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Abstract

Given two simple polygons P and Q we study the problem of finding an optimal
geodesic bridge. Our problem differs from other versions of the problem where the bridge
is a Euclidean bridge. An Euclidean bridge corresponds to a straight line flyover-like
bridge, where as a geodesic bridge corresponds to finding a route for a ferry boat. The
objective in both of these problems is to find a bridge that minimizes the distance from
any point in P to any point in Q. We show that an optimal geodesic bridge always
exists between a set of O(n2) points on the boundary of the two polygons, where the
total number of vertices in the polygons is O(n). Using this critical property, we present
an algorithm that finds an optimal geodesic bridge (of minimum weight) in O(n2 log n)
time. Our algorithm uses as a subalgorithm a simpler O(n2 log n) time algorithm that
constructs an optimal geodesic bridge from a point to a polygon.

1 Introduction

We study the problem of finding good ways to connect two disjoint simple polygons that
minimize a given metric. For instance, the two polygons represent islands to be connected by
a bridge, the goal is to identify a point on each of the two polygons as the end points of the
bridge, such that the longest distance from any point on one island to any point on the other
is minimized. In cases where it is possible to have flyover-like bridges, the bridge is a straight
line between its two end points (immaterial of whether the two points are mutually visible or
not). In other cases, the bridge may need to stay outside the interiors of the two polygons.
E.g. if instead of a physical bridge, we intend to find a route for a ferry that connects the two
islands, the route would need to stay within the water region that separates the two islands.

Specifically, when joining the two disjoint polygons by a path from a point in one polygon
to a point in the other, the metric is the diameter of the now joined polygon. In this paper,
we study the variation where the path is geodesic and stays completely outside the interiors
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of the two polygons. Ref. [5] studies the case where the path connecting the two points is
Euclidean. Another version of the problem studied in Ref. [11] imposed additional restriction
of requiring the endpoints of the bridge to be mutually visible.

In this paper we present an algorithm for the geodesic-bridge problem that takes O(n2 log n)
time. We also present a simpler algorithm for the case when one of the polygons is a single
point.

Let P and Q be two disjoint polygons. We use ρ(X) to denote the compact region defined
by polygon X, and use δ(X) to denote the boundary of X. Note that ρ(X) ∩ δ(X) = δ(X).
Formally, for points p ∈ ρ(P ) and q ∈ ρ(Q) we define the weight of the bridge (p, q) as

gd(p, P )+gde(p, q)+gd(q, Q) = maxp′∈ρ(P ){gd(p′, p)}+gde(p, q)+maxq′∈ρ(Q){gd(q, q′)}, (1)

where gde(p, q) denotes the length of the shortest geodesic path from p ∈ ρ(P ) to q ∈ ρ(Q) that
lies completely on the boundary and outside the polygons P and Q, and gd(x, X) is the shortest
geodesic distance between x and the geodesic furthest neighbor of x in the polygon X (i.e.,
gd(x, X) = maxx′∈ρ(X){gd(x, x′)}, where gd(x, x′) is the shortest geodesic distance between x

and x′ without leaving polygon X). A pair (p, q) that minimizes the above expression is called
an optimal geodesic bridge. An optimal Euclidean bridge is defined similarly, but replacing in
Eq. 1 gde(p, q) by the Euclidean distance between points p and q, and was studied in Ref. [5].
We take the liberty of sometimes using gd(p, q) to denote the actual path (instead of just its
length) from p to q that defines the bridge.

2 Related Work

The problem of finding an optimal bridge connecting two convex polygons has been solved
to optimality. When the two polygons are convex, an optimal Euclidean bridge is also an
optimal geodesic bridge. The problem was first studied by Cai, Xu and Zhu [6] who devel-
oped an O(n2 log n) time algorithm for the case when the polygons are convex. They proved
that for this case the optimal bridge is between points on the boundary of the polygons. Fur-
thermore, such points are visible from each other. Because this problem is related to other
geometric problems (e.g. diameter problems, minimum separations problems, and minimum
spanning tree problems), much progress was made immediately after the problem was posed.
For the convex polygon case, different optimal (linear time) algorithms have been developed
independently by Bhattacharya and Benkoczi [4], Tan [10], and Kim and Shin [9]. The high-
dimensional version of the problem has been studied in Refs. [10, 12].

A 2-approximation algorithm, which finds a bridge with objective function value at most
twice that of the optimal one, for convex polygons is given in Ref. [6]. The bridge generated
by their algorithm is the one joining a closest pair of points between the two polygons. The
time complexity for finding the least distance between (the boundaries of) the two polygons
takes linear time, with respect to the total number of vertices of the two polygons, using the
algorithm by Amato reported in Ref. [2]. Note that this approximation algorithm always
generates a bridge whose endpoints are mutually visible. Ahn, Cheong, and Shin [1] present
a
√

2-approximation algorithm for convex polygons and show that their technique generalizes
to multidimensional space as long as P and Q are are convex regions.
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Bhosle and Gonzalez [5] showed that the end points of an optimal Euclidean bridge might
not be mutually visible when the polygons are not convex. They establish that an optimal
Euclidean bridge always exists such that its endpoints lie on the boundaries of the two poly-
gons. Using this critical property, they developed an algorithm to find an optimal Euclidean
bridge (of minimum weight) in O(n2 log n) time, where n denotes the total number of vertices
in the polygons P and Q. Note that an optimal bridge may touch a vertex of P or Q. But,
the geodesic furthest neighbors of the endpoints of an optimal bridge must be vertices in their
corresponding polygons. For the case when one of the polygons degenerates to a point the
Euclidean bridge can be constructed in O(n log n) time [5].

Kim and Shin [9] introduced the version of the problem where the bridges are restricted
to have their endpoints on the boundary of the polygons that are visible from each other. We
call this version of the problem the optimal v-bridge problem. Note that the optimal v-bridge
problem and the optimal bridge problem are identical when the polygons are convex; however,
Ref. [5] shows that these problems defined over simple (non-convex) polygons have different
solutions. This inequivalence holds even for rectilinear polygons [5]. The optimal v-bridge
problem for simple polygons has so far resisted linear time algorithms. Kim and Shin [9]
present a quadratic algorithm to solve this problem. Currently the fastest algorithm for the
exact solution of the problem is by Tan [11], which runs in O(n log3 n) time. This algorithm is
quite complex and it makes substantial use of a hierarchical structure that consists of segment
trees, range trees and persistent search trees, and a structure that supports dynamic ray
shooting and shortest path queries. A restricted version, where the input polygons are simple,
but rectilinear and the distance between points is measured by the Manhattan distance or L1

distance, can be solved in linear time using Wang’s algorithm reported in Ref. [13].
Kim and Shin [9] show that the approximation strategy given in Ref. [6] also applies to

the v-bridge problem when the polygons are not convex. Kim and Shin [9] raise the question
as to whether or not a better approximation algorithm exists for the Euclidean bridge and
v-bridge problems. Since a closest pair of points supports a valid v-bridge, an optimal v-bridge
between two polygons has weight less than or equal to the one between a closest pair of points
between the two polygons. It thus follows that an optimal v-bridge has total weight within a
factor of two times the weight of an optimal bridge between the two polygons. Furthermore,
Bhosle and Gonzalez [5] showed that the bound of two is asymptotically best possible.

Bhosle and Gonzalez [5] developed approximation schemes that given any positive integer
k construct a bridge with objective function value within a factor of 1 + 2

k+1
times that of

the optimal one. The approximation algorithms apply to both the versions of the problem
(Euclidean/geodesic bridges), and run in time O(kn log kn) time. A polynomial time approxi-
mation scheme that given any ǫ > 0 generates a bridge with objective function within a factor
of 1 + ǫ times the optimal one in O(kn log kn) time, where k = 2 ∗ ⌈ 1

log(1+ǫ)
⌉ is described in

Ref. [5]. These approximation algorithms introduce k artificial vertices on each line segment
and then find an optimal vertex bridge (which is one where both end points are restricted to
be the vertices of the input polygons).

3



3 Point To Polygon Geodesic Bridges

Before we present our algorithm for the point to polygon geodesic bridge problem we need to
identify a set of points on the boundary of the polygon called anchors and pseudo anchors.
Then we show that an optimal geodesic bridge must have an endpoint that is a vertex, anchor
or pseudo anchor of the polygon. Our algorithm uses this fact to narrow down the search for
finding an optimal bridge. A similar approach has been used for the Euclidean bridge problem
in [5], but the pseudo anchors for the geodesic bridge problem are not exactly the same as the
ones for the Euclidean bridge algorithm discussed in [5].

In Figure 1 the furthest neighbors of point q1 inside Q1 are points r and r′. The thick
dashed line segments indicate the furthest geodesic paths from q1 to r and the one from q1 to
r′. These paths is said to consist of a sequence of maximal line segments. As we traverse these
paths starting at point q1 the first vertex of the polygon that we visit is called the first-vertex
of the corresponding furthest point geodesic path. The line segment from q1 to the first-vertex
is called the first link. In the polygon Q1 in Figure 1, the vertices a and a′ are the first-vertices,
and the line segments (q1, a) and (q1, a

′) are called the corresponding first-links.
A point q on the boundary of Q is called an anchor if it is not a vertex of polygon Q, and

there are at least two different vertices that are the first-vertex of geodesic furthest paths for
q. In Figure 1 both q1 ∈ Q1 and q2 ∈ Q2 are anchors. However, point q3 ∈ Q3 is not an anchor
point because all the geodesic furthest paths for point q have the same first-vertex, which is
vertex a. Figure 2 illustrates an instance of the problem of finding an optimal geodesic bridge
from a point p to a polygon Q (defined by the solid lines). The geodesic furthest point of both
q5 and q6 is q4. The first-vertex of the point q5 is q2, and that of q6 is q7.

r′

a

q1

r r′

q2

q3a

r′′

r′

r

r

a′ aa′
a′′

Q1 Q2

Q3

Figure 1: Points q1 in Q1 and q2 in Q2 are anchors, but point q3 in Q3 is not an anchor.

In addition to any of the vertices and anchors of Q, points like q5 and q6 can also be the
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gd(q5, Q) = gd(q5, q4)

gd(q6, Q) = gd(q6, q4)

q1

q2

q3

q4

q6

Q
p

q5

q7

Figure 2: Geodesic Bridge from a Point to a Simple Polygon

end point at Q of an optimal geodesic bridge. Points of the type q5 are similar to the pseudo-
anchors defined for the Euclidean bridge problem in Ref. [5], and are defined as: the first point
of intersection of the line connecting point p to a vertex or anchor y of Q with the boundary of
Q. Note that though similar to the definition of the pseudo-anchors for the Euclidean bridge
problem, such pseudo-anchors for the geodesic bridge problem differ in that when traversing
the line (p, y) from p to y, in the geodesic bridge cases, the first point of intersection with Q

is a pseudo-anchor of Q where as in the Euclidean bridge version, the last intersection point
with Q was selected as a pseudo-anchor. Actually, if the line (p, y) intersects the polygon Q

multiple times, then we can show that none of the intersection points can support an optimal
geodesic bridge. This is because a pseudo-anchor of Q can support an optimal bridge only if
the vertex (y) of Q that induces the pseudo-anchor is its first vertex (the first vertex of Q on
the path to its geodesic furthest vertex of Q). Otherwise, a better bridge is possible by moving
the pseudo-anchor by a small distance along its edge. E.g. In Figure 2, the line (p, q7) would
intersect Q thrice. But q7 cannot be the first vertex of the first intersection point (because
they are not mutually visible). Among the other intersection points, q7 can be the first vertex
of only the last intersection point. However, by arguments similar to those in the proof of
Theorem 2 in Ref. [5], one can show that a geodesic bridge ending at such points can be
improved by moving the point by a slight distance in an appropriate direction along the edge.
Although we do not need to include the pseudo-anchors generated by these cases (multiple
points of intersection with the polygon), we keep them. This avoids the overhead of deleting
them, while keeping the asymptotic size of the set of pseudo-anchors the same (O(n2)).

Points of the type q6 had no significance in the Euclidean bride problem, but they are
important for the geodesic bridge problem. Also, these points are independent of the point
p, and are defined solely by the polygon Q. Below we formally define these two types of
pseudo-anchors.

Definition 3.1 External Pseudo Anchors: A point q on the boundary of Q that is not a vertex
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of the polygon nor an anchor point is called an external pseudo-anchor (induced by the point
p) of Q if there is a vertex or anchor y in Q such that q lies on the line (p, y), and it is the
first point on the boundary of Q hit by a ray originating at p in the direction (p, y). In other
words, q is the point closest to p among all intersection points between (p, y) and Q.

Definition 3.2 Internal Pseudo Anchors: A point q on the boundary of Q that is not a vertex
of the polygon nor an anchor point is called an internal pseudo-anchor of Q if there is a vertex
x in Q and a vertex or anchor y, also in Q, such that q lies on the line (x, y), and it is the
first point on the boundary of Q hit by a ray originating at x in the direction (x, y). In other
words, q is the point closest to x among all intersection points between (x, y) and Q.

For the geodesic bridge problem, the set of pseudo-anchors includes external and internal
pseudo anchors. In Figure 2, point q5 is an external pseudo anchor, while point q6 is an
internal pseudo anchor. It is easy to see that there are O(n2) internal pseudo-anchors that can
be computed in O(n2 log n) using ray-shooting techniques as discussed in Ref. [5]. Similarly,
the O(n) external pseudo-anchors can be computed in O(n log n) time.

We now state the following theorem related to the set of end points for the optimal geodesic
bridge from the point p to the simple polygon Q.

Theorem 3.1 There is an optimal geodesic bridge from point p to polygon Q whose end point
on Q is either a vertex, anchor, or pseudo-anchor from Q.

Proof: The proof uses the same arguments as the one for Theorem 2 in Ref. [5] for the Eu-
clidean bridge problem, but the main difference is the characterization of the set of candidate
points for an optimal bridge. Essentially, one can show that if the end point q of an optimal
geodesic bridge on polygon Q is not a vertex, anchor or pseudo-anchor of Q, then the bridge
obtained by moving q slightly along the edge (in an appropriate direction) has smaller weight
than the assumed optimal bridge (a contradiction). 2

Corollary 3.1 An optimal geodesic bridge from a point p to a simple polygon Q can be com-
puted in O(n2 log n) time.

Proof: The proof follows from the fact that the anchors and pseudo-anchors of Q can be
found in O(n2 log n) time. Furthermore, using the geodesic furthest site Voronoi diagram
reported in Ref. [3], the geodesic furthest point for each vertex, anchor or pseudo-anchor can
be found in O(logn) query time per point. The algorithm first constructs the shortest paths
tree of the point p to the set of O(n2) vertices, anchors and pseudo-anchors. The algorithm
reported in Ref. [7] can be used to build this shortest paths tree in O(n2 log n) time. For
each candidate bridge end point q that is either a vertex, anchor or pseudo-anchor of Q,
the algorithm computes the weight of the bridge as gde(p, q, Q) + gd(q, Q), where gde(p, q, Q)
denotes the weight of the geodesic shortest path from point p to point q in the presence of
polygon Q as an obstacle, and gd(q, Q) denotes the distance from q to its geodesic furthest
vertex in Q. A candidate end point which minimizes the bridge weight is selected as the final
solution. 2
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Algorithm Geodesic-Bridge(p,Q) given below outlines in detail our procedure to construct
an optimal geodesic bridge between a point p and polygon Q.

Procedure Geodesic-Bridge(p,Q): point p and simple polygon Q

Find all the anchors and pseudo anchors in Q;
Compute gd(q, Q), the length of a geodesic furthest path in Q for each point q that is a
vertex, anchor or pseudo-anchor in Q using the algorithm in [3];

Construct the shortest path tree rooted at p to the set of vertices, anchors
and pseudo anchors of Q using the algorithm in Ref. [7];

From the tree of shortest paths rooted at p compute the geodesic distance
gde(p, u, Q) from p to each point u that is a vertex, anchor or pseudo anchor
in Q in the presence of obstacle Q;

for every vertex u that is a vertex, anchor or pseudo anchor of Q do
Compute the length of the best geodesic bridge with an endpoint at u

(endpoint u has the minimum value for gde(p, u, Q) + gd(q, Q));
endfor
Return an optimal geodesic bridge;

End Procedure Geodesic-Bridge

3.1 Point To Polygon: Additional Bridge Properties

We now discuss some additional properties of the point-polygon version of the geodesic bridge
problem. Though these properties do not result in any improvement to the point-polygon
version, they are important for the two-polygon version of the problem as they can be used
to minimize recomputation.

Let (p, q) define an optimal geodesic bridge from point p to the polygon Q. On the geodesic
path from p to q, gde(p, q), let the second last vertex of gde(p, q) be q∗ (we say that the bridge
starts at p). I.e., (q∗, q) is the last edge of the geodesic path gde(p, q). Note that in some cases,
the point q∗ may be the same as the point p. In others, q∗ will be a vertex of the polygon P

or the polygon Q. By subpath optimality, we know that (q∗, q) defines an optimal geodesic
bridge from the point q∗ to the polygon Q. Also, the points q∗ and q are mutually visible
(otherwise, since gde(p, q) is a geodesic shortest path between p and q, q∗ could not have been
the second last vertex on the bridge). Bridges whose end points are mutually visible are called
visible bridges. E.g., (q∗, q) is a visible bridge. Finally, note that q∗ has to either be a vertex
of Q or be the same as the point p. This follows from the fact that a geodesic shortest path
bends only at vertices of Q, and not at arbitrary points in the plane.

Visible bridges between two simple polygons can be computed in O(n log3 n) time using
the algorithm reported by Tan in Ref. [11]. The same algorithm can be used for the point to
polygon problem when one of the polygons degenerates to a point. However, we use a simpler
algorithm for computing optimal visible bridges from a point to a polygon in O(n logn) time.
Let us now outline the algorithm.

The algorithm proceeds by computing the O(n) anchors of the polygon Q. As discussed
in Ref. [5], the anchor points of Q can be identified from the geodesic furthest site Voronoi
diagram which can be computed in O(n log n) time using the algorithm in Ref. [3]. For
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the visible bridge problem, we need to consider only the vertices and anchors of Q that are
visible from p and the external pseudo-anchors induced by lines connecting the point p to the
vertices and anchors of Q, all of which can be found in O(n logn) total time. Now our set
of candidate bridge end points on the polygon Q contains only O(n) points, and using the
techniques described in the proof of Corollary 3.1, the optimal visible bridge can be found in
O(n log n) time. Note that an optimal visible bridge may not be an optimal geodesic bridge.

The algorithm for finding an optimal visible bridge from a point to a polygon can be
combined with the fact that (q∗, q) (here, q∗ is the second last vertex of the optimal geodesic
bridge (p, q)) is an optimal visible bridge to provide a new algorithm for finding an optimal
geodesic bridge from a point to a simple polygon. The algorithm begins by precomputing a
set of n + 1 optimal visible bridges. The visible bridge to polygon Q originate at the point p,
and that at each vertex of Q. Note that these n + 1 points form our set of candidate second
last vertices of the bridges. Next, the shortest paths tree rooted at point p to all the vertices of
Q is constructed using the algorithm of Ref. [8] or Ref. [7]. This shortest paths tree provides
us with the geodesic distance from p to each candidate second last vertex of the bridge. Using
the precomputed value of the optimal visible bridge from a candidate second last vertex q∗ to
the polygon Q, and the geodesic distance from p to q∗, we can determine the weight of the
geodesic bridge which has q∗ as its second last vertex. Finally, the point q∗ which supports the
cheapest geodesic bridge defines the optimal geodesic bridge. Note that the time complexity
of this algorithm is O(n2 log n), which is the same as the previous one (Corollary 3.1). The
time complexity is dominated by the time required to precompute the optimal visible bridges
from all the candidate second last vertices to Q.

4 Geodesic Bridge Between Two Simple Polygons

We now discuss the more general version of the problem which asks to find an optimal geodesic
bridge between two simple polygons.

Figure 3 illustrates an instance of the problem of finding a geodesic bridge between two
simple polygons. The figure shows two geodesic bridges, (p1, q5) and (p4, q6), between the
polygons P and Q. In this figure, p4 and q6 are internal pseudo-anchors of P and Q respectively,
while q5 is an external pseudo-anchor of Q.

We define the anchors and internal pseudo-anchors in the same way as for the point to
polygon version of the problem. As in the Euclidean bridge case, the set of external psuedo
anchors now has O(n2) points as follows.

Definition 4.1 External Pseudo Anchors: A point p on the boundary of P that is not a
vertex of the polygon nor an anchor point is called an external pseudo-anchor of P if there is
a vertex x in P and a vertex or anchor y in Q such that p lies on the line (x, y), and it is the
first point on the boundary of P hit by a ray originating at y in the direction (y, x). In other
words, p is the point closest to y among all intersection points between (x, y) and P .

We define the external pseudo anchors for Q in a similar way, and use the term pseudo-
anchors to refer to the union of internal and external pseudo anchors.

Note that as in the case of the point to polygon geodesic bridge problem, if the line (x, y)
intersects P multiple times, none of the intersection points can support an optimal geodesic
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gd(q5, Q) = gd(q5, q4)

gd(q6, Q) = gd(q6, q4)

q3

q4
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q1

q2

q5

p3 p1

p2

p4

p5

gd(p4, P ) = gd(p4, p5)

p6

P

Figure 3: Geodesic Bridge Between Two Simple Polygons

bridge. However, to keep the algorithm simple, we include such points as well (moreover, the
asymptotic size of the set of pseudo-anchors remains O(n2) even after eliminating them).

We now state the following theorem that limits the set of points on the boundaries of the
two simple polygons P and Q that can possibly support an optimal geodesic bridge.

Theorem 4.1 There is an optimal geodesic bridge whose end points are vertices, anchors, or
pseudo-anchors from P and Q.

Proof: The proof is a generalization of the proof of Theorem 3.1. 2

The above theorem directly implies an Õ(n4) time algorithm for the optimal geodesic
bridge1. The algorithm begins by building the geodesic furthest-site Voronoi diagram for the
polygons P and Q. For each vertex, anchor or pseudo-anchor of P and Q, find their geodesic
furthest neighbors in their respective polygons. Next, for each vertex, anchor and pseudo-
anchor of P , build the shortest paths tree to the O(n2) vertices, anchors and pseudo-anchors
of Q. Finally, for a candidate pair (p, q), find the weight of the bridge with p and q as the
end points as gd(p, P ) + gde(p, q, P, Q) + gd(q, Q), where gde(p, q, P, Q) denotes the geodesic
distance between p and q in presence of polygonal obstacles P and Q, and select the pair with
the minimum weight. It is easy to verify that this algorithm runs in Õ(n4) time.

Lets go back to the properties discussed in Section 3.1 for the second last vertices of the
bridge. Let p∗ and q∗ be the second and second last vertices on the geodesic bridge defined by
points p ∈ P and q ∈ Q, when traversing the path gde(p, q) from the point p to the point q.
By previous arguments, (p∗, p) is an optimal visible bridge from the point p∗ to the polygon
P , and (q∗, q) is an optimal visible bridge from the point q∗ to Q. Note that in some cases,
the points p∗ and q∗ may overlap with the points p and/or q. Also, it may be possible for the
the point p∗ (resp. q∗) to lie on the polygon Q (resp. P ). In general, at least one of the two

1Õ(f(n)), where f(n) is a polynomial function in n, is used to denote O(f(n) · polylog(n))
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points p∗ and q∗ is a vertex. In the only case when neither of these is a vertex, the optimal
geodesic bridge (p, q) is in fact a visible bridge. The algorithm by Tan [11] finds an optimal
visible bridge in O(n log3 n) time.

4.1 Algorithm for Finding the Optimal Geodesic Bridge between

Two Simple Polygons

We are now ready to discuss our efficient algorithm for finding an optimal geodesic bridge
connecting two simple polygons P and Q in O(n2 log n) time.

The algorithm first precomputes an optimal visible bridge from each vertex in P and Q

to both the polygons P and Q. If r is a vertex of P or Q, let ν(r, X) denote an optimal
visible bridge from r to the polygon X, for X ∈ {P, Q}. When computing a visible bridge
from r to the polygon X, we consider only the pseudo-anchors induced by r and the vertices
and anchors of X. Furthermore, if a vertex or anchor of X is not visible from r (i.e. the line
segment connecting r to the vertex or anchor of the polygon X intersects the other polygon
before intersecting X), we ignore the pseudo-anchor for the simple reason that r cannot have
a visible bridge in conjunction with this pseudo-anchor. E.g. In Figure 3, the line segment
(p6, q2) intersects P before intersecting Q, and an optimal visible bridge from p6 to Q cannot
have this pseudo-anchor as the other end point of q6’s visible bridge. If none of the vertices
and anchors of the polygon X are visible from r, ν(r, X) is considered to have a weight of ∞.

Every optimal geodesic bridge falls into one of the following three categories.

1. One-link bridges: Such bridges have a single edge in the geodesic shortest path between
its end points.

2. Two-link bridges: Such bridges have two edges in the geodesic shortest path between its
end points.

3. Multi-link bridges: Such bridges have more than two edges in the geodesic shortest path
between its end points.

Clearly, one-link bridges are visible bridges, and an optimal visible bridge can be found in
O(n log3 n) time using Tan’s algorithm [11].

In the case of two-link bridges, let v be the vertex of P or Q where the two edges of gde(p, q)
meet. Note that in such a case, v = p∗ = q∗. By previous arguments, (v, p) and (v, q) define
the optimal visible bridges from the point v to the polygons P and Q respectively. There can
be at most 2n such bridges - one for each vertex of P and Q. Once we have precomputed
the optimal visible bridges from each vertex of P and Q to both the polygons P and Q, the
weights of these 2n bridges can be computed in constant time per vertex v. As discussed
earlier, an optimal visible bridge from a point to a polygon can be computed in O(n log n)
time. Consequently, the weights of all these O(n) bridges can be computed in O(n2 log n)
time.

Finally, the multi-link bridges have two distinct p∗ and q∗ points which are respectively
the second and second last vertices on gde(p, q) when traversing the path gde(p, q) from p to
q. Also, in such bridges, both p∗ and q∗ are vertices of P or Q. Given the set of 2n vertices,
we can compute the shortest geodesic paths between each of the O(n2) pairs of points in
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O(n2 log n) time using the algorithm reported in Ref. [7]. For each pair of candidate points
p∗ and q∗, the optimal bridge with these two points as the second and second last vertices is
the better of ν(p∗, P ) + gd(p∗, q∗, P, Q) + ν(q∗, Q) and ν(p∗, Q) + gd(p∗, q∗, P, Q) + ν(q∗, P ).

We state below the main theorem of this section.

Theorem 4.2 Given two simple polygons, P and Q, an optimal geodesic bridge connecting
the two polygons can be found in O(n2 log n) time.

Proof: Using the above arguments one can establish that the there are O(n2) candidate
bridges of the types one-link, two-link and multi-link. Furthermore, as we show above these
candidate brides can be computed in O(n2 log n) total time. Therefore, an optimal geodesic
bridge connecting the two simple polygons P and Q is one of these candidate bridges which
has the minimal total weight. 2

Below is given the algorithm Geodesic-Bridge(P,Q) which follows from the above dis-
cussion.

Procedure Geodesic-Bridge(P,Q): simple polygons P, Q

// One-link bridges are computed using Tan’s algorithm [11]
Let gb1 be an optimal v-bridge from P to Q;
// Two-link bridges
// Precomputation step
for every vertex u in P ∪Q do
vbPu ← weight of optimal v-Bridge(u, P );
vbQu ← weight of optimal v-Bridge(u, Q);

endfor
// Computation of two-link bridges
Let gb2 be the min cost two-link bridge among the two-link bridges with weight

gbu ← vbPu + vbQu for u ∈ P ∪Q

// Three-link bridges
// Precomputation step
for every vertex p∗ ∈ P and q∗ ∈ Q do
compute gde(p

∗, q∗, P, Q) and store it in gdep∗,q∗ using the algorithm in Ref. [7];
// Computation of three-link bridges
for every vertex p∗ ∈ P and q∗ ∈ Q do
define gbp∗,q∗ = min{vbPp∗ + gdep∗,q∗ + vbQq∗, vbQp∗ + gdep∗,q∗ + vbPq∗}

Choose the geodesic bridge with least weight among gb1, gb2, and gbp∗,q∗ for
every vertex p∗ ∈ P and q∗ ∈ Q

End Procedure Geodesic-Bridge

5 Concluding Remarks

In this paper, we have presented an efficient algorithm for finding an optimal geodesic bridge
connecting two simple polygons. This is the first polynomial time algorithm for this problem.
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Interestingly, the time bound of our algorithm, O(n2 log n), matches that of our algorithm for
finding an optimal Euclidean bridge connecting two simple polygons presented in Ref. [5].

We conjecture that it would be relatively easier to improve the time bound for the Eu-
clidean version of the problem than the geodesic version. We leave open the challenging
question of improving the O(n2 log n) time bound. Another interesting problem would be to
design o(n2)-time approximation algorithms for the geodesic bridge problem. Our algorithms
also apply when there are a constant number of obstacles between the two polygons.
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