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A Note on Open Shop Preemptive Schedules
TEOFILO GONZALEZ

Abstract-The problem of preemptively scheduling a set of n
independent jobs on an m processor open shop is discussed. An
algorithm to construct preemptive schedules with minimum-
maximum finishing time is presented. The worst case time complex-
ity is 0(r + min {m4, n4, r2}), where r is the number of nonzero tasks.
The maximum number of preemptions introduced is O(min {rn, rm,
n3, m3}). The algorithm is best possible for open sbops with a fixed
number of processors or jobs. In this case the maximum number of
preemptions introduced is bounded by some fixed constant.

Index Terms-Finish time, open shops, polynomial complexity,
preemptive scheduling.
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I. INTRODUCTION
AN OPEN shop consists of m 2 1 processors (or ma-

chines). Each of these performs a different operation.
There are n 2 1 independent jobs. Each job consists ofm
tasks. The processing time for taskj ofjob i is tj,,.2 0. Thejth
task of all jobs is to be executed by processorj. Let r be the
total number of nonzero tasks.

Let Ak represent an assignment of tasks to machines. Each
assignment Ak is required to satisfy the following
restrictions:

1) at most onejth task is to be assigned to machinej, and
2) for each job, at most one task is to be assigned.
The processing oftasks given by assignment Ak is initiated

at time 4k and terminates at time 'k. lo is zero. A schedule S
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for an open shop is a sequence of s 2-tuples of the form
(Ak, lk), where Ak is an assignment and lk is an instance of
time. In addition, each nonzero task (, i) must be assigned
for a total of tj,i units of time in S. Note that this definition
is not identical to the one given in [1]; however, both can be
shown to be equivalent.
The finish time (fi) for job i is the latest time job i is

scheduled. The finish time for schedule S (ft(S)) is max {f,}.
An optimal finishing time (OFT) schedule is one with the
least finishing time amongst all schedules. A preemptive
schedule is one in which tasks are not required to execute
continuously.
Open shop problems differ from flow shop and job shop

problems (see [2], for example) in that there is no restriction
placed on the order in which tasks from each job are to be
processed. The problem of obtaining OFT preemptive
schedules for open shops arises as a subproblem of some
preemptive scheduling problems [5]. Open shops also model
the following situation (as well as others). Consider the
problem of scheduling meetings between professors and
students. Let tj,i be the total time student i must meet with
professor j. An OFT preemptive schedule for this problem
will minimize the latest time at which there is a meeting. Of
course, one would like to minimize the number of preemp-
tions so as to avoid interruptions. The problem ofconstruct-
ing an OFT preemptive schedule for m > 2 with the
minimum number of preemptions is NP-hard [1]. On the
other hand, if p(n) preemptions are introduced by an

algorithm, then the time complexity for the algorithm is at
least Q(p(n)), when the output is a schedule of the form
described above. Therefore, we restrict ourselves to the
problem of constructing OFT preemptive schedules with a

small (not the minimum) number of preemptions.
In this paper we present an algorithm to obtain OFT

preemptive schedules for open shops. Our algorithm is
based on a combine-and-conquer approach. This should be
contrasted with divide and conquer. The latter approach
divides a problem into smaller size subproblems. The solu-
tion to these subproblems are combined to obtain the
solution to the original problem. The former approach
combines inputs (in this case jobs and machines) for the
original problem to obtain a problem of smaller size.
The solution to this problem is then divided to obtain
the solution to the original problem. Note that it is not
recursive. A similar approach was used in [5] for a restricted
open shop problem.
The worst case time complexity for our algorithm is

0(r + min {m4, n4, r2}). The maximum number of preemp-
tions introduced is 0(min {rn, rm, n3, m3}). Previous algor-
ithms for this problem have worst case time complexity 0(r2)
[1, pp. 670-673], 0(r min {r, m2} + rm log n) [1, pp. 673-675],
and 0(n) for m= 2 [1, pp. 666-669]. We denote these
algorithms by R, P, and U, respectively. The maximum
number of preemptions introduced by these algorithms is
0(rm), 0(rm), and 0. For n = 2 or m = 2, algorithm U is best
possible as it introduces no preemptions and takes time 0(r).
For n fixed,1 algorithms R and P take time 0(m2). Our
1 n is not a parameter but m is a parameter.

algorithm takes time 0(m). For m fixed, algorithm R takes
time 0(n2) and algorithm P takes time 0(n log n). Algorithm
P introduces 0(n) preemptions. Our algorithm is of time
complexity 0(n) and introduces only a fixed number of
preemptions. Clearly, when there is a fixed number ofjobs or
machines our algorithm is best possible (linear time). In
addition, the worst case time complexity for our algorithm
as well as the maximum number of preemptions introduced
are within a multiplicative constant of the ones for previous
algorithms (R and P). The maximum number of preemp-
tions introduced by our algorithm is 0(rm), which is of the
same order as the ones for algorithms P and R. The worst
case time complexity for our algorithm is 0(r2), which
compares to the one for algorithm R. For r < m2, algorithm
P and our algorithm are 0(r2). When r > i2, P is 0(rm2 ) and
our algorithm is 0(m4).
We use the following NP-hard problem [3] as a subprob-

lem in our algorithm.
Bin Packing: Given a sequence of "bins" B 1, B2, and a

list L = (a1, a2, , an) ofpositive integers in the range (0; /3],
find an assignment of pieces ai into the bins so that no bin
has contents totaling more than /B, and the number of
nonempty bins is minimized.

In our algorithm we make use of the following packing
rule. This rule produces suboptimal packings for the bin
packing problem.

Rule: Initially, the first piece is placed in bin B1J. is set to 1.
In step i, the ith piece is added to bin Bj if it does not

exceed the capacity of the bin. Otherwise the ith piece is
placed in bin B341; bins B3 and Bj+ 1 are interchanged if the
sum of the lengths of the pieces in bin B3exceed the length of
the ith piece; j is incremented by 1. O

It is simple to show that the time complexity of an
algorithm which uses this rule is 0(n), where n is the number
ofpieces. Clearly, all bins used except possibly for the last are
at least half full.

II. OFT PREEMPTIVE SCHEDULES

In this section we present a combine-and-conquer algor-
ithm to construct OFT preemptive schedules for open
shops. The algorithm is simple, so only an informal descrip-
tion will be given.

Let E represent an open shop problem. We now construct
an OFT preemptive schedule S for E.
Our algorithm is divided into three phases.
Phase 1: Initially, combine jobs and machines from open

shop E. This transforms E to open shop problem T, with a
smaller number of machines and jobs. T is to be constructed
in such a way that if given any OFT preemptive schedule S'
for T, then:

a) ft(S') = ft(S) where S is an OFT preemptive schedule
for E;

b) S can be constructed from S'.
Phase 2: Algorithm R [1] is used to construct S' for T.
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Phase 3: S is generated from S'. Assignments in S' are
divided to the original tasks and machines from E. OI
The first phase involves the solution of two bin packing

problems. The bin packing problem is a hard combinatorial
problem (NP-complete). There is no known efficient algor-
ithm to obtain the minimum number of bins for this
problem. However, there are fast algorithms which guaran-
tee solutions to be within a fixed percentage from the
optimal solution value [3], [4].
Given a set of n jobs with task times t., 1 < i < n and

1< j < m for an m processor open shop E, we define the
following quantities.

Ti = Y- 1 < i s n ti, total time processor j is active, 1 <
j <m.

Li = XI.j<mtj,i ... total length of job, i, 1 < i < n.
W = Xi<j<m1j = 11<i<nLi
r = number of nonzero tasks (assume r> n and r > m

as otherwise some machines or jobs could be
eliminated).

a = maxi, j{Tj, Li}.

In [1] it is shown that the finish time of an OFT preemptive
schedule for open shop E is ax.
We now outline the algorithm which will be referred to

as P'.

Algorithm P'
Phase 1: Open shop E is transformed to T Jobs 1, 2, n,

with execution times L1, L2, * Ln are packed in bins of
size a. Processors are packed in a different set of bins of size
a. The packing is carried out by the rule given in Section I.
Let n' and m' be the number ofbins required to pack jobs and
machines, respectively. Let J,, 1 < i < n' be sets whose
elements are the indices of jobs packed in bin i. Let P[J,
1 <1 < m', be sets whose elements are the indices of
processors packed in bin j. Then

U Ji={1,2, ,n}, U P={1,2, ,m},
1.i.n' 15j.m'

E Li <c for
iei'

and

fi Tj < a for
jeP'

1 <. j n',

1 < i < m'.

Open shop Tconsists of n' jobs (J.) and m' processors (Pj).
The execution time for each task (, i) is

tJ;i= E E j,,
i'eP4 i'eJ',

and

for 1 j < m'

1 < i < n'.

Phase 2: Algorithm R [1] constructs an OFT preemptive
schedule S' for open shop T

Phase 3: An OFT preemptive schedule S for open shop E

TABLE I
tj,i, Li, AND Tj FOR OPEN SHOP PROBLEM E

tipi Ji1 J3 J4 J5

P1 10 5 - _ _ 5 20

P2 5 10 -- -- -- 15 30

P3 - -- -- -- 30 -- 30

P4 10 5 -- -- -- 40 55

P5 -- -- 10 5 -- -- 15

P6 -- -- 10 15 -- -- 25

25 20 20 20 30 60

TABLE II
t'J,i FOR OPEN SHOP PROBLEM T CONSTRUCTED IN PHASE 1

t; _IJ1 2 _ J3 _J[-4_-I
P1' 30 --T -- 20

12 1 _-
Pp -- -- 30 --

1_ __ __

Pi 15 -- -- 40

~-- 40 -- --

is constructed from S'2. Assume S' consists of a sequence of q
4-tuples. Each 4-tuple (i, j, s,f ), indicates that task (, i) is to
be processed by machine j from time s <f to time f The
q 4-tuples can be obtained in O(q) time from the output given
by algorithm R.
S is constructed as follows: for each of the q 4-tuples

(i', j s, f) in S', we generate tuples for S. Let k > 1 and
(19 il) (02, i2)9 9- Uk(, ik) represent nonzero tasks from
open shop E, such that j1E Pj,, il E J, for 1 < I < k, and

k

f - S + tikik > Ett,i'i 2 f -S.

The k 4-tuples for S are generated as follows:

ij , s + E tjw,,w9minf s + E tjW,iW

for 1 < I< k.

The first k - 1 tasks for open shop E are eliminated from
further consideration. tjk,ik is set to I= 1 thil,-f+ s, in case
tjk,ik = 0, task (Jk, ik) is also eliminated from further
consideration.
End of P'
The output of algorithm P' is S. Note that S is not in the

form one would expect from the definition in Section I.
However, it will be shown (Theorem 1) that S is a schedule.
Example 1: Let E be an open shop problem with m- 6

processors and n = 6 jobs. The execution times are given in
Table I. Tj and Li are as defined above. In Phase 1, J'1 = {1,

2 Note that the schedule S to be constructed is not of the form one
would expect from the definition in Section I. However, it will be shown
(Theorem 1) that S is a schedule.
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Fig. 1. Schedule S for open shop problem T.
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Fig. 2. Schedule S' for open shop problem E.

2}, J2 = {3, 4}, J'3 = {5}, J'4 ={6}, and P'1 = {1, 2}, P'2 = {3},
P3 = {4}, P'4 = {5, 6}. Open shop problem T has m' = 4 and
n' = 4. The execution times of each task is given in Table II.
One possible schedule constructed in Phase 2 by algorithm
R [1] is given in Fig. 1. Phase 3 converts the schedule S in Fig.
1 to the schedule S' for open shop problem E. Schedule S' is
shown in Fig. 2.
The following theorems show the correctness and analysis

of algorithm P'.
Theorem 1: Algorithm P' constructs OFT preemptive

schedules for open shop problems.
Proof: Let E represent any open shop. T, S, S', and cx are

as defined in algorithm P'. Since the bins used (Phase 1) are
of size a, then T has the property that all jobs have length
< cx and all machines are busy for at most cx time units. In
Phase 2, algorithm R [1] is used to construct an OFT
preemptive schedule for open shop T. Since all jobs in T
have length < a and all machines are busy for at most a time
units, it then follows from [1] that algorithm R constructs a

schedule with finish time cx.

In order to complete the proof for this theorem, it is
required to show:

1) S is a schedule for open shop E, and
2) ft(S) =cx.

In order to show S has property 1) we make the following
observations from Phase 1:

a) tasks from E are included in only one task in T;
b) jobs from E are included in only one job in T; and
c) processors from E are included in only one processor

in T:

Since S' is a schedule for T, it must be that no two tasks from
any given job are scheduled at the same time. This together
with Phase 3 and observations a)-b) imply that in S no two
tasks from any given job in E are assigned at the same time.
A similar argument can be used to show that at any given

time no more than one task is assigned to a given processor
from E in S. In order to complete the proof of 1), we need to
show that all nonzero tasks (j, i) in E are assigned for t ,, time
units. In Phase 3, only those tasks from open shop E
included in task (j', i') are assigned to all the time intervals in
which task (f', i') was assigned. Also, task (j, i) is assigned for
no more than tj,i time units. Since task (f', i') was scheduled
for tj ,i. time units and the sum ofall tasks (j, i) included in (j',
i') is tj,,i, it then follows that all tasks (j, i) are included for tji
time units. This completes the proof that S has property 1).

It remains to be shown that ft(S) = cx. By construction
(Phase 3), all tuples in S have finish time at most as large as
any tuple in S'. All tuples in S' have finish time < a, as cx is the
finish time for S'. Hence, S has finish time cx.

Since an OFT preemptive schedule for open shop E has
finish time a, then S is an OFT preemptive schedule for E.
Therefore, algorithm P' constructs OFT preemptive
schedules for open shops. OI

Theorem 2: The time complexity for algorithm P' is
0(r + min {m4, n4, r2}).

Proof: Phase 1 requires 0(r + n + m) time. This follows
from the restriction imposed on the approximation algor-
ithm for the packing problem. A simple O(r + n + m) order-
ing algorithm can be used to construct open shop T ifwe use
some form of linked allocation for all nonzero tasks.

Phase 2 is O((r')2). Let u = rW/cxl then (n')* = (m')* = u,
where (n')* and (m')* denotes the least number ofjobs and
machine Tcould have (note that these lower bounds for (n')*
and (m')* might not be achievable). The rule described in
Section I guarantees that all the bins used except possibly for
one are at least half full. This implies that

n' < min {n, 2u - 1}

and

m' < min {m, 2u - 1}.

As u <n and u <m then

n' < min {n, 2m-1} and m' < min {m, 2n-1}.

By construction r' < min {r, n'm'}

< min {r, nm, 2m2 - m, 2n2 _ n}

so Phase 2 is 0(min {r2, n4, m4}).
In Phase 3, each nonzero task (j, i) in T has a link to all

nonzero tasks in E used to build task (j, i). Thus, the
substitution from S' to S can be carried out in 0(r + w) time,
where w is the number of tuples in schedule,S'. Note that w is
bounded by the maximum number of preemptions, i.e., w is
0(min {rn, rm, n3, m3}) (see Theorem 3).
Hence, the total computing time for P' is 0(r + min {r2,

m4, n4}). L
Theorem 3: The maximum number of preemptions in-

troduced by algorithm P' is 0(min {rn, rm, n3, m3}).
Proof: Algorithm R introduces O(r'm') preemptions. In

Phase 3, the maximum number of preemptions introduced
in schedule S in the number of preemptions in S'. Hence, S
has 0(r'm') preemptions. The result follows after replacing
the bounds obtained for r' and m' in Theorem 2. [I

J., it // J41- 4

it /1"
3 X/,

J4 ii J 1 J44

it J, J '2 2 2
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For m or n fixed, algorithm P' has worst case time
complexity 0(n) or 0(m). The number of preemptions in-
troduced is fixed. The time complexity for previous algor-
ithms is 0(n log n) and 0(m2). The number of preemptions
introduced is 0(n) and 0(m2). For m = 2 algorithm U is
optimal (linear time and introduces no preemptions).
We should note that we could se better approximation

algorithms for the packing problem. This would guarantee
solutions closer to the true optimal solution value [3], [4].
However, the bounds for n' and m' cannot be improved and
the worst case time complexity for the algorithm would
have nonlinear terms even when there are a fixed number of
jobs or machines. In general, the use of better approxima-
tion algorithms for the bin packing problem and the use of
algorithm P [1] would improve on the average time taken by
the algorithm. It appears that even for small size problems,
the actual time taken by our algorithm is smaller than the
one taken by previous algorithms.
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Correspondence

On Analytical Modeling of Intermittent Faults
in Digital Systems

PRAMOD K. VARSHNEY

Abstract-This correspondence discusses three analytical models
for intermittent faults in digital systems. These models attempt to
represent the stochastic behavior of intermittent faults accurately.
The models find applicatiods in predicting the performance of fault
detection algorithms. A fault detection procedure is described and
its performance is examined based on the analytical models. A
numerical example is presented which illustrates the performance
prediction of the fault detection algorithm.

Index Terms-Analytical models, digital systems, fault tolerant
computing, fault detection algorithms, intermittent faults.

I. INTRODUCTION
Most of the effort in fault-tolerant computing has been directed

towards the study of permanent faults, and a variety of tech-
niques for the diagnosis of such faults have been considered [1],
[2]. However, experience with many practical digital systems indi-
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cates that most of the digital system failures can be attributed to
the faults of an intermittent nature [3]. The need for a systematic
study of intermittent faults has strongly been advocated [3], [4]
and it is only recently that intermittent faults have received some
attention [5]-[12].
One important problem in this area is to accurately charac-

terize the stochastic behavior of intermittent faults. A probabilistic
framework is required due to the transient nature of intermittent
faults. Analytical models can be employed to compute various
statistics of intermittent faults. They can be used to examine the
performance ofintermittent fault detection algorithms. The models
also provide an insight into the clustering properties of intermittent
faults.

Analytical models for intermittent faults have been treated in
the literature. For example, Breuer [5] has considered a two-state
Markov model. Kamal and Page [6] have developed a finite-state
model for intermittent faults. This correspondence considers three
alternative approaches for the characterization of the fault process.
Different degrees of memory are incorporated in these models.
First, we formally define the intermittent fault process and some
of the related probabilistic parameters. After discussing the three
analytical models, a 'memoryless fault detection procedure is des-
cribed. This is similar to the detection algorithms considered in
the literature. The performance of the fault detection algorithm
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