to a setting-and-fan-out component.

432 T.F. Gonzalez, D. Serena / Theoretical Computer Science 369 (2006) 427–435

A

t3

B

tl+1

tl+r

sl+r

sl+2

sl+1sl-1

sl

tl

s2

t2

s1

t1

tl+r-1u0 u1

Fig. 5. Conveyor component.

First we outline the basic idea and then indicate why the components do not interfere with each other. Fig. 5 illustrates
the basic construction. The conveyor consists of the pairs (s1, t1), (s2, t2), . . . (sl+r , tl+r), where r and l will be defined
later on. The conveyor operates as follows. If the edge labeled A in Fig. 5 is covered by a path for a non-conveyor
pair, then it will always be the case that the edge labeled B will be covered by a path for the conveyor pair (sl+r , tl+r).
However, if the edge labeled A is not covered by a path for a non-conveyor pair, then the edge labeled B may or may
not be covered by the path for the conveyor pair (sl+r , tl+r).

The conveyor components join setting-and-fan-out components to clause-checking components as follows. The edge
labeled A in the conveyor component (Fig. 5) will be the same as one of the edges labeled x or x̄ in the setting-and-fan-
out component (Fig. 1). That is, (u0, t1) will be the same as (s′, s′

1), (s
′, s′

2), (t
′, t ′1) or (t ′, t ′2). The edge from t to b1, b2,

or b3 in the clause-checking components will be the same as the edge labeled B in a conveyor component (Fig. 5).
That is, (u1, tl+r) will be the same as (t, b1), (t, b2), or (t, b3).

Consider the following bit numbering for the n-cube nodes:

D0D1 . . . D�log2(v+1)� E0E1 . . . E�log2(w+1)� F0G0H0 F1G1 �1�2 JKL �1�2�3.

The bits D0D1 . . . D�log2(v+1)� represent the value of i, the index of the ith variable ui . The j th clause-checking com-
ponent will be set, using the bits, E0E1 . . . E�log2(w+1)�. The setting-and-fan-out component plus its two corresponding
3-cube edge-blocking components use the bits F0G0H0 F1G1. The clause-checking component will use the bits JKL
(3-cube or 2-cube as indicated in Fig. 4). The bits � and � are used in the conveyor component and identify the edge in
the ith setting-and-fan-out component and the edge in the j th clause-checking component that the conveyor component
joins.

For each literal in a clause in the instance of L3-SAT that we start from, we make an association between the
corresponding edges in the setting-and-fan-out and the clause-checking components in such a way that the edges
involved in the association are unique. An edge in the ith setting and fan out component is defined by (y, i′), where
y ∈ {s, t} and i′ ∈ {1, 2}, and it represents the edge (y′, y′

i′). For example, (y = s, i′ = 1) → (y′ = s′, y′
i′ = s′

1),

(y = s, i′ = 2) → (y′ = s′, y′
i′ = s′

2), (y = t, i′ = 1) → (y′ = t ′, y′
i′ = t ′1), and (y = t, i′ = 2) → (y′ = t ′, y′

i′ = t ′2),
where → means “represents the edge”. An edge in the j th clause-checking component is defined by (j ′), where
j ′ ∈ {1, 2, 3}, and it represents the edge (t, bj ′). For example, (j ′ = 1) → (t, bj ′ = b1), (j ′ = 2) → (t, bj ′ = b2),
and (j ′ = 3) → (t, bj ′ = b3). Once the associations are defined, we introduce a conveyor component for every such
association.

Before we describe in detail the conveyor component we need to introduce additional notation to represent bit
strings. In what follows ellipses in bit representations indicate a sequence of zero or more bits all of which are zeros.
For bit �i or �j we use bitone(bit) to represent a bit with value one in the appropriate position in the bit string. By
bitrep(value), where value is i or j, we mean the binary representation of value and its length is defined by �log2(v+1)�
or �log2(w + 1)� depending on whether it represents a setting-and-fan-out or a clause-checking component. These
bits are located at the appropriate position in the bit string. Similarly, bitrep(y′) and bitrep(y′

i′) (resp. bitrep(t) and

T.F. Gonzalez, D. Serena / Theoretical Computer Science 369 (2006) 427–435 433

A

t2

s1

t1

u0

Fig. 6. First section of the conveyor component (including u0, t1, s1, and t2).

sl-1 sl+1

tl

sl

Fig. 7. Middle section of the conveyor component (including nodes sl−1, tl , sl , and sl+1).

bitrep(bj ′)) represents a vertex in the 5-cube F0G0H0F1G1 (resp. 3-cube JKL). The sequence is five (resp. three) bits
long and it is located at the appropriate position in the bit string.

In what follows we discuss in detail the conveyor component for the association between the edge (y′, y′
i′) in the

ith setting-and-fan-out component and edge (t, bj ′) in the j th clause-checking component. The conveyor component
consists of three sections: first, middle, and last. The first section joins to a setting-and-fan-out component and the last
one joins to a clause-checking component.

The first section (Fig. 6) starts with the edge (u0, t1) which is identical to (y′, y′
i′). Clearly, the difference between

nodes u0 and t1 is in one bit in the bitrep(y′) and bitrep(y′
i′). It is important to note that the number of ones in bitrep(y′)

is either one more or one fewer than those in bitrep(y′
i′). The transition from (u0, t1) to (s1, t2) is by setting to one �i′ .

u0 = bitrep(i) . . . bitrep(y′) . . .

t1 = bitrep(i) . . . bitrep(y′
i′) . . .

s1 = bitrep(i) . . . bitrep(y′) . . . bitone(�i′) . . .

t2 = bitrep(i) . . . bitrep(y′
i′) . . . bitone(�i′)

The transition (s1, t2), (s2, t3), . . ., (sl−1, tl) is by changing a 0-bit to a 1-bit in such a way that we incorporate
bitrep(j), bitrep(bj ′), and bitone(�j ′) into the bit strings. Clearly, the difference between the pairs of nodes (s1, t2),
(s2, t3), . . ., and (sl−1, tl) is in one bit in the bitrep(y′) and bitrep(y′

i′). By construction we know that the value of l is
the total number of ones in bitrep(j), bitrep(bj ′) and bitone(�j ′) plus 2.

The middle section (see Fig. 7) consists of the transition from (sl−1, tl) to (sl, sl+1). By definition, bitrep(t) has one
more bit than bitrep(bj ′). The only transition in this middle section changes bitrep(bj ′) to bitrep(t).

sl−1 = bitrep(i)bitrep(j)bitrep(y′) . . . bitone(�i′) . . . bitrep(bj ′) . . . bitone(�j ′) . . .

tl = bitrep(i)bitrep(j)bitrep(y′
i′) . . . bitone(�i′) . . . bitrep(bj ′) . . . bitone(�j ′) . . .

sl = bitrep(i)bitrep(j)bitrep(y′) . . . bitone(�i′) . . . bitrep(t) . . . bitone(�j ′) . . .

sl+1 = bitrep(i)bitrep(j)bitrep(y′
i′) . . . bitone(�i′) . . . bitrep(t) . . . bitone(�j ′)

In the last section (see Fig. 8) of the conveyor component the difference between the two nodes in (tl, sl+1),
(tl+1, sl+2), . . ., (tl+r−1, sl+r), and (tl+r , u1) is that the first element of the pair has bitrep(bj ′) and the second one has
bitrep(t).

434 T.F. Gonzalez, D. Serena / Theoretical Computer Science 369 (2006) 427–435

tl+r-1

B

tl+r

s
l+r

u1

Fig. 8. Last section of the conveyor component (including nodes tl+r−1, sl+r , tl+r and u1).

Each transition from pair (tl, sl+1) to pair (tl+r−1, sl+r) will have one fewer bit set to one in the portion bitrep(i),
bitrep(y′

i′), and bitone(�i′). The last transition from (tl+r−1, sl+r) to (tl+r , u1) sets bitone(�j ′) to zero. So vertices tl+r

and u1 correspond to the edge (bj ′ , t) in the j th clause-checking component.
By construction we know that the value of r is the total number of ones in bitrep(i), bitrep(y′

i′), and bitone(�i′)
plus 1.

tl+r−1 = . . . bitrep(j) . . . bitrep(bj ′) . . . bitone(�j ′) . . .

sl+r = . . . bitrep(j) . . . bitrep(t ′) . . . bitone(�j ′) . . .

tl+r = . . . bitrep(j) . . . bitrep(bj ′) . . .

u1 = . . . bitrep(j) . . . bitrep(t)

The above construction defines values for l and r. Note that l and r are normally different, and conveyor components
normally have different values for l as well as different values for r.

Lemma 1. The conveyor component which connects setting-and-fan-out component i and clause-checking component
j does not overlap with any other conveyor component and nodes u1, u2, s1, s2, . . ., sl+r , t1, t2, . . ., tl+r of this conveyor
component are unique.

Proof. Besides the nodes incident to the edges A and B in the conveyor components, no other nodes in the conveyor
components belong to more than one conveyor component nor a node is more than once in the same conveyor component.
The reason for this is that in the first part of the conveyor component ((s1, t2), (s2, t3), . . ., (sl−1, tl), (sl, sl+1)) every
node has either the signature

bitrep(i) bitrep(y′
i′) bitone(�i′)

or

bitrep(i) bitrep(y′) bitone(�i′).

These signatures are unique for every conveyor. All of these nodes in the same conveyor component are unique because
each one in the sequence has one additional bit set to one. The nodes t1 and u0 overlap with a pair of nodes of the
setting-and-fan-out components. These nodes are unique in this conveyor component and both of the nodes are not
assigned to another conveyor component.

In the second part of a conveyor component ((sl−1, sl), (tl, sl+1), (tl+1, sl+2), . . ., (tl+r−1, sl+r)) all the nodes have
the signature

. . . bitrep(j) bitrep(bj ′) bitone(�j ′)

or

. . . bitrep(j) bitrep(t) bitone(�j ′).

These signatures are unique for every conveyor. All of these nodes in the same conveyor component are unique
because each one in the sequence has one fewer bit set to one. The only exception may be (sl−1, sl) and (tl+1, sl+2).

T.F. Gonzalez, D. Serena / Theoretical Computer Science 369 (2006) 427–435 435

This occurs when bitrep(y′) has one fewer bit set to one than bitrep(y′
i′). But these pairs of nodes differ in that the

first pair has bitone(�i′), but the second pair does not. The nodes tl+r and u1 overlap with a pair of nodes of the clause
checking components. These nodes are unique in the conveyor component and both of the nodes are not assigned to
another conveyor component.

Every node in the first part of the conveyor component is different from ones in the second part of other conveyor
components because of the uniqueness of these signatures. This completes the proof of this lemma. �

Theorem 2. The p-pairwise edge disjoint shortest paths problem for the n-cube is NP-complete.

Proof. For any pair Xi = {si, ti} the maximum number of edges in a shortest path is n. Given a set of paths for a
routing request one can check in polynomial time that every two edges in the paths are distinct and that the paths are
indeed shortest paths for the pairs. Therefore the problem is in NP.

By the previous discussion we note that only a polynomial number of pairs are required in our polynomial trans-
formation from L3-SAT to our problem. By the discussion just before the theorem it is clear that the instance of the
p-pairwise edge disjoint shortest paths problem has a solution if and only if the instance of L3-SAT that we start from
is satisfiable. Therefore the problem is NP-complete. �

It is simple to see that all the pairs in the p-pairwise edge disjoint shortest paths problem constructed by the above
reduction are such that their pair distance at most three. Therefore, we have the following corollary.

Corollary 1. The p-pairwise edge disjoint shortest paths problem for the n-cube is NP-complete even when d(Xi)�3,
for 1� i�p.

We have not been able to establish that the pairwise edge disjoint arbitrary length paths problem is NP-complete.
The main problem is that we lack appropriate edge-blocking components. We conjecture that this problem is NP-hard.

3. Conclusions

In this paper we examined complexity issues regarding a high-performance computing topology, namely the n-cube.
For the p-pairwise edge disjoint shortest paths problem in the n-cube the distance at most two pair problem is found
to be solvable in polynomial time (Section 2.1). When the pair distance is at most three we established intractability
(Section 2.2). The corresponding node disjoint shortest paths problem and related problems, even in the context of an
approximation to the shortest paths are also computationally intractable [5].

Acknowledgments

We like to thank the referees for pointing out mistakes in earlier versions of our paper and for their suggestions on
ways to improve the readability of our paper.

References

[1] M.R. Garey, D.S. Johnson, Computers and Intractability a Guide to the Theory of NP-Completeness, Freeman, New York, 1979.
[2] T.F. Gonzalez, F.D. Serena, Complexity of k-pairwise disjoint shortest paths in the hypercube and grid networks, Technical Report TRCS-2002-14,

University of California at Santa Barbara, May 2002.
[3] T.F. Gonzalez, F.D. Serena, Complexity of pairwise shortest path routing in the grid, Theoret. Comput. Sci. 326 (2004) 155–185.
[4] T.F. Gonzalez, F.D. Serena, n-cube network: node disjoint shortest paths for maximal distance pairs of vertices, Parallel Comput. 30 (2004)

973–998.
[5] T.F. Gonzalez, F.D. Serena, Pairwise disjoint shortest paths in the n-cube and related problems, Technical Report, CS Technical Report 2006-04,

UCSB, 2006.
[6] A. Lubiw, Counterexample to a conjecture of Szymanski on hypercube routing, Inform. Process. Lett. 35 (1990) 57–61.
[7] S. Madhavapeddy, I.H. Sudborough, Disjoint Paths in the Hypercube, in: M. Nagl (Ed.), Lecture Notes in Computer Science,WG, Graph-Theoretic

Concepts in Computer Science, 15th Internat. Workshop, WG ’89, Vol. 411, June 1990, pp. 3–18.

