
Continuous Delivery Message Dissemination
Problems under the Multicasting

Communication Mode
Teofilo F. Gonzalez, Member, IEEE

Abstract—We consider the Continuous Delivery Message Dissemination (CDMD) problem over the n-processor single-port complete

(all links are present and are bidirectional) static network with the multicasting communication primitive. This problem has been shown

to be NP-complete, even when all messages have the same length. For the CDMD problem, we present an efficient approximation

algorithm to construct a message-routing schedule with a total communication time of at most 3:5d, where d is the total length of the

messages that each processor needs to send or receive. The algorithm takes OðqnÞ time, where n is the number of processors and q is

the total number of messages that the processors receive.

Index Terms—Network communications, multicasting, message routing, approximation algorithms, message forwarding.

Ç

1 INTRODUCTION

PARALLEL and distributed systems were introduced to
accelerate the execution of programs by a factor

proportional to the number of processing elements. To
accomplish this goal, a program must be partitioned into
tasks, and the communications that must take place
between these tasks must be identified to ensure correct
execution of the program. To achieve high performance, one
must assign each task to a processing unit (statically or
dynamically) and develop communication programs to
efficiently perform all the intertask communications. Effi-
ciency depends on the algorithms used to route messages to
their destinations, which is a function of the underlying
communication network, its primitive operations, and the
communication model. In general terms, a message dis-
semination problem consists of a network with a commu-
nication model, a set of communication primitives, and a set
of messages that need to be exchanged. The objective is to
find a schedule to transmit all the messages in the least total
number of communication rounds. In the Continuous
Delivery Message Dissemination (CDMD) problem, each
message has a length and is partitioned into packets;
however, the packets of every message must arrive at its
destination in its “original” order, and all packets for each
message must arrive during consecutive time units. One may
think of the messages as “video clips” to be viewed without
delay on arrival (because of limited storage capability) or
data that needs to be processed online in the order it is
generated. Generating an optimal communication schedule,
that is, one with the least total communication rounds, for
the CDMD problem, even when all the messages have the

same length, over a wide range of communication networks

is an NP-hard problem. To cope with intractability, efficient

message dissemination approximation algorithms for

classes of networks under different communication as-

sumptions have been developed. These algorithms may be

used for a different version of the CDMD problem where
the packets may arrive to their destinations at any time and
in any order.

In this paper, we consider the CDMD problem. We
present an efficient approximation algorithm to construct a
message-routing schedule with a total communication time
(TCT) of at most 3:5d, where d is the total length of the
messages that each processor may send (or receive). The
algorithm takes OðnqÞ time, where n is the number of
processors and q is the total number of messages that the
processors receive.

Before we formally define the CDMD problem, we define
the communication network, the communication model,
and the communication primitives under the version of the
CDMD problem we consider in this paper. The commu-
nication network is the n-processor complete static (all links
are present and are bidirectional) network N . The commu-
nication model is the single-port model where every
processor sends at most one message and receives at most
one message during each communication round. The
communication primitive is called multicasting, which
means that the message a processor sends at time t may
be concurrently sent to a set of processors. All the messages
take one communication round to reach their destination,
regardless of the source or destination processor.

Let us formally define the CDMD problem. The
problem consists of constructing offline a communication
schedule with the least TCT for transmitting any given
set of (multidestination) messages through an n-processor
single-port complete static network N with the multi-
casting communication primitive. Specifically, there are
n-processors, P ¼ fP1; P2; . . . ; Png, interconnected via net-
work N capable of multicasting messages through a

IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008 1

. The author is with the Department of Computer Science, University of
California, Santa Barbara, CA 93106-5110. E-mail: teo@cs.ucsb.edu.

Manuscript received 8 June 2007; revised 21 Sept. 2007; accepted 10 Oct.
2007; published online 1 Nov. 2007.
Recommended for acceptance by Y. Pan.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-06-0186.
Digital Object Identifier no. 10.1109/TPDS.2007.70801.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

single port. Each processor Pi initially holds the set of
messages hi and needs to receive the set of messages ni.
Message j has length lj (positive integer), which is the
number of packets. The packets of every message must be
received in order and during consecutive time units. The
objective is to construct a communication schedule with
the least TCT, that is, the least total number of
communication rounds. At each communication round,
a processor may multicast to a set of processors one of
the messages it holds (that is, a message in its hold set
hi). The message will also remain in the hold set hi.
During each communication round, each processor may
receive at most one message. The message that processor
Pi receives (if any) will be available in its hold set hi for
the next as well as all the subsequent communication
rounds. The communication process ends when each
processor has ni � hi, that is, each processor holds all the
messages it needs.

We assume that
S
hi ¼

S
ni, and that each message is

initially in exactly one set hi. We define the total length of
the messages that any processor sends, or max hold, as
s ¼maxf

P
j2hi ljg. It is important to note that the message

length of each multicast (message with multiple destina-
tions) counts only once in the summation for the length of
the messages emanating out of each processor, which is
used in the computation of s. The reason is that multicasts
can be concurrently sent. The total length of the messages
that any processor must receive, or max need, as
r ¼maxf

P
j2ni ljg. We define the degree of a problem

instance as d ¼maxfs; rg, that is, the maximum total length
of the messages any processor sends or must receive.
Clearly, for any problem instance, d is a lower bound for the
TCT of any communication schedule. We use m to
denote the total number of different messages, and q is
the total number of messages that all processors must

receive, that is,
P

i jnij. Consider the following example. As
we develop our algorithm, we will apply it to this example
and generate a final schedule for it.

Example 1.1. There are seven processors ðn ¼ 7Þ, the total
number of messages m ¼ 19 (labeled A through S), and
the total number of messages that processors must
receive is q ¼ 24. The messages that each processor holds
and needs are given in Table 1. The length (in packets) of
the messages is given in Table 2. For this example,
d ¼ s ¼ r ¼ 60.

Usually, one visualizes these types of problems by
directed multigraphs with bundled edges. Each processor
Pi is represented by the vertex labeled i, and each message is
represented by a set of directed edges (or branches) from the
sending processor to each of the receiving processors. The set
of directed edges or branches associated with each message
are bundled together. The problem instance given in Example
1.1 is depicted in Fig. 1a as a directed multigraph with
additional thick lines that identify all edges or branches in
each bundle. The total number of messages that processors
must receive, q, is the total number of edges.

Our communication model allows us to transmit any of
the messages to its destinations at the same time or at
different times (any message may be transmitted to a subset
of destinations starting at time t1, to another subset of
destinations starting at time t2, and so on). This added
routing flexibility normally reduces the TCT, and in many
cases, it is a considerable reduction [1]. Our communication
model allows for forwarding of messages, that is, messages
may be sent to their destinations through intermediate
processors that do not actually need to receive these
messages. As we point out in Section 2, forwarding
messages allows for schedules with smaller, and, in many
cases, significantly smaller, TCTs, even when the network is
fully connected and the communication load is balanced.

2 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008

TABLE 1
Hold and Need Vectors for Example 1.1

TABLE 2
Length of Messages in Example 1.1

Algorithms for the completely connected architecture
have wide applicability in the sense that the schedules
generated for this architecture can easily be translated to
communication schedules for every pr-network—a large
family of communication networks [1], [2]. The class includes
sets of processors connected through Benes networks
(for example, the Meiko CS-2 and IBM GF-11). There is some
penalty that one has to pay for the translation process that is
doubling the communication rounds [1]. However, this
penalty is not always incurred [2].

Most of the previous work is for a restricted version of
the multicasting communication primitive, which is called
the telephone communication mode. In this restricted commu-
nication mode, each processor can send at most one
message to at most one destination at a time. As it has
been established earlier, the TCT for optimal schedules
under the telephone communication mode is larger than the
one over the multicasting communication mode; in many
cases, it is significantly larger [1]. The multicasting com-
munication mode is available in multiprocessor computer
systems. Because of the significant difference between the
multicasting and telephone communication primitives, one
cannot compare the algorithms for these communication
modes. For example, consider the problem when
one message has to be sent from one processor to all the
other processors in a complete network. Under the multi-
casting communication primitive (the model in this paper),
the communication can be carried in one step. Although in
the telephone communication mode, it requires about
logn steps. This fundamental difference in the quality of
the solutions generated makes it impossible to make
comparisons. For example, a communication schedule with
a near-optimal TCT under the telephone communication
mode has communication time that is much larger than the
one of a communication schedule with a TCT twice that of
an optimal communication schedule under the multicasting
communication mode.

The multiport communication model is more general than
the single-port one used in this paper. In this communica-
tion model, every processor may send and receive multiple
messages during each communication round. This more
general communication model allows for schedules with
smaller a TCT; however, it requires expensive communica-
tion hardware. The additional expense is proportional to
the maximum number of concurrent messages that each
processor may send or receive.

2 APPLICATIONS AND PREVIOUS RESULTS

A restricted version of the CDMD problem, where all
messages have the same length, is called the multimessage
multicasting MMC problem. A restricted version of the
MMC problem is the all-to-all communication problem (also
known as the gossiping problem) when each processor is
restricted to send one message to all the other processors
[3], [4]. The all-to-many and many-to-many [5] communica-
tion problems are restrictions of the all-to-all communication
problem when message destinations and/or sources are
limited to subsets of processors.

The MMC problem, where all messages have exactly
one destination, is called the multimessage unicasting MUC
problem. The MUC is the all-to-all personalized [6] or the
all-to-many personalized [7] communication problem when
combining all the individual messages to be sent from
processor i to processor j into a single one whose length
is the sum of all the individual messages. Note that for
the MUC , all-to-all personalized and all-to-many personalized
communication problems, the multicasting communication
mode does not provide any advantages over the tele-
phone communication mode. The reason is that every
message has a single destination.

The MUC problem and its variants have been extensively
studied. The basic results include heuristics, approximation
algorithms, polynomial time algorithms for restricted
versions of the problem, and NP-completeness results.

GONZALEZ: CONTINUOUS DELIVERY MESSAGE DISSEMINATION PROBLEMS UNDER THE MULTICASTING COMMUNICATION MODE 3

Fig. 1. (a) Multigraph for Example 1.1. (b) Resulting multigraph for Example 1.1 after forwarding messages using transformation LH given in

Section 3.1. Self edges may be eliminated.

Coffman et al. [8] present approximation algorithms for a
generalization of the MUC problem where there are �ðPiÞ
sending or receiving ports per processor (multiport com-
munication model). In this version of the problem, the
packets from each message must arrive in order to their
destinations during consecutive time units, as in our CDMD
problem. However, our CDMD problem is more general in
the sense that the communication pattern allows for
multidestination messages. In general, for MUC problem
instances, one may construct schedules with a significantly
smaller TCT when message forwarding is allowed, as
initially reported by Whitehead [9].

When one relaxes the requirement that the packets from
each message must arrive in order to their destinations
during consecutive time units, schedules with a smaller TCT
may be constructed. In this case, we say that message splitting
or preemptive scheduling is allowed; that is, messages may be
transmitted with interruptions. Several preemptive schedul-
ing versions of a generalized MUC problem have been
considered by Choi and Hakimi [10], Hajek and Sasaki [11],
and Gopal et al. [12] (for satellite communications). The
n-port MUC problem over complete networks, for transfer-
ring files, was studied by Rivera-Vega et al. [13]. An extensive
discussion of all of these results appears in [4]. Another
variation of the MUC problem, called the message exchange
problem, has been studied by Goldman et al. [4]. The
communication model in this version of the problem is
asynchronous, and it closely corresponds to actual distrib-
uted memory machines. A restricted version of the MUC
problem, called data migration, was studied by Hall et al. [14].

The main difference between the above mentioned
research and the one that we discuss in this paper is that
we concentrate on the multicasting communication mode,
rather than on the telephone communication mode.
Furthermore, we restrict to nonsplitting of messages
(nonpreemptive schedules). Because of this difference in
the communication model, one cannot directly compare the
quality of the solutions generated by known algorithms for
all of these problems. Almost all of the work for all-to-all
personalized communication (gossiping) problem is for the
telephone communication primitive (see [4] and [15] for an
extensive discussion). The only exceptions are the results
reported in [15]. However, the interesting point is the
applicability of the algorithms to all sorts of networks, not
just the complete network. Most of the previous research
based on the multicasting communication mode has
concentrated on routing a single message, which is a
version of the Steiner tree problem. There is an extensive
literature on the Steiner tree problem, but it is irrelevant to
the work presented in this paper. Multimessage multi-
casting problem under the multicasting communication
mode but involving equal-length messages is reported in
[1], [2], [16], [17], [18], [19], and [20]. The initial research by
Shen [19] on this type of problems was for n-cube-processor
systems. The objective function was very general and
attempted to minimize the maximum number of hops,
amount of traffic, and degree of message multiplexing, so
only heuristics could be developed.

Different strategies for solving multimessage multicasting
problems over all-optical networks were surveyed by Thaker

and Rouskas [20]. The multimessage multicasting problem
based on the telephone communication mode has been
studied under the name of data migration with cloning by
Khuller et al. [21]. This problem arises when messages are
movies being relocated to different servers in order to better
satisfy users’ requests [22]. A generalization of this message
dissemination problem allowing for limited broadcasting or
multicasting was considered by Khuller et al. [22]. These
problems are used to model networks of workstations and
grid computing. These data migration problems have also
been studied under the objective of minimizing the weighted
sum of the message arrival times by Gandhi et al. [23]. This
version of the message dissemination problem is also based
on the telephone communication mode.

The multimessage multicasting problem arises naturally
when solving large scientific problems via iterative methods
in a parallel or distributed computing environment (for
example, solving large sparse system of linear equations
using stationary iterative methods). Another application
arises when executing the most dynamic programming

procedures in a parallel or distributed computing environ-
ment. Dynamic programming is widely used in bioinfor-
matics, operations research, computer science, etc. In
information systems, these problems arise naturally when
multicasting information over a b-channel ad hoc wireless
communication network. Other applications include sorting,
sparse matrix multiplication, discrete Fourier transform,
molecular dynamics [24], etc. Message-routing problems
under the multicasting communication primitive arise in
sensor networks, which are simply static or slow-changing ad
hoc wireless networks. This type of networks has received
considerable attention because of applications in battlefields,
emergency disaster relief, etc. Ad hoc wireless networks are
suited for many different scenarios, including situations
where it is not economically viable to provide Internet or
Intranet wired communication. Other applications in high-
performance communication systems include voice and
video conferencing, operations on massive distributed data,
scientific applications and visualization, high-performance
supercomputing, medical imaging, etc. The need to deliver
multidestination (multicasting) messages is expected to
rapidly increase in the near future. The nonpreemptive
scheduling mode in the CDMD problem has additional
applications when the cost of preemptions is large, or when
continuous processing is required, for example, in online
computation or when the messages are video clips that need
to be viewed as they arrive because the device receiving the
video clips has limited storage. A rough version of the

algorithms presented in this paper appears in [25].
Gonzalez [1] shows that even restricted versions

of the multimessage multicasting ðMMCÞ problem are
NP-complete, but schedules with a TCT of at most d2 can
be constructed in OðqÞ time. This bound is best possible in
the sense that for all d � 1, there are problem instances
that require d2 communication time [1]. When forwarding
is allowed, the multimessage multicasting ðMMCÞ pro-
blem remains NP-complete, but schedules with a TCT of
at most 2d can be constructed in Oðqðminfq; n2g þ n lognÞ
time [2].

4 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008

3 APPROXIMATION ALGORITHM FOR THE

CDMD PROBLEM

We present an efficient algorithm that, for every instance of
the CDMD problem, constructs a schedule with a TCT of at
most 3:5d. We begin by defining restricted versions of the
CDMD problem, which will be instrumental for generating
suboptimal solutions, and outline our approach to generate
such solutions.

The single-destination CDMD (CDMDSD) problem is the
CDMD such that every processor sends each of its
messages to only one destination. The CDMDMSD

problem is a slight variation of the CDMDSD problem,
where every processor has at most one multidestination
message (one multicast) and the length of the message is
more than d=2. Because of this last property, all the
multidestination messages (originating at all the proces-
sors) have different destinations. When we refer to the
parameters of an instance of the CDMDSD or CDMDMSD

problems, we use s0, r0, d0, n0, m0, and q0 to refer to the
corresponding parameters of the CDMD problem. As in
the case of the CDMD problem, the length of the multicast
is included once in the summation of the length of the
messages emanating from each processor. This is used in
the computation of s0. The reason being is that the
multicasts may be sent concurrently.

Let us begin by trying to apply the approach used to
construct schedules with a TCT of at most 2d for the MMc

when forwarding is allowed. The idea is to forward
messages to other processors so that we are left with an
instance of the CDMDSD problem in which every processor
must send messages with a total length of at most d. This
may be achievable by a forwarding schedule with a TCT of
at most d. A schedule with a TCT of at most 2d1 can be
constructed for any instance of the CDMDSD problem in
polynomial time by the algorithm given in Section 3.2. This
results in a schedule for the whole problem with a TCT of at
most 3d. However, this approach is not always possible,
and just determining whether or not this approach is
feasible for a problem instance is an NP-complete problem
in the strong sense because the construction of the
CDMDSD problem instance involves solving a bin-packing
problem instance.

We need to modify the approach that we just discussed.
In Section 3.1, we show that given any instance I of the
CDMD problem of degree d, it is always possible to
construct an instance fðIÞ of the CDMDMSD problem with
s0 � 1:5d and r0 � d. The algorithm takes OðnqÞ time and
consists of a set of message multicasting forwarding
operations. We show that this forwarding operation can
be carried out by a schedule S with a TCT of d. Then, in
Section 3.2, we show how to construct a schedule T with a
TCT of at most s0 þ r0 for every instance of the CDMDMSD

problem. Schedule S, followed by schedule T for the
instance fðIÞ of the CDMDMSD, is a schedule for instance I
of the CDMD problem with a TCT of at most 3:5d
(schedule S has a TCT of at most d and schedule T has a
TCT of at most s0 þ r0 � 2:5d). We state this result in the

following theorem whose proof follows from Theorems 3.2
and 3.3.

Theorem 3.1. Given any instance I of the CDMD problem, the
procedure just described generates a schedule with a TCT of at
most 3:5d in OðnqÞ time.

3.1 Transformation from the CDMD to the
CDMDMSD Problem

Given any instance of the CDMD problem, we define the
following terms. For every processor i, we define the set of
message-destination pairs (md-pairs for short) of the form
(message-id, processor index) that contains one entry for
each message that processor i has to send to a different
destination. Table 3 displays all the md-pairs originating at
each processor for the instance given in Example 1.1. We
corrupt our notation and refer to the length of the md-pair to
mean the length of the message associated with the md-pair.
For example, md-pairs ðA; 2Þ and ðA; 5Þ have length 35, and
md-pair ðB; 4Þ has length 2. Two md-pairs are said to be
equivalent if they correspond to the same message, and
nonequivalent otherwise. For example, md-pairs ðA; 2Þ and
ðA; 5Þ are equivalent, but md-pairs ðA; 2Þ and ðB; 4Þ are not.

An md-pair is labeled long if it has a length greater than
d=2, and short otherwise. In our example, all the md-pairs
are short, except for ðA; 2Þ, ðA; 5Þ, ðE; 1Þ, ðH; 7Þ, ðS; 3Þ, and
ðS; 6Þ. Each processor may hold zero or more long md-pairs,
but will not hold two nonequivalent long md-pairs;
otherwise, the definition of d is contradicted. Though any
processor may have two or more equivalent long md-pairs.
However, the total number of long md-pairs is at most n. If
there were more than n long md-pairs, then at least two of
the md-pairs will have the same processor destination, and
that processor will receive messages with a total length
greater than d, which contradicts the definition of d. A
processor with one or more long md-pairs is said to be of

GONZALEZ: CONTINUOUS DELIVERY MESSAGE DISSEMINATION PROBLEMS UNDER THE MULTICASTING COMMUNICATION MODE 5

1. Note that for the MMC problem with forwarding, one can construct a
schedule with a TCT of at most d because all the messages are of equal
length.

TABLE 3
The md-Pairs at Each Processor for Example 1.1

type 1; otherwise, it is of type 0. The total length (or t-length) of
a set of md-pairs S is the sum of the length of the md-pairs
in S. The restricted length (or r-length) of a set of md-pairs
S is the same as the t-length, except that the equivalent long
md-pairs will be included in the total r-length once, rather
than once for each md-pair. The left portion of Table 4 lists
the t-length and the r-length of md-pairs to be sent by the
processors for the instance in Example 1.1.

A processor type i, for 0 � i � 1, is said to be light (L),
full (F), and heavy (H) if the r-length of the md-pairs that
it must send is in the range ½0; dÞ, ½d; 1:5d�, and ð1:5d;1Þ,
respectively. We refer to processors as being of type Li,
Fi, and Hi to mean a type i processor, and L, F , and H

indicate that the processor is light, full, or heavy. The left
portion of Table 4 lists the type of the processors in our
example. In what follows, we corrupt our notation and
say that “an md-pair is being forwarded from processor i
to processor j” to mean that the message corresponding
to the md-pair is being forwarded from processor i to
processor j, and that the md-pair is moved from
processor i to processor j.

We perform the following transformation, which we call
LH, on a processor l of type L0 or L1, and on a processor h
of type H0, or H1, as long as such processors exist.

. [Operation 1] If processor h is of type H1 and the
md-pairs in processor l have a total r-length of at
most 0:5d, then forward a long md-pair from
processor h to processor l.

. [Operation 2] As long as processor l remains light,
forward a short md-pair from processor h to
processor l.

Applying transformation LH to processor 1 of type H1

and processor 4 of type L0 results in the forwarding of the
following md-pairs: ðA; 5Þ, ðB; 4Þ, and ðC; 6Þ. Operation 1
forwards the first md-pair, and operation 2 forwards the
other two. The application of transformation LH to
processor 7 of type H1 and processor 5 of type L0

forwards the following md-pairs: ðR; 2Þ and ðR; 5Þ. Fig. 1b
shows the resulting problem instance (which we call the
resulting instance), and the right portion of Table 4 gives
the t-length, r-length, and type of each processor. The
message multicasts include only those represented by

long md-pairs. For example, the md-pairs in processor 1
for messages C will not be treated as one multicast, they
will be treated as two different messages to be transmitted
at different times. On the other hand, the two md-pairs
for message S being sent from processor 7 will be treated
as a multicast. Note that in the resulting problem instance,
there are two md-pairs (ðB; 4Þ in P4 and ðR; 5Þ in P5)
whose message needs to be sent to the processor in which
they reside! Obviously, one does not need to send those
messages, and the two md-pairs can be eliminated. In
addition, message C does not really need to be sent from
processor 1 to processor 4 since processor 4 already holds
it because message C was forwarded to processor 4. This
same situation arises in other problem instances, but the
worst case values for s0, r0, and d0 do not change when we
eliminate these self-loops.

The possible transitions for the heavy processors,
resulting from the application of transformation LH, are
shown in Fig. 2. In the following lemma, we establish the
possible transitions for the processors when applying
transformation LH.

Lemma 3.1. Transformation LH when applied to a processor l of
type L0 or L1 and to a processor h of type H0 or H1 forwards a
set of md-pairs from processor h to processor l in such a way
that processor l becomes a full processor and processor h

remains heavy or becomes a full or light processor.

Proof. The first case is when processor h is of type H1 and

processor l has md-pairs with an r-length of at most 0:5d.

6 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008

TABLE 4
Type, t-Length, and r-Length of md-Pairs

Fig. 2. Edges represent possible transitions resulting from the

application of transformation LH to a processor of type H0 or H1.

In this case, Operation 1 forwards a long md-pair

from processor h to processor l. If processor l remains

light, then Operation 2 forwards short md-pairs from

processor h to processor l until it becomes a full processor.

The total r-length of the forwarded md-pairs is at

most 1:5d. Since the initial r-length of the h processor is

more than 1:5d, it follows that processor l will become a

full processor. Processor h remains of type H1 or becomes

H0, full ðF1; F0Þ, or light ðL1; L0Þ.
The second case is when processor h is of type H0 and

processor l has md-pairs with an r-length of at most 0:5d.

In this case, only Operation 2 is applied and forwards
short md-pairs for processor h to processor l until

processor l becomes full. The total r-length of the

forwarded md-pairs is at most 1:5d. Since processor h

has initially short md-pairs with a length of more than

1:5d, it follows that processor l will become full. On the

other hand, processor h may remain heavy ðH0Þ or

becomes full ðF0Þ or light ðL1; L0Þ.
The last case is when processor l has md-pairs with

an r-length of more than 0:5d. In this case, only
Operation 2 is applied and forwards short md-pairs
from processor h to processor l until processor l becomes
full. The total r-length of the forwarded md-pairs is at
most d. Since the h processor has initially short md-pairs
with a total r-length of more than 0:5d, it follows that
processor l will become full. On the other hand,
processor h may remain heavy ðH1; h0Þ or becomes full
ðF1; F0Þ or light ðL1; L0Þ.

This concludes the proof of the lemma. tu

Lemma 3.1 shows that every time that we apply
transformation LH, the total number of full processors
increases. Since once a processor becomes a full processor
after the application of transformation LH, it remains a full
processor throughout the remaining transformations. There-
fore, the procedure terminates after at most n iterations.

We claim that at the time transformation LH is no longer
applicable, every processor will be full or light; that is, none
of the processors will be heavy. This follows from the fact
that if there is at least one heavy processor and the
remaining processors are heavy or full, then the length of
the md-pairs in each of these processors will be at least d,
and at least 1:5d for the heavy processors. It then follows
that the total length of the md-pairs is more than dn.
However, since every md-pair is to be received by a
processor, this means that at least one processor must
receive messages with a total length greater than d,
contradicting the fact that every processor must receive
md-pairs with a total length of at most d. Thus, it must be
that when transformation LH can no longer be applied, all
the processors will be light or full, and the resulting
instance is an instance of the CDMDMSD problem with s0 �
1:5d and r0 � d.

Theorem 3.2. When transformation LH is no longer applicable
to an instance of the CDMD problem, the resulting instance is
an instance of the CDMDMSD problem, where s0 � 1:5d and
r0 � d. Furthermore, all the message forwarding can be carried
out by a schedule with a TCT of at most d. The time complexity
for the procedure is Oðq0Þ.

Proof. The proof for the first statement follows from the
above discussion. We now show that the forwarding can
be carried out by a schedule with a TCT of d. Every
processor that forwards messages will only forward
messages that are in its initial hold set. All the messages
sent to more than one destination will be multicasted.
Therefore, the total forwarding time for each processor is
at most d. Processors that receive forwarded messages
receive the messages from exactly one processor. There-
fore, these processors receive the messages at some
points in time from time zero to time d. It then follows
that all the message forwarding can be carried out by a
schedule with a TCT of at most d. A careful implementa-
tion of the above transformation can be shown to take
time proportional to q0, which is the total number of
messages received by the processors. One may imple-
ment the above procedure by accessing each md-pair a
constant number of times. tu

3.2 Algorithms for CDMDSD and CDMDMSD

First, we discuss our algorithm for the CDMDSD problem
and, then, the one for the CDMDMSD problem. A
schedule for an instance of the CDMDSD problem is
constructed as follows: Whenever a processor j finishes
receiving a message at some time t (or at time zero, and
it has not started receiving messages), we search for a
processor that is not currently sending any messages and
holds a message whose destination is processor j that has
not yet been sent. If such processor exists, for example,
processor k, the message is sent without interruption
from processor k to processor j starting at time t. On the
other hand, if no such processor can be identified, then
processor j is not scheduled to receive a message starting
at this time. In this case, it must be that all the processors
that hold an unsent message whose destination is
processor j are sending messages to other processors.
Whenever a processor finishes sending a message, we
will check again for a pair of processors with the above
properties.

We claim that the communication schedule constructed by
the above algorithm has a TCT of at most s0 þ r0; remember
that s0 and r0 are the total length of the messages any processor
may send and receive, respectively. The proof of this fact is
simple. Let j be a processor that receives a message at the
latest time t. In case of ties, select any processor that satisfies
the property. Let us call this last message X. Let k be the
processor that sent that last message X to processor j (see
Fig. 3). Let us now examine processor j from time zero to
time t. Clearly, at all times, it is either busy receiving messages
(darker areas in Fig. 3) or idle [not receiving any messages
(shaded regions in Fig. 3)]. Clearly, processor j cannot receive
messages for more than r0 time units. When processor j is idle
(not receiving any messages), it must have been that some
other processor must have been receiving a message that
processor k was sending. Otherwise, it would contradict the
way we construct our communication schedules because
message X could have been sent to processor j at that time.
Therefore, the total time processor j is idle is at most s0, and the
schedule constructed by the algorithm has a TCT of at most
s0 þ r0.

GONZALEZ: CONTINUOUS DELIVERY MESSAGE DISSEMINATION PROBLEMS UNDER THE MULTICASTING COMMUNICATION MODE 7

Before we discuss implementation details, we apply the
following preprocessing procedure to reduce the overall
time complexity of our algorithm. Assume that the instance
of the CDMDSD is such that there is at most one message
with the same origin and destination. If this is not the case,
we can combine all the messages with the same origin and
destination into one. Once we generate a schedule for the
resulting instance, it is simple to construct a schedule for the
original problem instance. In the resulting instance, each
processor sends at most n0 � 1 messages, each to a different
processor. The transformation can be easily implemented to
take Oðq0Þ time.

We represent each md-pair by the tuple ði; j; lÞ (meaning:
send the message from processor i to processor j for l time
units). The tuple contains other entries to be used when
storing the tuple in a list or heap. For 1 � i � n0 and
1 � j � n0, if processor i sends a message to processor j, we
add the tuple ði; j; lÞ to F-listðiÞ, and T-listðjÞ, where the
F-listðiÞ has all tuples representing messages with origin
processor i, and T-listðjÞ has all tuples representing
messages with destination processor j. The lists T-rtsðjÞ
for 1 � j � n0 will contain all the tuples ði; j; lÞ for md-pairs
that represent messages that are currently ready to be sent
to processor j because processor i is not currently sending
any message. These T-rtsðjÞ lists will be initialized in the
first part of the procedure to include all tuples representing
all the md-pairs. The heap called next-to-finish contains the
tuples ði; j; l; tÞ corresponding to the md-pairs representing
messages that are currently being transmitted. The heap is a
min-heap with respect to the value of t, which is the
time when the transmission of the message represented
the md-pair corresponding to the tuple will finish. The
algorithm operates as follows:

Procedure LS

for each tuple ði; j; lÞ, add ði; j; lÞ to list T-rtsðjÞ endfor
current:time ¼ 0

for j ¼ 1 to n0 do

Invoke Procedure Process-T-rtsðjÞ //the procedure

is defined below//
endfor

while the heap next-to-finish is not empty do

delete a tuple with minimum t value from next-to-finish

heap

let ði; j; l; tÞ be the tuple deleted

current:time ¼ t
add each tuple from F-LISTðiÞ to its corresponding

T-rts list

for each idle processor j such that T-rtsðjÞ is not

empty do

Invoke Procedure Process-T-rtsðjÞ
endfor

endwhile

End Procedure LS

Procedure Process-T-rtsðjÞ
let ði; j; l; tÞ be the first tuple in list T-rtsðjÞ
add to the next-to-finish heap the tuple
ði; j; l; current:timeþ lÞ

delete ði; j; lÞ from F-listðiÞ
delete ði; j; lÞ from T-listðjÞ
delete all the tuples from list T-rtsðjÞ
for each tuple ði; j0; l0Þ in F-listðiÞ and in T-rtsðj0Þ, delete

ði; j0; l0Þ from T-rtsðj0Þ
End Procedure Process-T-rtsðjÞ

The initialization phase inserts q0 tuples to the T-lists
and F-lists. This takes Oðq0Þ time. Every time procedure
Process-T-rts is executed, it takes Oðn0Þ, provided the lists
T-rtsðjÞ and T-listðjÞ are implemented as doubly linked lists
and enough pointers have been set to locate the tuples
in these lists. Whenever this procedure is executed,
one message represented by an md-pair will be scheduled.

The first loop in Procedure LS is executed n0 times, so, in
total, it takes Oðn0 logn0Þ time. The second loop is
executed q0 times, once for each message-destination pair.
The delete operation from the heap takes Oðlogn0Þ time. The
addition of the tuples to the list takes constant time, but it
may be repeated n0 times. The innermost while loop is
checked n0 times, but the check takes constant time. The
total number of times that Procedure Process-T-rts is
invoked is q0. Therefore, the time complexity for the
second loop is Oðq0n0Þ time.

Theorem 3.3. Given any instance I of the CDMDSD problem,
the procedure LS described above generates a schedule with a
TCT of at most s0 þ r0. Furthermore, the time complexity
is Oðn0q0Þ.

Proof. By the above discussion. tu

8 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008

Fig. 3. Type of schedule constructed by Procedure LS. The vertical axis denotes processors, and the horizontal one denotes time.

The CDMDSD problem can be viewed as the problem of
minimizing the makespan for scheduling a set of jobs without
preemptions in an open shop. In fact, a scheduling algorithm
is a version of the list schedule developed for the open-shop
problem by Racsmány. The analysis is similar to the one
developed by Shmoys et al. [26] for open-shop list schedules.

We claim that the above procedure also works for the
CDMDMSD, provided that at time zero, one sends all the
multidestination messages. Since all of them have different
destinations, there will be no conflict. Once we do this, we
continue (perhaps scheduling at time zero on idle proces-
sors) scheduling the tasks as Procedure LS. It is simple to
prove the following result:

Theorem 3.4. Given any instance I of the CDMDMSD problem,
the modified version of procedure LS described above generates
a schedule with a TCT of at most s0 þ r0 in Oðn0q0Þ time.

Fig. 4 depicts a schedule generated by procedure LH for
the resulting problem instance of the instance given in
Example 1.1 (Fig. 1b with the edges for md-pairs ðB; 4Þ and
ðR; 5Þ deleted, but keeping the edge for the md-pair ðC; 4Þ in
P1). The portions of the schedule with multiple horizontal
lines correspond to periods of idle time; that is, the
processors are not receiving messages. The pairs inside
square brackets are not md-pairs. Their first component is
the message, and the second one is the processor
where it came from. For example, the pair ½E; 2� represents
the md-pair ðE; 1Þ in processor 2. Note that at any given
time, all the messages being transmitted originate at
different processors. The only exception is at time zero
when large messages are being multicasted (message S sent
to processors 3 and 6). Note that in the schedule given in
Fig. 4, you will find blocks of time where two pairs are
scheduled (for example, processors 4 and 5 at time zero).
These pairs represent messages that originate at the same
processor ðiÞ and have the same destination ðj 6¼ iÞ. In the
preprocessing procedure, they were combined into one.

4 DISCUSSION

We presented an approximation algorithm for the CDMD
problem over the n-processor single-port complete (or fully

connected) static network with the multicasting commu-

nication primitive. Our algorithm constructs a message-

routing schedule with a TCT of at most 3:5d for every

degree d problem instance, where d is the total length of the

messages that each processor may send (or receive).

Remember that d is a lower bound for the TCT of any

communication schedule. Therefore, the approximation

ratio of our algorithm is 3.5. Our algorithm takes OðnqÞ
time, where n is the number of processors and q is the total

number of message-destination pairs.

There remain several interesting open problems. The

first one is the development of an algorithm for the

CDMDMSD problem with an approximation ratio smaller

than s0 þ r0 (Theorem 3.4). A large class of greedy heuristics

for the CDMDMSD problem can be shown to have the same

approximation ratio as the modified procedure LS used in

Theorem 3.4. Any approximation algorithm for the

CDMDSD problem is also an approximation for the

minimum makespan nonpreemptive open-shop problem.

Shmoys et al. [26] suggest a greedy algorithm for the open-

shop problem where a task of a job with the largest

remaining time is scheduled first. However, this and other

variations have been shown to have the same approxima-

tion ratio of 2. Williamson et al. [27] have shown that it is

NP-hard to approximate the makespan nonpreemptive

open-shop problem within 5
4 . However, this result holds

when the makespan of an optimal schedule is 4. It may

be possible to asymptotically approximate the makespan

open-shop problem below 5
4 without implying that

P ¼ NP .
Our approximation algorithms for the CDMD, as well as

the multimessage multicasting problems, fall into the same

pattern. Perform a set of message-forwarding operations,

and then, solve optimally or suboptimally the resulting

restricted routing problem. It is not clear whether a different

approach can be used to generate equivalent approximation

algorithms. This is an intriguing open problem. If, indeed, it

is possible to do so, it might provide the key to generate

closer to optimal solutions to a large class of message

dissemination problems.

GONZALEZ: CONTINUOUS DELIVERY MESSAGE DISSEMINATION PROBLEMS UNDER THE MULTICASTING COMMUNICATION MODE 9

Fig. 4. Schedule for the resulting instance constructed from Example 1.1.

REFERENCES

[1] T.F. Gonzalez, “Complexity and Approximations for Multimes-
sage Multicasting,” J. Parallel and Distributed Computing, vol. 55,
no. 2, pp. 215-235, 1998.

[2] T.F. Gonzalez, “Simple Multimessage Multicasting Approxima-
tion Algorithms with Forwarding,” Algorithmica, vol. 29,
pp. 511-533, 2001.

[3] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby,
“Efficient Algorithms for All-to-All Communications in Multiport
Message-Passing Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 8, no. 11, pp. 1143-1156, 1997.

[4] A. Goldman, J.G. Peters, and D. Trystram, “Exchanging Messages
of Different Sizes,” J. Parallel and Distributed Computing, vol. 66,
pp. 1-18, 2006.

[5] S. Ranka, R.V. Shankar, and K.A. Alsabti, “Many-to-Many
Personalized Communication with Bounded Traffic,” Proc. Fifth
Symp. the Frontiers of Massively Parallel Computation (Frontiers ’95),
pp. 20-27, 1995.

[6] Y.-J. Suh and K.G. Shin, “All-to-All Personalized Communication
in Multidimensional Torus and Mesh Networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 12, no. 1, pp. 38-55, 2001.

[7] S. Ranka, J.-C. Wang, and G.C. Fox, “Static and Run-time
Algorithms for All-to-Many Personalized Communications on
Permutation Networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 5, no. 12, pp. 1266-1274, Dec. 1994.

[8] E.J. Coffman Jr., M.R. Garey, D.S. Johnson, and A.S. LaPaugh,
“Scheduling File Transfers in Distributed Networks,” SIAM
J. Computing, vol. 14, no. 3, pp. 744-780, 1985.

[9] J. Whitehead, “The Complexity of File Transfer Scheduling with
Forwarding,” SIAM J. Computing, vol. 19, no. 2, pp. 222-245, 1990.

[10] H.A. Choi and S.L. Hakimi, “Data Transfers in Networks,”
Algorithmica, vol. 3, pp. 223-245, 1988.

[11] B. Hajek and G. Sasaki, “Link Scheduling in Polynomial Time,”
IEEE Trans. Information Theory, vol. 34, no. 5, pp. 910-917, 1988.

[12] I.S. Gopal, G. Bongiovanni, M.A. Bonuccelli, D.T. Tang, and
C.K. Wong, “An Optimal Switching Algorithm for Multibeam
Satellite Systems with Variable Band Width Beams,” IEEE
Trans. Comm., vol. 30, no. 11, pp. 2475-2481, 1982.

[13] P.I. Rivera-Vega, R. Varadarajan, and S.B. Navathe, “Scheduling
File Transfers in Fully Connected Networks,” Networks, vol. 22,
pp. 563-588, 1992.

[14] J. Hall, J. Hartline, A.R. Karlin, J. Saia, and J. Wilkes,
“On Algorithms for Efficient Data Migration,” Proc. 12th Ann.
ACM-SIAM Symp. Discrete Algorithms (SODA ’01), pp. 620-629,
2001.

[15] T.F. Gonzalez, “An Efficient Algorithm for Gossiping in the
Multicasting Communication Environment,” IEEE Trans. Parallel
and Distributed Systems, vol. 14, no. 7, pp. 701-708, July 2003.

[16] T.F. Gonzalez, “Multimessage Multicasting,” Proc. Irregular ’96,
pp. 217-228, 1996.

[17] T.F. Gonzalez, “Distributed Multimessage Multicasting,” J. Inter-
connection Networks, vol. 1, no. 4, pp. 303-315, 2000.

[18] T.F. Gonzalez, “Message Dissemination Using Modern Com-
munication Primitives,” Handbook Parallel Computing: Models,
Algorithms, and Applications, S. Rajasekaran and J. Reif, eds.,
Chapman & Hall/CRC, chapter 36, 2008.

[19] H. Shen, “Efficient Multiple Multicasting in Hypercubes,”
J. Systems Architecture, vol. 43, no. 9, pp. 655-662, 1997.

[20] D. Thaker and G. Rouskas, “Multi-Destination Communication in
Broadcast WDM Networks: A Survey,” Optical Networks, vol. 3,
no. 1, pp. 34-44, 2002.

[21] S. Khuller, Y.-A. Kim, and Y-C. Wan, “Algorithms for Data
Migration with Cloning,” SIAM J. Computing, vol. 33, no. 2,
pp. 448-461, 2004.

[22] S. Khuller, Y.-A. Kim, and Y.-C. Wan, “Broadcasting on Networks
of Workstations,” Proc. 17th ACM Symp. Parallelism in Algorithms
and Architectures (SPAA), 2005.

[23] R. Gandhi, M.M. Halldorsson, M. Kortsarz, and H. Shachnai,
“Improved Results for Data Migration and Open Shop
Scheduling,” ACM Trans. Algorithms, vol. 2, no. 1, pp. 116-129,
2006.

[24] Y.S. Hwang, R. Das, J. Saltz, M. Hodoscek, and B. Brooks,
“Parallelizing Molecular Dynamics Programs for Distributed
Memory Machines,” IEEE Comput. Sci. Eng., vol. 2, no. 2,
pp. 18-29, 1995.

[25] T.F. Gonzalez, “Continuous Message Dissemination under the
Multicasting Mode,” Proc. 18th IASTED Int’l Conf. Parallel and
Distributed Computing and Systems (PDCS), 2006.

[26] D.B. Shmoys, C. Stein, and J. Wein, “Improved Approximation
Algorithms for Shop Scheduling Problems,” SIAM J. Computing,
vol. 23, pp. 617-632, 1994.

[27] D.P. Williamson, L.A. Hall, J.A. Hoogeveen, C.A.J. Hurkens,
J.K. Lenstra, S.V. Sevast’janov, and D.B. Shmoys, “Short Shop
Schedules,” Operations Research, vol. 45, no. 2, pp. 288-294,
1997.

Teofilo F. Gonzalez received the BSc degree in
computer science from the Instituto Tecnologico
de Monterrey, Monterrey, Mexico (1972) and the
PhD degree in computer science from the
University of Minnesota, Minneapolis (1975).
He is currently a professor of computer science
at the University of California, Santa Barbara.
His research activity has concentrated on the
development of efficient exact and approxima-
tion algorithms for problems in several areas,

including job scheduling, message dissemination in parallel and
distributed systems, CAD/VLSI placement and routing, and graph
applications. His current research interests include multimessage
multicasting algorithms, routing algorithms, and approximation algo-
rithms. He has served on the editorial board of several publications and
as program committee chair for several conferences. He is the editor of
the Handbook of Approximation Algorithms and Metaheuristics (2007).
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

10 IEEE RANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 8, AUGUST 2008

