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Routing Multiterminal Nets Around a Rectangle
TEOFILO F. GONZALEZ AND SING-LING LEE

Abstract -The problem of connecting a set of terminals that lie set S. An Ql(n log n) lower bound on the worst case time
on the sides of a rectangle to minimize the total area is discussed. complexity for the 2-RIM problem was established in [5].
We present an O(nm) approximation algorithm to solve this prob- Algorithms to solve the 2-RiM problem appear in [4] and [6].
lem where n is the number of terminals and m is the number of The one in [6] is optimal with respect to the time complexity
signal nets. Our algorithm generates a solution with an area boneWhn[6] le a respe to wire omplexit
<1.69* OPT where OPT is the area of an optimal solution. Our bound. When many layers are available and wire overlap (for
algorithm routes some of the nets by a simple greedy strategy. wires in different layers) is permitted, the problem becomes
The remaining nets are routed using several strategies and four NP-hard [111. Other generalizations of the 2-Ri M problem
layouts are obtained. The best of these layouts is the solution have also been shown to be NP-hard [4]. In this paper we
generated by our algorithm. present an O(nm) approximation algorithm to solve the RIM
Index Terms -Algorithms, greedy methods, minimize area, problem. Our algorithm generates a solution with area

VLSI, wire routing. .1.69 * OPT, where OPT is the area of an optimal solution.
An approximation algorithm that generates solutions within

I. INTRODUCTION 60 percent of optimal appears in [8]. The difference between

T ET T be a rectangle and S be a set of points that lie on these two algorithms is that the one presented in this paper
L the sides of T. Let NI, N2,... , N,, be any partition of set is easier to understand and takes less time to execute. Also,

S. Each subset Ni is called a net. All the points in each net the proof for the approximation bound of 1.6 is much
have to be made electrically common by interconnecting more complex.
them with wires. The path followed by these wires consists The first few steps of our procedure follow the initial steps
of a finite number of horizontal and vertical line segments. of the algorithms in [4] and [6]. These steps consist of reduc-
These line segments can be assigned to two different layers. ing our problem to the problem of selecting the starting point
All the horizontal line segments are assigned to one layer and (by default the direction is clockwise) for the connecting path
all the vertical ones are assigned to the other layer. Line of each net and specifying the starting point for the con-
segments on different layers can be connected at any given necting paths of all local nets (a local net is one in which all
point z by a wire perpendicular to the layers if both line the terminals appear on the same side of T or on two adjacent
segments cross point z on their respective layers. Every pair sides of T). The algorithm routes some of the nets by a simple
of distinct and parallel line segments must be at least A units greedy strategy. The remaining nets are routed using several
apart and every line segment must be at least A units from strategies producing a nonempty set of feasible solutions.
each side of T, except in the region where the path joins the One of the layouts with least area will be the solution gener-
point in S it connects. Also, no path is allowed inside T on ated by our algorithm.
any of the layers. In Section II we present our basic results and the algo-
Problem RIM (routing around one module) consists of rithm. The analysis of our algorithm will be presented in

specifying paths for all the connecting wires in such a way Section III.
that the total area is minimized. That is, to place T together
with all the connecting wires (that must satisfy the re- II. BASIC RESULTS AND THE ALGORITHM
strictions imposed above) inside a rectangle (with the same We begin by defining the RIM problem and introducing
orientation as T) of least possible area. This problem has some useful notation similar to the one in [6]. Then we
applications in the layout of integrated circuits [3] and [10] present some basic results and our algorithm. The analysis of
and conforms to a set of design rules for VLSI systems [9]. our algorithm will be presented in Section II1.
The case when each net is restricted to be of size two has Let T be a rectangular component of size h by w (height

been studied in great detail. We call this problem the 2-RIM by width). There are n terminals (T,, T2, , TJ) on the sides
problem. In [2] and [5] an O(n log n) algorithm is presented of T. These terminals are partitioned into m subsets denoted
to solve the RIM problem for the case when all the points in by N1, N2, , N. Each subset Ni is called a net. The prob-
S lie on one side of T where n is the number of elements in lem depicted in Fig. 1 consists of the following five nets:

N1 = {T2, 74, T7}, N2 = {T1, 73, T10, T14}, N3 = {T5, T12},
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For any assignment (or partial assignment) D we define the
height functionHD forx,y e {TI,T,, ,Tn} U {SO,St,S2,

~~, T,T5 T6 T, T, ~~~~, S3} as follows:
is, T3 74 75 T6 T7 Ta S2 HD(X, y) = max{number of paths given by D that cross

X 2 T9 T point z z E [x, y]}. Let D be the assignment for the layout
T1C given in Fig. 1. For assignment D we have that HD(SO, S1) is
T_l 1, HD(T5,T5) is 3, and HD(S2,S3) is 3. We shall refer to

HD(X, y) as the height of assignment D on the interval [x, y]
SO T15 T14 T13 T12 S3 in T.

L___ : I e--+ LThe next two lemmas establish that the RIM problem re-
duces to the problem of finding an assignment D with least

Fig. 1.
(h + (HD(SI, S2) + HD(S3, SO)) * A) *

number of straight line segments. Each of these line segments (w + (HD(SO, SI) + HD(S2, S3)) * A)
must lie on the same plane as T, be on the outside of T and and then in 0(n log n) time (0(n) time if the set of terminals
be parallel to a side of T. Perpendicular line segments can is initially sorted) one can construct a final layout for it.
intersect at any point, but parallel line segments must be at Lemma 2.1: For every assignment D, there is a rectangle
least A units apart. Also, all line segments must be at least A Q of size hQ by wQ where
units away from every side of rectangle T except in the
vicinity where a line segment connects a terminal. The RIM hQ = h + (HD (S1, S2) + HD(S3, SO)) * A
problem consists of specifying paths for all the inter- and
connections subject to the rules mentioned above in such a WQ = W + (HD(SO, S1) + HD(S2, S3)) * A
way that the total area is minimized, i.e., place the compo-
nent together with all the interconnecting wires inside a rect- with the property that rectangle T together with the inter-
angle (with the same orientation as T) of least possible area. connecting paths defined by D can be made to fit inside Q.

Label the sides of the component (in the obvious way) left, Proof. The proof is a direct generalization of the proof
top, right and bottom. Starting in the bottom-left corner of T, for the 2-RIM problem that appears in [4]. l
traverse the sides of the rectangle clockwise. The ith corner Lemma 2.2: A final layout with the area given by Lemma
to be visited is labeled Si-,. Assume that the ith terminal 2. 1 can be obtained in 0(n log n) time for any assignment D.
visited is terminal Ti. The close interval [x, y] where x and y Proof. The proof of this lemma is a straightforward
are the corners of T or the terminals Ti, consists of all the generalization of the proof for the 2-RIM problem that ap-
points on the sides of T that are visited while traversing the pears in [4]. The algorithm that constructs the final layout
sides of T in the clockwise direction starting at point x and uses a subalgorithm the procedure given in [5] and [2]. i
ending at point y. Parentheses are used instead of square Net N1 is said to be a global net if at least two terminals in
brackets for open ended intervals. We use [SO, SI], [SI, S2], Ni are located on opposite sides of T. Net Ni is said to be local,
[S2, S3] and [S3, SO] to represent the left, top, right, and bottom i.e., if all its terminals are located on the same side of T or

sides of T, respectively. Terminal T, is said to belong to side on adjacent sides of T. The problem shown in Fig. 1 has N2
1, S(i) = 1, if T7 is located in [Sl, S(I+l)mod(4)]. and N3 as the only global nets. For assignment D we define

The function I(j) indicates the index of the net to which the function A (D ) as (h + (HD (SI, S2) + HD (S3,
terminal Tj belongs. The function L(j) is such that the inter- SO)) * A) * (w + (HD(SO, SI) + HD(S2, S3)) * A) i.e., the
val [Tj, TL(j)] is the smallest interval that includes all the termi- total area required by the layout of T together with all
nals from net NI(j). Set D - {dl, d2, , d,} is said to be an the interconnections specified by D.
assignment of directions if D contains exactly one index Definition 2.1: D'. Let D' be the partial assignment in
from a terminal in each net. Any subset of an assignment is which all the local nets are connected by paths crossing the
said to be a partial assignment. An assignment D indicates least number of corners of T.
the starting point for the connecting path of all nets (the Lemma 2.3: There is an optimal assignment D such that
direction is by default clockwise). If i E D then the con- D' C D.
necting path of all the terminals in net N!(i) starts at terminal Proof. The proof follows the same lines as the one for
T, moving perpendicular to side S(i) and then it moves in the the 2-RiM problem that appears in [4].i
clockwise direction with respect to 7' until it reaches 7L(i). Lemma 2.3 shows that for any instance of the RiM prob-
Each of the remaining terminals, T'k, in net NI(1) are joined to lem there exists an optimal solution in which all local nets are
this path by a line segment perpendicular to side S(Tk) of 7'. connected by paths crossing at most one corner of 7'. The
In a partial assignment, the starting point of some connecting RIM problem has been reduced to the problem of finding the
paths might not be specified. The assignment for the layout direction and the starting point for the connecting paths of all
given by Fig. 1 is {2, 3, 5, 6, 11}. For any I & D, we say that global nets in the presence of the partial assignment D'. At
the connecting path for NI111 given by D crosses point z if this point our procedure differs from the one given in [4] and

Z E [7l, 7'L(1)]. [6]. The main difficulty that we encounter in extending the
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results for the 2-RIM problem to this problem is that the
divide-and-conquer step seems not possible. The reason for
this is that there seems to be no rule to partition the nets with
terminals located in three or four sides of T.

It should be clear that it is only required to specify the paths
connecting the global nets since local nets are connected as (a) Fig. 2.(b)
indicated in D'. Also, once we have an assignment one can
use the proof of Lemma 2.2 (a constructive proof) to find the sides of T. Let m ' and mLR represent the number of nets in
final layout. In what follows we explain how to obtain our MLBand MLR, respectively. Assume that the number of ele-
final assignment. ments in each of these sets is a multiple of 3. In Section IV

Let m4 be the number of global nets with terminals on the we indicate the modifications that need to be made to the
four sides of T and let M4 be the set of all these nets. Assume algorithm if this is not the case. For each Nj in M'B (MRR), let
that m4 is a multiple of 2. In Section IV we indicate how to p(j) be the index of the leftmost (bottommost) terminal of N
modify our algorithm when m4 is not a multiple of 2. Nets Ni located on the top (left) side of T. Let pTB ={p(j) Nj E
and Nj (both in set M4) are said to be agreeable if on some NMTB} and pLR = {p() Nj E MLR}. Each of these sets is par-
side of T no 'terminal in N1 is between any two terminals in titioned into the setsN2Band N!R for 0 . i . 2 as follows:
Nj and no terminal in Nj is between any two terminals in N1.
The following procedure defines the sets Mi and M', a par- N TB {I(j) j is the kth smallest value in the set pTB and
tition of set M4. After the procedure terminates, let m4 and (i/3) pTB < k < ((i + 1)/3) PTBj}
m' denote the number of pairs (of nets) in Mc and MN, and
respectively.NL resproctiedureN'R = {I(j) Ij is the kth smallest value in the set pLR and

W -M4;MM~MN<| ;MC-; (j/3) pLRI < k < ((i + 1)/3) pLR}-
while there are two nets in W with exactly one We define the following sets for 0 ' i ' 7:

terminal located on the same side of T do
Let N, and Nj be such nets; D ' {if in the binary representation for i the (1 + 1)st least
N< MN U {(N,N1)} significant bit is one then the connecting path for

W -W - {N,,N)}; each net in set N7B does not cross corner S2; other-
endwhile wise, the connecting path for such a net does not
while W # j do cross corner S1 01° I ' 2}
Let Ni and Nj be any two nets in W; and
M4<-MC U {(Ni,N)};
W *- W - {N ,Nj}; D/R = {if in the binary representation for i the (I + I)st least

endwhile significant bit is one then the connecting path for
end of procedure each net in set N LR does not cross corner SI; other-

It is simple to see that the two nets in each tuple in M4 are wise, the connecting path for such a net does not
agreeable. The two nets in each tuple in MN are routed as in cross corner So 0 . 1 .' 2}.
Fig. 2(a) (this figure shows the case when the nets have At this point we construct assignment D1, for 0 - i j.7as
exactly one terminal located on the top side of T). Every pair follows:
of nets in Mc is routed as in Fig. 2(b). We should point out
that there is at most one net in set Mc that contains only one Di=j= D' U D" U DTB U DfR.
terminal on the top side of T. This is also true for all of the
other sides ofT. It is important to remember this fact when we The algorithmwlll output the layout of one of the assign-

* 1 ~~~~~~~~~~~~mentswith least area. In the next section we show that theestablish a lower bound for the area of an optimal solution
a

(Lemma 3.4). area of the layout generated by our algorithm is <1.69 *(Lma,.) OPT, where OPT is the area of an optimal assignment.Let D" = {all nets with terminals located on exactly three O
sides of T are connected by the path that crosses two corners III. ANALYSIS OF THE ALGORITHM
of T} U {nets Ni and Nj such that (Ni, Nj) E M4 are routed in
such a way that they share the same track on a side in which In this section we show that our algorithm generates a

the two nets have exactly one terminal (Fig. 2(a) gives the solution with area .1.69 * OPT where OPT is the area of an
routing for two nets with exactly one terminal located on the optimal solution and we show that the time complexity of our
top side of T)} U {nets N1 and N1 such that (N1, N1) E Mc are algorithm is O(nm). Before showing that our algorithm gen-
routed as shown in Fig. 2(b)}. erates a solution with objective function value within
The global nets that have not yet been assigned in D ' U D" 69 percent of the optimal solution value, we need to intro-

are the ones with terminals located on only two opposite sides duce some useful notation and prove some initial results.
Of T. Let P4fB (MLR) represent the set of global nets with Let P43B (M3R) be the set of all nets with terminals on only
terminals located only on the top and bottom (left and right) three sides of T and without terminals located on either the
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left or right (top or bottom) sides of T. Let m3B and m'R
represent the number of nets in M3B and M"R, respectively.
Our approximation algorithm routes these nets by a path that
crosses the least number of corners of T. In Fig. 3(a) we show
the connecting path for one net in set MIR. Suppose that this (a) (b)
net is routed as shown in Fig. 3(b) in an optimal assignment Fig. 3.
D. LetM be D except for the connecting path for the net that
appears in Fig. 3(b) is connected as shown in Fig. 3(a). It is b) Let M be assignment D except for the nets Ni and Nj,
simple to show that such that (Ni, Nj) E MC, are routed as in our approximation

HM(SI, S2) + HM(S3, SO) . HD(SI, S2) ± HD(S3, SO) algorithm. Then

and HM(SI,S2) + HM(S3, SO) . HD(SI,S2) + HD(S3, SO) + 2

HM(SO, S1) + HM(S2,S3) ' HD(SO,SI) + HD(S2,S3) + 1 .
and

A straightforward generalization of the above observation is
given by Lemma 3.1. HM(SO, Sl) + HM(S2, S3) ' HD(SO, SI) + HD(S2, S3) + 2.
Lemma 3.1: Let D be an optimal assignment such that

D' C D. Let M be D except that all nets in MTB U MR are Proof of Claim: It is simple to see that any net with
routed as in our approximation algorithm. Then terminals on the four sides of T will contribute in assignment

D at least one unit to the total horizontal height (HD(SO,
HM(SI, S2) + HM(S3, SO) . HD(SI, S2) + HD(S3, SO) + m3B SI) + HD(S2, S3)) and will also contribute at least one unit to

and the total vertical height (HD(SI, S2) + HD(S3 + So)). The
contribution to the vertical height and the horizontal height

HM(SO, 5,) + HM(52, 53) . HD(SO, S,) + HD(S2, 53) + in3.* for a pair of nets in MN routed by our algorithm is either 3 and

Proof: We only prove the bound forM ' since the proof 4, or 4 and 3 (the former case is when the two nets are routed
for MLR is similar. The contribution from a net in MLR to by sharing a track on the top or bottom sides of T and the
(HD(SI, S2) + HD(S3, SO)) and (HD(SO, S) + HD(S2, S3)) is at latter one occurs when the sharing is on the left or right side
least one if such a net is routed differently than in our algo- of T). Therefore, when the path connecting two nets in M4 is
rithm. When we interchange such a net so that it is routed as interchanged to the paths given in assignment M, the maxi-
in our algorithm, the increase in the horizontal height mum amount we increase the vertical height and the horizon-
(HD(SO, SI) + HD(S2, S3)) is at most 1 and there is no increase tal height is given by a). This completes the proof for Part a).
in the vertical height (HD(SI, S2) + HD(S3, SO)). Hence, the Using similar arguments one can easily prove Part b). This
sum of all such contributions is given by the bounds given in concludes the proof of the claim and the lemma.
the statement of the lemma. This completes the proof of the i
lemma. i For simplicity, let us assume that in all optimal assign-
Lemma 3.2: Let D be an optimal assignment such that ments the nets in M'B U MLR are routed by paths that cross

D' C D. Let M be D except for the set of nets in M4 U M4 exactly two corners of T. In general, this is not true, however,
are routed as in our approximation algorithm. Then our results can also apply to these problem instances by doing
HM(SI, S2) + HM(S3, S) a simple modification to our analysis. When transforming an

<HD(SI, S) + HD(S3, SO) + (1 + x) * m' + 2m' optimal assignment D to one of the assignments generated by
4 4 ' our algorithm, we will first modify assignment D to one in

and which all nets in M2B U MLR are connected by paths that cross
exactly two of the corners of T. This new assignment isHM(SO,9 SI) + HM(S2, S3)+ + + * .V + Cobtained by connecting all nets in M2B (MLR) that are con-

HD(SO, SI) + HD(S2, S3) + Y) m4 2m4 nected by paths that cross the four corners of T, by paths that
where x, y are nonnegative real values such that x + y 1. do not cross the right (top) side of T. The new assignment

Proof. It is simple to show that the proof for this lemma satisfies the restrictions imposed before. Note that each time
follows from the following claim. an interchange is performed we will increase by one the

Claim. Let D be an optimal assignment such that height of one side of T, but we will decrease the height of
D' C D. another side (adjacent to the previous one) of T by one. In the

a) Let M be assignment D except for the nets N' and N), final analysis we must account for the above changes in D.
such that (N,, N1) E M4, are routed as in our approximation For simplicity, this more detailed analysis is omitted. Read-
algorithm. Then ers interested in a more detailed analysis are referred to [8].

HM(S1,~ ~5'MS,S)~H(l 3 + HD'(S3 '~+ 1 + a In Lemma 3.2 we assume that when interchanging the
paths connecting two nets in M2B that cross on the top side of

and T will increase by at most 2 the vertical height of the assign-

HMSoS SHMS2 '3 ment. This assumption is not always true. In Fig. 5 we show
. HD(SO SI) + HD(S2,SJ) + 1 + (1 - a) one counterexample to this assertion. We call this inter-

change a type I interchange. The two nets involved in this
where a is 0 or 1. interchange form a type I pair. Interchanging the connecting
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GI1 G3

(a) (b) T

Fig. 4. Fig. 6.

a a babb a a aa b a b b a aj]

b b a a b b a a GI G2 G3
T_ ~~~~~~~~~~~~~~~T

(a) (b) Fig. 7.

Fig. 5. Type I interchange. (a) Before the interchange. (b) After
the interchange. number of nets in Gi that are connected by a path that crosses

the left side of T and let ri be the number of nets in Gi that

path for a net in M2B to one that does not cross the left or right are not connected by a path that crosses the left side of T. In
sides of G, will increase the vertical height of an assignment what follows we assume that there are no type I interchanges.
by at most two. This statement always holds true. Sometimes If we transform D by interchanging the paths given in
the result given by Lemma 3.3 will hold true even when type Fig. 6 we have that the total increase of the vertical height is
I interchanges occur when transforming an optimal assign- given by
ment to the ones generated in our algorithm. Since there are 2 * max{rl, 12 + 13}
cases when this will not be true we need to apply some
postprocessing improvement to eliminate the effects of the If this value is .(2/3) * m'j then the lemma holds true. Let
type I interchanges. For brevity we will not explain the post- us assume that it is not the case. Now, it cannot be that
processing procedure in this paper. An interested reader can r1 > 12 + 13 because it would imply that r, > (1/3) * m2j, a
find it in [7]. It is important to note that such procedure takes contradiction. Therefore, the lemma does not hold true when
O(nm) time. We should point out that after applying our 1 + 1 > 1/3 * TB
postprocessing procedure the 1.69 approximation bound will
hold true for all problem instances. which is equivalent to
Lemma 3.3: Let D be an optimal assignment such that

D' C D. There is an assignment Dij (constructed by our 13 > r2 (1)
algorithm) such that if M is defined as D except for all the If we transform D by interchanging the paths given in
nets in MTB U MLR which are routed as in the assignments Fig. 7 we have that the increase of the vertical height is given
Dij, then by the following formula.

a) HM(S1, S2) + HM(S3, SO)
HD(SI, S2) + HD(S3, SO) + (2/3) * m2 2 * 1I + 2 * max{r2,13}

and If this value is '(2/3) * m'B then the lemma holds true. Let
us assume that it is not the case. Substituting (1) in the above

b) HM(So, Sl) + HM(S2, S3) inequalities we know that these two solutions do not satisfy
. HD(SO, SI) + HD(S2, S3) + (2/3) * m2. the lemma when

It is assumed that whenD is transformed to any of the assign- 12 + 13 > (1/3) * mfB. (2)
ments DiX and two paths that cross on the top side of T are Using similar arguments and the interchanges depicted in
interchanged, such an interchange is not a type I interchange. Fig. 8(a) and (b), we know that the lemma does not hold true

Proof: Since the proof for Part b) is similar to the proof when
of Part a), we only prove Part a). Before proving our result r, + r3 > (1/3) * mTB
we make the following observations:

1) The interchange of one connecting path for a net in M2B Combining this inequality with inequality (2) we have that
in assignment D to one that crosses the least number of the number of terminals in G1 and G3 is greater than
corners in T will increase by at most two the value of (2/3) * m2'Y. This is a contradiction. Hence, at least one of
HD(S1, S2) + HD(S3, SO) the above solutions satisfies the lemma. This completes the

2) The interchange of two connecting paths for nets in M2 proof of the lemma.
that cross on the top side of T in assignment D will increase Before proving our main result we establish a lower bound
by at most two the value of HD(SI, 52) + HD(53, SO)- on the area required by any optimal solution. This is given by

Let Gi, for 1 . i . 3, be the partition of the nets gener- the following lemma.
ated by our algorithm (these sets were called NrTB, for l,emma 3.4: Let D be an optimal assignment such that
0 . i . 2, in our algorithm). For assignmentD, let/li be the D ' C D. Then
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(1 + ((2/3) * mLR + mLR + (1 + y) * m' + 2m')/
(mLR + 2mTB + 1.5mLR + 2mTB + 5MN + 7mC))

T T where x and y are nonnegative reals and x + y 1.
(a) (b) After multiplying the expression we obtain the expression

Fig.8. (ax + by + -)/(a'x + b'y + ) where a,b, ,
a', b ', are constants and x, y, are pairs ofm 's. At this

i) h/(A) + HID(SI, S2) + H1D(S, S ) 2 m TB + 2mLR + point it is only required to prove that a/a', b/b', are all
1.5mTB + 2mLR + 5mN + 7mC <1.69. Note that if any of x or y or... are zero, then the

1i) W/(A) + HD(SQ, S1) + HD(SJ, S3) . mLR + 2mTB + corresponding term can be deleted and if all of them are zero

1.5m' + 2m' + 5mf + 7m. then our algorithm generates an optimal solution. The re-
Proof: We only prove Part i) since the proof of Part ii) maining part of the proof is omitted since it involves

is similar. It is simple to prove the following lower bounds: tedious algebraic manipulations.
1) Each net in MLR U MLR has at least one terminal on the Theorem 3.2: The time complexity of the algorithm

l o presented in the previous section is 0(nm).left and right sides Of T.Pof-PoeueCntutisteol ato u lo
2) Each net in M3B has at least one terminal on the left or Proof: Procedure Construct is the only part of our algo-

right side of T. rithm (with the exception of the postprocessing procedure)
3) Each pair of nets in M' have at least two terminals on for which an 0(n) upper bound on the time complexity is not

th*etanih idso
4

obvious. In this procedure, the only step that violates thisthe left and right sides of T.X
4) Each pair of nets in Mc have at least four terminals on bound is the test performed in the first while loop. An 0(n)

the left and right sides of T, except for at most two of these time bound can be obtained by showing that at each iteration
nets which have at least three terminals on the left and right the test can be performed in constant time. Every time we will
sides of T. ignore (perhaps by deleting temporarily from W) all nets in

Using the above observations together with the fact that W with at least two terminals located on each side of T. TheUslng~~~ ~ ~ ~ ~~~~~~~tsthe perfrme byevntogetheanyfivefac.thtnatnngnesevery terminal is at least A units away from each corner of T, test is performed by taking any five of the remaining nets.
we get thefollowingbound. Note that at least two of these five nets will have one terminalwe get the following bound.

on the same side of T. When there are less than five nets, the
h/(A) ' m ' + 0.5m3'B + mLR + 4mc + 2mN test can be done by trying all possibilities. Therefore, the

total time required by the first while loop is 0(n). The post-Let us now establish a lower bound on the number of paths q y
s

crossing the corners of T. Since every path for a net in
MTB U MLR U MTB U MLR crosses at least two corners of T be carried out in 0(nm) time [8]. This completes the proof of2 2 3 crosss at last tw cornes of T

the theorem.and the paths connecting every pair of nets in MN U Mc cross
at least six (each path crosses three corners) corners of T, we
have that IV. CONCLUSIONS

3 We have shown that there is an efficient approximation
XHD(Si, Si) > 2 * (mLR + m TB + m'L + mTB) algorithm that generates a solution within 69 percent of opti-
i0o mal for the RIM problem. The algorithm takes 0(nm) time

+ 6 * (mN + mc). and the constant associated with this bound is small. Our
algorithm generates 64 assignments and it outputs one thatIt iS simple to show that
requires the least layout area. We should point out that it is

HD(S1, S2) + HJ(S3, SO) . (HD(SI, S1) + HD(S2, S2))/2 trivial to modify our algorithm so that only 4 assignments
+ (HD(S3, S3) + HD(SO, SO))/2. (more than 4 partial assignments will be generated) are gen-

erated. We omitted this for brevity. A 1.6 approximation
The lower bound i) follows from the above inequalities. This algorithm for our problem has been obtained in [8]. The 1.6
completes the proof of the lemma. * algorithm is much more complex and takes longer to execute.

Theorem 3.1: Let D be an optimal assignment such that Also, the proof for the 1.6 approximation bound is much
D' C D and let P be the solution generated by our algorithm, more elaborate. In Section II we assumed that the number of
Then, A(P) . 1.69 * A(D). nets in some sets was a multiple of some fixed constant. If

Proof. LetM be any of the assignments constructed by this is not the case, we will route all nets with a "'small"
the algorithm such that M = D1,1 and Di,1 is an assignment number of terminals optimally by trying all possible routing
that satisfies Lemnma 3.3. We now prove thatA(M) . 1.69 * paths anld then selecting the best of the solutions generated.
A(D). Since A(P) c A(M) the result holds true. Using the For nets without a "ismall"' number of terminals we will select
Lemmas 3.1 to 3.4 we have the following inequalities: any routing path since their contribution to our lower bound

A(M)/A(D) for an optimal solution is large (contribution from the number
of terminals). There are better ways of dealing with the re-

.-(1 + ((2/3) * m 2TB + m 3B + (1 + X) * mN{ + 2mc)/ maining 3 nets . However, for brevity the other methods will

(rnTB + 2mIi + l.5m3B + 2mIiR + 5m4f + 7m4)) * not be discussed.
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