i

113

NP-hard Shop Problems+

Teofilo Gonzalez, May 1979
CS~79-35

Department of Computer Science
The Pennsylvania State University
University Park, Pennsylvania 16802

1.Supported in part by National Science Foundation under Grant MCS-21092.




it

NP-hard Shop Problems+
by
Teofilo Gonzalez
Computer Science Department

The Pennsylvania State University
University Park, PA 16802

Abstract

The problem of preemptively (and nonpreemptively) scheduling a set
of n independent jobs on an m machine open shop, flow shop or job
shop is studied. It is shown that the problem of constructing optimal
mean finishing time preemptive and nonpreemptive schedules is NP-hard.
These problems are not only NP-hard in the strong sense, but remain NP-
hard even when all nonzero tasks have identical execution time require-
ments. These results will also apply to the case when the problem is to
construct an optimal finish time preemptive and nonpreemptive schedule
for a flow shop or a job shop. We also discuss the problem of con-

structing no wait schedules for these problems.

Key words: open shop, flow shop, job shop, preemptive and nonpreemptive

schedules, NP-complete problems, mean finishing time, finish time.

~l.Supported in part by National Science Foundation under Grant MCS-21092.




"

I. Introduction

There are n > 1 independent jobs (Jl, cens Jn) to be processed by
an m machine/processor (Pl, ooy Pm) shop. Each job Ji consists of
Qi tasks. The jth task of job Ji is referred to by Ty j and it is

]

to be processed by machine P ey for ti,j time units. For open shop
and flow shop problems, all job;Jconsist of m tasks and all tasks have
qi,j = j. The order in which tasks are executed in a flow shop and a job
shop is important, i.e., the j + 1lst task cannot be executed before the
jth task terminates. From the above discussion, it is simple to verify
that a flow shop is a special case of a job shop, and an open shop is a
flow shop in which the order of execution of tasks is not important. De-
tailed descriptions of these models as well as applications appear in [C],
{cMM], [GS1] and [G].

Let fi(S) represent the finishing time for job Ji in schedule S.
The finish time, ft(S), of a schedule S is max{fi(s)}. An optimal

finish time (OFT) schedule is one with the least finish time among all

feasible schedules. The mean finishing time, mft(S), of a schedule S

is Zfi(S)/n. An optimal mean finishing time (OMFT) schedule is one with

the least mean finishing time among all feasible schedules. In this paper
we restrict our attention to preemptive, nonpreemptive and no wait schedules.
In a nonpreemptive schedule, once a task begins execution on some machine

it must continue executing without interruption until the task has been
completed. Preemptive schedules allow the interruption of the execution

of a task, i.e., a task does not have to be executed continuously. A
schedule with no wait is one in which once a job starts execution it must
continue executing without interruption until the job has been terminated.

It should be clear that the set of all preemptive schedules includes all




nonpreemptive and no wait schedules. Also, the set of all nonpreemptive
schedules includes all no wait schedules. The reverse is obviously not
true.

In this paper we study the problem of comstructing OFT and OMFT
preemptive, nonpreemptive and no wait schedules for open shop, flow shop
and job shop problems in which all nonzero tasks have identical execution
time requirements. We show that it is unlikely that there exists an ef-
ficient algorithm to solve any of these problems, i.e., the problems belong
to the class of problems known as NP-complete. The interesting fact is
that if there exists an efficient algorithm to solve any of these problems
then there will exist an efficient algorithm to solve the more general cases

and many other well-known problems.

LIPS |

a', will be used as in P,aP to mean that problem

The operator, 19P5

P1 polynomially reduces to problem PZ' A problem P is NP-hard iff

1

satisfigbility a Pl' Problem Pl is said to be NP-complete iff it is NP-

hard and PleNP. A reader interested in more details about NP-complete

problems is referred to [K1l], [K2] and [C]. A problem Pl is NP-complete

in the strong sense iff it is NP-complete even when the input is presented

in wunary. 1In the context of scheduling theory this means that the sum
of all the input parameters to the problem is bounded by a polynomial on
n, which is usually the number of jobs or machines. The reader is referred
to [GJ] for more details. All strongly NP-complete problems are also NP-
complete but the reverse might not be true. For example, scheduling
independent jobs on two machines so as to minimize the finish time is
NP-hard but the problem is not strongly NP-hard unless P = NP.

Gonzalez and Sahni [GS1l] present a linear time algorithm to construct
OFT preemptive and nonpreemptive schedules for a two machine open shop.

The problem of obtaining an OFT nonpreemptive schedule is NP-hard when




there are more than two machines in the open shop [GS1] and in general

it is strongly NP-hard [L]. Efficient algorithms exist when the problem
is to construct OFT preemptive schedules [GS1l] [G]. These algorithms
will also construct OFT nonpreemptive schedules when all the nonzero
tasks have identical execution time requirements (see appendix II). 1In
section II it is shown that the problem of constructing OMFT preemptive
and nonpreemptive schedules for open shops is NP-hard even when the ex-
ecution time requirements for all nonzero tasks is identical.

Johnson [J] showed that OFT preemptive and nonpreemptive schedules
for a two machine flow shop can be constructed efficiently. However, when
there are more than two machines, the problems of constructing OFT pre-
emptive and nonpreemptive schedules is NP-hard in the strong sense [GJSe],
{Gs21, [LRB]. When there are two machines in the flow shop, the problem
of constructing an OMFT nonpreemptive schedule is strongly NP-hard
[GIJSe]. This result cannot be extended to preemptive schedules or to the
case when all nonzero tasks have equal execution times. In section IIT
it is shown that the problem of constructing OFT and OMFT preemptive
and nonpreemptive schedules for flow shops is NP-hard even when the ex-
ecution times of all nonzero tasks is identical.

Job shop scheduling problems are harder than flow shop problems. The
problem of constructing OFT preemptive and nonpreemptive schedules for
a two machine job shop is strongly NP-hard [GJSe], [GS2], [LRB]. Lenstra
and Rinnooy Kan [LR] have shown that the problem of constructing OFT non-
preemptive schedules for a three machine job shop in which all tasks have
equal execution times is NP-hard. OMFT nonpreemptive scheduling for two
machine job shops is NP-hard [GJSe]. 1In section III it is shown that the

problem of constructing OFT and OMFT preemptive and nonpreemptive




schedules for job shops in NP-hard even when the execution time of all

tasks is identical.

Our results also apply for the problem of constructing OFT

OMFT mno wait schedules.

and

These results are presented in section 1IV.

In order to prove our NP-complete results we make use of the fol-

lowing problem which is shown to be NP-complete in appendix I.

problem is closely related to a problem shown to be NP-complete in

(3, 4d)-graph coloration: Given an undirected graph G = (N,

in which all nodes are of degree exactly 4, does there exist three

sets of nodes (Sl,

3
S3) such that U §; = N and if {i, jleE
i=1

82,

node i and j are in different sets? 1

Since NP-complete problems are stated as language recognition

problems, we restate the OFT and OMFT problems mentioned above

follows:

LOMFT: Given an

t, .
1]

This

[GIst].
E)
disjoint

then

as

m processor, n Jjob open shop with task times

» 1 <j<m and 1 <1 <n and a number d, 1is there

a schedule with mft f.d?

FOMFT: Same

JOMFT: Same

as LOMFT but it refers to a flow shop problem.

as LOMFT but it refers to a job shop problem.

LOFT, FOFT and JOFT: Same as LOMFT, FOMFT and JOMFT but

the

problem is to determine whether there is a schedule with

ft <

d.

We should point out that if we show that these decision problems are NP-

complete then their corresponding optimization problems are NP-hard.

Sometimes it is necessary to distinguish between preemptive, nonpre-

emptive and no wait schedules, so we just prefix LOMFT, ..., JOFT with

the type of schedule being considered.




II. NP-hard open shop problems (OMFT)

Gonzalez and Sahni [GS1] present efficient algorithms to construct
OFT preemptive and nonpreemptive schedules for two machine open shop
problems. When there are more than two machines in the shop the problem
of obtaining an OFT nonpreemptive schedule is NP-hard [GS1] and for an
arbitrary number of machines it is NP-hard in the strong sense [L]. Ef-
ficient algorithms have been presented in [GS1] and [G] to comstruct OFT
preemptive schedules. These algorithms will also construct OFT nonpre-
emptive schedules for the case when all nonzero tasks are of equal length.
This will be shown in appendix II since it will be of use in lemma 1.

In this section it is shown that preemptive and nonpreemptive LOMFT
are NP-complete in the strong sense. These problems remain NP-complete
even when the length of all nonzero tasks is identical.

In our proof we make use of the (3, 4d)-graph coloration problem which

is shown to be NP-complete in appendix I.

Theorem 1: Preemptive LOMFT 1is NP-complete even when the length of all

nonzero tasks is identical.

Proof: The proof is in two lemmas. Lemma 1 shows that (3, 4d)-graph
coloration o preemptive LOMFT. Lemma 4 shows that preemptive LOMFT

is recognizable in nondeterministic polynomial time. 0

Corollary: Nonpreemptive LOMFT 1is NP-complete even when the length of

all nonzero tasks is identical.
Proof: Similar to lemmas 1 and 4. f

Lemma 1: (3, 4d)-graph coloration « preemptive LOMFT in which the length

of all nonzero tasks is identical.




Proof: Given any graph G = (N, E) which is an input to the (3, 4d)-
graph coloration problem, let us construct the following open shop problem,

0S, with n' = 95n + 5r jobs and m' = 25n + 5r processors, where r = |E|

and n |N|. Assume without loss of generality that N = {vl, Vo eees vn}

and E {el, €y wens er}.
The set of processors is partitioned into five levels. The set of

processors in level & is partitioned into edge processors

) and node processors (NPQ,l,q’ NPQ,Z,Q’

(Fg,10 EFn,20 *0 » Ela,r
ey NPQ,n,q) for qe{l, ..., 5}. The set of jobs is partitioned into nodef
edge jobs, node jobs and edge jobs. The edge jobs are introduced to simplify
the accounting of the mean flow time. The node jobs will guarantee that

a certain subset of node-edge jobs will be executed in the same time interval
and if two subsets of node-edge jobs execute in the same time interval then
the subset of vertices they represent in G have no edge in common. We

may assume without loss of generality that all nonzero tasks have unit

execution time requirements. The nonzero tasks for each job as well as

the number of jobs of each type will now be specified.

i) node-edge jobs: For each vertex vieN there are five jobs in

level £ (1 < % <5). These jobs will be referred to by NEJ?’Q for

i
1L<p<5, Let e, , e, , e, and e be the edges incident upon vertex
=Pz i i i i
1 2 3 4
vy Job NEJE’Q will have nonzero tasks to be executed by the edge pro-

cessors P, . P, . P, . P, . d by th d P
E'2,1)° E',1)° B&,i g g,q, 0 DY TE ROCE PTOCESSOT (o i p

ii) node jobs: For each vertex viEN there are 14 jobs in each level

2 (1 < & <5). These jobs will be referred to by NJE’Q for pe{l, ..., 14}.

Job NJE’Q will have a nonzero task to be executed by each of the node

processors in level £, i.e., by processors NPK,i,l’ ey Npl,i,S'

iii) edge jobs: These jobs have nonzero tasks in all 5 levels. For

each edge ejeE, there are five jobs which will be referred to by EJ? for




pe{l,..., 5} . EJ§ has a nonzero task to be executed by the jth edge

processor in each level, i.e., by processors EPQ i <R <!
9

The value for d is 10 . We now show that the above open shop
problem has a preemptive schedule, S , with mft(S) <10 iff G 1is
three colorable.

a) If G 1is three colorable then OS has a schedule, S , with
mft(S) <10 .

We prove this part by showing that there exists a schedule, S ,
for open shop O0S with mft(S) < 10 when G is three colorable. Since
G dis three colorable we can partition the set of nodes N into sets

S

1’ S2 and S3 in such a way that if \ and VjESk then {vi,vj}¢E.

First of all the set of jobs is partitioned into sets Al’ A2 and

S and S. . Then it is shown that each of these

A using sets Sl, 2 3

3
sets uses the m' processors in the shop for five time units. This
together with lemma A.1l, shows the existance of a schedule S for open

shop 0S5 with mft(S) < 10 .

First, let us define the following sets of jobs which will be used

to define sets Al’ A2 and A3 . For 1<k<3

T={Jp’2|l<£<‘% 1<p<5 and v.eS }

NE k NE i -7 =" =7 = ik
and _T, = {_JP | e, is not incident upon a vertex in S; and 1 < p <
E'k E ] 3 ~ P
T={Jp’2!l<2<5 1<p<4 and veS}U{JP’Q'll<5L<
N1 N7i -7 =7 T = = i7"l N"i — 7 =

5<p<9 and viESZLJS3}

_ p>2 <
R | 1< 2 <5, 5<p<9 and v.es b U
t

P>
{NJi 1 <R <5,1<p<4 and viESZ}lJ

P, < < < <
{NJi ]l < £ <5, 10 <p < 14 and viESB}

5}




= P,
e e | 1<2<5,10<p <14 and v,es,Us,} U

p,4L
{31 | 1 <2

| A

5, 1 <p <4 and vi€S3}

The sets Ak (1 < k £ 3) are as follows:

= |
Ak NETk U ETk U NTk

It is simple to verify that the sets and partitions

NETk ’ ETk NTk

the set of node-edge jobs, edge jobs and node jobs. Since these sets are

included once in the sets Ak , it then follows that (Al’AZ’AB) is a

partition of the jobs in the open shop OS.
We now show that the jobs in each set Ak utilize all processors

(the proof for A and

for 5 time units. The proof is just for set A 2

1

A3 are similar and will be omitted). Let us consider one processor at

a time. There are two cases depending on the type of processor.

case 1: edge processor EPQ,j
Clearly the only jobs using edge processors are the node-edge

and the edge jobs. There are two subcases depending on whether edge

ej is incident upon a vertex in S1 or not.

subcase 1.1: ej is incident upon ViSSl
. _ . P>
Processor EPK,j is used by the node-edge jobs NEJi
<p < i i i \ .
for 1 < p < 5 which are included in set NEll < Al The

vertex adjacent to Vs through ej is certainly not in Sl .

Since ej is incident upon Viesl , it follows from the

that JP Hence P . is used

definition of ETl o ETl . £ 0,

for 5 time units.




subcase 1.2: ej is not incident upon a vertex viES

1
Since ej is not incident upon a vertex viESl ,» 1t
follows that no job in NETl uses processor EPQ,j . However,
the jobs EJ§ for 1 < p <5 are included in ETl . So,
processor EPZ i is used for 5 time units.
: P
case 2 node processor N 2,1,q

The jobs using this type of processors are the node-edge jobs
and the node jobs. There are two cases depending on whether viESl

or not.

subcase 2.1: vi€S

1
_ . ) . q,%
The only node-edge job using processor NPQ,i,q is NEJi
i z,%
and it is included in NETl < Al . Since viESl, NJi~ for
z,L
1 <z <4 belong to N 1 and NJi for 5 <z < 14 does
not belong to NTl . Hence NPQ,i,q is used for five time units.
subcase 2.2: vi¢Sl
For this case it can be easily shown that no job in NETl
z,%
uses processor NPR,i,q . Since vi¢Sl , then NJi for
z,
5< 2z <9 belong to NTl and NJi for =z=1,...,4,10,...,14
does not belong to T, . So, it must be that P is used

N1 N £,1i,q

for 5 time units.

Hence each processor is used for 5 time units when considering the jobs in

set Ak . Since each job has five nonzero tasks, it then follows that

[l ="




10

Using lemma A.1 we have that there is a schedule for the set of jobs in
Ak in a makespan of five time units. Schedule S 1is obtained by con-
catenating the schedules for Al’ A2 and A3 . Clearly mnft(S) = 10 .

This concludes the proof for part a.

b) If G 1is not three colorable then all schedules for open shop 0S
must have mft > 10 .

This will be shown by contradiction. Assume G is not three color-
able but there is a schedule, S , with mft(8) < 10 . Since open shop 0S
and schedule S satisfy the conditions of lemma 2 it must be that in
schedule S exactly m' Jjobs finish at time 5, 10 and 15. Let C; be
the set of jobs which terminate at time 5%k (L <k <3) din S . Since
there are 3m' Jjobs in open shop 0S and all jobs have execution time

!

*
requirements of five units it must be that }Ckl = m' and all jobs in

Ck execute continuously from time 5%(k-1) to time 5%k in schedule 8§
Hence the only jobs executing from time 5%(k-1) to time 5%k in S are
those jobs in set Ck .

Clearly, the conditions of lemma 3 are satisfied so it must be that
the set of node-edge jobs NEJ;’Q belong to the same set Ck . This

together with the definition of the node-edge jobs implies that if

P> L p,% . .
ey and . oJ) belong to C, then {vy,vz} ¢ E. Since S is a
schedule for 0S with mft(S) < 10 it then follows that G 1is three

colorable. A contradiction. Hence there is no schedule, S , for 0S8

with mft(S) < 10 when G is not three colorable.

This completes the proof of lemma 1. ]

* IC denotes the number of elements in set Ck

!




11

Let S be a preemptive or nonpreemptive schedule for open shop OS.
Let f, for 1 < i < 3m' be the finish time for job i in schedule S .

i — —

Assume without loss of generality that fi_i fi+l for 1 <1i < 3m' .

Lemma 2: Let S and f., be as defined above. mft(S) < 10 iff

Proof: The proof for the if part of the lemma is obvious. Before proving
the only if part we prove the following.

1) for 1<i< 2, if £ _, =51 then f

S ,
- im im'+l — 5(1+1)

2) for 1 <1ic<

A
w
Fh
Vv
9]
g—

3m’
3) ) f£.>30m'
j=1

The proof for (3) follows from (2) and the one for (1) is simple so

it will be omitted. We now prove (2).

Proof for (2)

We prove this part for any i . If 5i then (2)

Eimlym'+1 2

is obviously true. So, let us assume < 5i . At this

EGi-Tym'+1

point lets consider the schedule with jobs im'+l, im'+2,..., 3m'

. . < 59 1 .
deleted Since f(i—l)m'+l 5i 4t must be that from time

. . L . .
f(i—l)m'+l to time 5i there can be at most m'-1 jobs executing
(note that jobs im'+l,..., 3m' have been deleted) and some machine

must be idle from time to time 51 . Since all jobs

f(i—l)m'+l

have execution time requirements of 5 units it must be that fim' > 5i.

Let k be such that f < f, < 5i and f£ > 51 .

G-Dm'+1 = *°° = g K+l

Clearly such a k must exist. From time fl ((Ai-)m'+1 < & < k)




12

to time 5i there can be at most m' - (2 - ((i-1)m'+1) + 1) jobs
executing and the total idle time before time 5i is
k
> Z 5i-f, . Since there are im' jobs (im'+l,..., 3m'
j=(i-L)m'+1

were deleted) and all jobs have execution time requirements of 5

time units, it must be that after time 5i there are 1 units

im
of time being using by jobs k+1, ..., im' . So, Z f., - 51i=1.
jektl
im' k
Hence, yoof, - 5i=1> ) 5i-f, and
j=k+1 3 j=(i-1)m"+1
iIH'
£f. > 5im’

j=G-Dm'+1 I

This completes the proof for (2). [

In order to complete the proof of the lemma it is required to show that
equality in (3) holds true only if fim' =5i for 1<1i<3.,

It should be clear that f_, f., ..., « > 5. If £ , > 5 then
1 2 m — m
m' 3m'
z f. > 5m' and hence Z

; fj > 30m' (note that (3) was obtained from
1 h|

j 1

(2)). So assume f , =5 . From (1) it follows that £ > 10 and
m om ! m+l —

consequently f2 , >10 . If £, , > 10 then Z f. > 10m' and
m - 2m A T
j=m'+1
3m'

z fj > 30m' ((3) was obtained from (2)). So assume f2m' = 10 . Using
j=1

similar arguments - it can be shown that f3m, = 15 . Therefore mft(S) < 10

iff £, , = 5im'" for 1< 4i < 3.
im 1=

This completes the proof of the lemma. O

The notation used in lemma 3 is the same as the one used in lemma 1

part b.




i3

p,%

Lemma 3: If NEJi € Cp » [Ck[ =m' and in schedule S the only jobs
executing from time 5(k-1) to time 5k are jobs in Ck then
p,2
'y 1 12ps<ste C, -
Proof: The proof of this lemma is by contradiction. Assume NEJ?’R € Ck s

= m' and in schedule S the only jobs executing from time 5(k-1)

. . . q,4% . .
to time 5k are jobs in Ck but NEJi ¢ Ck . The only jobs using

processors for 1< ¢ < 5 from time 5(k-1) to time 5k are

NPQ,i,z
some of the node-edge and node jobs in Ck (clearly, no edge job will use

J?’Q e C and J?’Z

such a processor). Since NEY 1 K NEY 1

¢ Ck , then the node

processor P, . is used for one time unit by the node-edge jobs in C
N %,i,p k

whereas the node processor NPQ i,q is not used by the node-edge jobs in
3 3

Ck . Since the node jobs use all processors

follows that no more than four of these jobs can be in Ck as otherwise

processor NPz i would be used for more than five time units and all jobs
b4 s

<z < i
NPQ,i,z for 1 <z<5, it

in Ck could not be scheduled from time 5(k-1) to time 5k . But in this

case processor will not execute 5 nonzero tasks and since all

P
N 2,1i,q
jobs have five nonzero tasks it must be that ICk[ < m' which contradicts

e C then

our earlier assumption. So, it must be that if K

p,L
NE” 1

{2 | 1<p<stec

NE i k °

This completes the proof of the lemma. t

Lemma 4: Preemptive LOMFT is recognizable in nondeterministic polynomial

time.

Proof: It is simple to construct a nondeterministic Turing machine that

guesses apreemptive schedule and verifies that its mft dis less than or




equal to d . The only problem that we could encounter is that there
could be too many preemptions. But, using a similar argument to the
one in [GS2] one can show that there is always an OMFT preemptive
schedule with at most rnm preemptions for any instance I of LOMFT,

thus for any d there need be no more than rnm preemptions. [

14




15

I1T. NP-hard flow shop and job shop problems

Johnson [ J ] showed that OFT preemptive and nonpreemptive schedules
for a two machine flow shop can be constructed by efficient algorithms.
When there are more than two machines, the problems of constructing pre-
emptive and nonpreemptive schedules is NP-hard [GJSe], [GS2], [LRB].

The reductions used in proving these problems hard cannot be extended to
the case when all nonzero tasks are identical. 1In this section we show
that the problem of constructing OFT preemptive and nonpreemptive schedules
is NP-hard even when all nonzero tasks are of equal length.

When there are two machines in the flow shop, the problem of con-
structing an OMFT nonpreemptive schedule is NP-hard [GJSe]. This reduction
cannot be extended to the case when the objective is to construct an OMFT
preemptive schedule or to the case when all nonzero tasks have equal
execution time requirements. In this section it will be shown that the
problem of constructing OMFT preemptive and nonpreemptive schedules for
flow shops is NP-hard even when the execution times of all nonzero tasks
is identical.

Job shop scheduling problems are harder than flow shop problems. The
problems of constructing OFT preemptive and nonpreemptive schedules for
a two machine job shop is NP-hard [GJSe], [GS2], [LRB]. For three machines
finding OFT nonpreemptive schedules is NP-hard even when all tasks are of
equal length [L]. OMFT nonpreemptive scheduling problems for two machine
job shops is NP-hard [GJSe]. In this section we show that the problems
of constructing OFT and OMFT preemptive and nonpreemptive schedules for

job shops is NP-hard even when all tasks are of equal length.




16

The reduction used in this section is similar to the one in the
previous section. The (3,4d)~-graph coloration problem which is shown

to be NP-complete in appendix I will be used.

Theorem 2: Preemptive FOMFT is NP-complete even when all nonzero tasks

are of equal length.

Proof: The proof is in two lemmas. Lemma 5 shows that (3,4d)-graph
coloration o preemptive FOMFT. Lemma 6 shows that preemptive FOMFT

is recognizable in nondeterministic polynomial time. []

Corallary: Nonpreemptive is FOMFT is NP-complete even when all nonzero

tasks are of equal length.
Proof: Similar to lemmas 5 and 6. 0

Lemma 5: (3,4d)-graph coloration « preemptive FOMFT in which all non-

zero tasks have equal execution times.

Proof: From the (3,4d)-graph coloration problem G = (N,E) construct
the following flow shop problem, FS , with n' = (3r + w+ 9) n jobs
and m' = r +n (2w + 7r + 11) processors, where r = [EI , n = INl
and w = 3rn + 6n + 4r + 8.

The reduction is similar to the one in section II, however, it is
more complex. The set of jobs is partitioned into node, dummy, position
and final jobs. The set of node jobs are essentially as the node-edge
jobs in the previous section. Two node jobs will execute in the same
time interval iff the nodes they represent in G are not adjacent. In
order to guarantee that this property will be met, it is required to

introduce the set of position jobs. The set of dummy jobs will f£ill up




17

the empty gaps left on the processors so as to simplify the accounting
of the mean finishing time as well as to identify three different regions
for the node jobs to execute in. The final jobs will ensure that the
position jobs will leave no more free space than the one required.

Node and dummy jobs are executed by the top, edge, edge-node and
bottom processors. In order to guarantee that these jobs will execute
in some specific time intervals, the position jobs will use the top
and bottom processors. The position jobs will also use the high,
medium and low processors. The final jobs will force all the other
jobs to fall into cqrrect place by making use of the front, toP, medium
bottom, iow and end processors.

Before specifying all jobs in flow shop FS, let us identify the

different processors to be used together with their names and order in

the shop.

type of processor name range for the indices
front FPi,j ieN, je{l,...,w+3r+5}
high HPi,j ieN, je{l,...,3r+6}
top TPi ieN

P .
edge B jeE
edge-node ENPi,j ieN, jeE
med ium MPi,j ieN, je{l,...,r+2}
bottom P ieN
B i

low LPi,j ieN, je{l,...,2r+3}
end ieN, jef{1,...,w-3r-7}

P
D i,]




18

The ordering of the processors in the shop is as follows:

<« . . .
FPi,j FPk,Q ,» for di(w+3r+5) + j < k(w+3r+5)+L ;

FPi j < HPl 1 , for all i and 3 ;
HPi 3 <-HPk 2 , for i(3r+6) + j < k(3r+6)+L
w1, i < TPl , for all i and j ;
TPi < TPj , for i< 3 ;
TPi < EPl , for all 1 ;
gy < ENP' . , for all i and j ; F ¢ g Pévﬂ ;(,liﬂﬁn
J o EN
< j < i ok
EN 4, i ENPi,k , for j k and all 1i ; F) | §p o)
equJ 4‘ & l‘]j ] ;./d &
EPi < EPj , for 1i < 3j; «
EN' 1, < MPl 1 , for all 41,3 ;
b b
i, g < MPk 3 , for i(r+2) + j < k(r+2)+%
b 3
MPi i < BPl , for all 1,3 ;
3
BPi < BPj , for all i< 3 ;
P, < _P , for all i

P <s i i< 4340 -
LFi, i LPk,Q s for 1i(2r+3) + j k(2r+3)+L

< P Lo
LPi,J p¥1,1 , for all i,j

P, < P for i(w-3r-7) + j < k(w-3r-7)+

DY, j DYk, 2 s or 1i(w-3r-7) 3 k(w-3r-7)+%
From the above partial order it is simple to verify that there is one
and only one total ordering of the processors in the shop. In what

follows we formally specify how each job is to be composed. Note that

all nonzero tasks require unit execution time.




19

1.- node jobs: For each vertex viEN there is a node job (. J.)

N i
Let e, , e, , e, and e, be the edges incident upon vertex v,
J ] ] 3 1
1 2 3 4
Node job NJi has nonzero tasks to be executed by the following
processors:
a) top processor TPi ;
b) edge processors p.,, P, , P, and P, ;
By By By B,
¢) edge-node processors __P. ., e, £ E-{e, ,e, ,e, ,e. } ;
) ede P EN 1,37 7] 31773735773,
and d) bottom processors BPi
2.- dummy jobs: For each vertex vieN there are two dummy jobs
(DJi,l and DJi,Z) These jobs have nonzero tasks to be executed by

the following processors:

r P, ;
a) top processo P

- P £ e, 3
b) edge—-node processors EN'1,] or JEE 5

and c¢) bottom processor P

B i~
3.~ position jobs: For each vertex viEN and je{l,...,3r+6} there
is a position job denoted by J, . . Job J., . has a nonzero task to
Pi,j Pi,]

be executed by the following processors:

a) for j > 1 job has a nonzero task to be executed

P71,
by the set of high processors

{HPi,k | ke{3r+7-j,..., 3r+5}}
b) for je{l,r+3,2r+5} job PJi,j has a nonzero task to be
executed by the high processor HPi,3r+6
¢) for je{2,..., r+2, r+4,..., 2r+4, 2r+6,...,3r+6} job PJi’j
has a nonzero task to be executed by the top processor TPi .
d) for jefl,..., 2r+5} job PJi,j has a nonzero task to be

executed by the set of middle processors { P ke{l,..., r+1}}

Wi, |




20
e) for je{2r+6,..., 3r+5} job pJs ; has a nonzero task to
be executed by the set of middle processors {MPi K | ke{1,..., 3r+6-j1} .

f) for je{r+2, 2r+4} job PJi j has a nonzero task to be

i P .
executed by the middle processor M1, T2

g) for je{l,..., r+l, r+3,..., 2r+3} job pJi ; has a non-
3

zero task to be executed by the bottom processor BPi .

h) for je{l,..., 2r+3} job PJi j has a nonzero task to be

executed by the set of low processors {LPi K | ke{l,..., 2r+4-j}}.
b

Figure 2 shows the position jobs PJi,(')
4.- final jobs: For each vertex v, eN and je{l,..., w} there is

a final job denoted by FJ . Job has a nonzero task to be

i, 1,3

executed by the following processors:

a) for j > 2 job FJi,j has a nonzero task to be executed
by the set of front processors {FPi,k ] ke{wtl-j,..., w=1}}

b) for je{l,..., 3r+6} job FJi,j has a nonzero task to be
executed by the set of front processors {FPi,k | ke{w,..., wi3r+6-31}}

¢) for j > 3r+7 job FJi,j has a nonzero task to be executed
by the top processor TPi

d) for je{2r+5,..., w-1} job _J. . has a nonzero task to be

Fi,j

executed by the set of middle processors {MPi K [ ke{max{3r+7—j,l},...,
b4

min{r+2, w-jl}}}

e) for je{2r+4,..., w-r-3} job —p ; has a nonzero task to
b
be executed by the bottom processor BPi .
f) for je{l,..., w-r-4} job FJi i has a nonzero task to be
?

executed by the set of low processors {LPi K | kel{max{2r+4-j,11},...,

min{2r+3, w—r—3—j}}}




21

#'i,1[3r+6

uFi,2 [3r+5|3c+6

2r+6| --. |3r+5|3r+6

2r+5] 2r+6] + «« 3r+5{3r+6
2r+4 ) 2r+5) 2r+4 ... {3r+5| 3r+6

2r+3| 2r+4| 2r+5| 2r+6f +++ |3r+5|3r+6

r+4 | oo 12r43| 2r+4]2r+5] 2r+6] - ¢ - [3r+5 [3r+6

43| r+4 ] eee | 2r+32r+4]| 20+5] 21r+6] *+* |3r+5] 3r+6
r+2| r+3] r+4 | ... |2v43] 20 +4| 27 4+52r+6 | ... 13Y+5]3r+6

r+1] r+2 | r43| r+4 § Lo | 2043| 20+ 1245 | 2r4+6) o .0 | 3T+513Y+6

. » - 4
- . . . - . -

2 seo v+l | r+2 ] r+3| r+4 2r+3§2r+4 | 2r+5{2r+6] ¢ |3r+5i3r+6

e I NN EEE \\\\\\\\\\ NN \N‘&
i A 2 | e A v 2143|2004 Y 2r46] » o+ | 3r45{3r+6

i1 S 1 | 2 | ees e+l | r42 [ e43 | rta | oo |2r+3] 204 2ras{2ra6] oo |3r45

P, i
Mi,2 1L 2 Jeee]r4l [r42 | c43 | r+b | oae {2043 2r+4|20+5| 2046 o o

+2 R T T R T S SR T R T R T

| 1 2 Jeev 4l [ r42 | v43] r#h |0 2 | 2043 2044 2 +5] 246

[
=

+
(98]

2r+3 | 2r+4|2r+5

M1, 2 £\ \{\\\\\ri\ﬁ\z\ r+2 \\\\\\\\\\2r+4
BY1 /)1 2 | el 74 2r+3h%

P. 1 2 sec {r+l | r+2ir+3 | v+4 | w2 2743
L i,1
P ,2 1 2 Pt e+l g2 |43 44 ) 0
y 1 2 eesr+l { r4+2 | r+3 |T+4
1 2 ese | T+1 | 42 ir+3
1 2 eee | 4] |x+2
l 2 » #g r+l
1 2 saa
1 2
LPi ,2r+3 1

Figure 2: Position jobs PJi,(')




22

ffi,1] v
. FPi,Z w-1 "
| \
' v
. I . * ‘ w-1 \
. l Y b .
R R d ' w-2 w-1 w
1 w-3 w-2 w-1 W
L] . L .
' : : S \\
P, 3 4 tem 3r+7 3r+8 | 3r+9 3r+10 LI w
Fi,w-2
P, 2 3 LN 3r+6 3r+7 | 3r+8 3r+9 PR w-1 w
Fi,w=1
P 1 2 oo 3r+5 3r+6
F i,w
P 1 X 3r+4 3r+5
F i,wtl !
. I \‘L\ . .
‘ |
FPi,w+3r+4 l ! 2
“Fhi,wk3rts 1
P | 3r+7 3r+8 3r+9 toe w-1 w
T i
P ' 3r+6 3r+7 3r+8 se e w=-2 w-1
Mi,l
: I L . ¢ [ ]
[) . ] [} ¢
) ] L] L] ] [ ]
|
MPi,r+2 i 2r+5 2r+6 2r+7 *¢ s ly-r-3 lw-r-2
P ‘ 2r+4 2r+5 2r+6 es s |w-r~4 |w-r-3
B i
2r+3 2r+4 2r+5 s s0 JW-r-5 Jw-r-4
P,
L i,1 I
o : : : Ll
LPi,2r+3 } 1 2 3 v v tw-3r-7w-3r-6
P ’ 1 2 abn w-3r-8 jw-3r~7
D i,l
. l 1 PN w-3r-9 |w-3r-8
D i,2 '
- - ]
. - . :
|
~ D i,w-3r-8 ! 1 2
) 1
D i,w~3r-7
Figure 3: FINAL JOBS J.
— Foi, () .




23

g) for je{1,...,w-3r-7} job FJ' . has a nonzero task to
1,]
be executed by the set of end processors {DPi k|k€{l,...,w—3r—6—j}
Figure 3 shows the final jobs FJi,(') .
The value for d is w2+-(3r4-8)(3r+-6). We now state the follow-
ing two claims which can be easily verified by inspection of figures 2

and 3.
Claim 1: All position jobs have 3r+ 6 nonzero tasks.
Claim 2: All final jobs have w nonzero tasks.

We now show that the above flow shop problem has a preeemptive
schedule, S, with mft(S):§w24-(3r4-8)(3r4-6) iff G is three colorable.
a) If G 1is three colorable then FS has a schedule with
mft (S) < w? + (3r+8)(3r+6).
Let us now state a very useful claim which can be easily verified

from figures 2 and 3.

Claim 3:

i) All final jobs can be scheduled to complete at time w.

ii) After scheduling all final jobs to complete at time w, all
the high, edge, edge-node, top, middle, bottom and low proces-
sors are idle from time 0 to time 3r+6.

iii) After scheduling the set of final jobs to complete at time w,
all position jobs can be scheduled to complete at time 3r+6.

iv) After scheduling all final and position jobs (as in (i) and

(4ii)), TPi has idle time in the intervals [1,2],[r+2;r+3],

[2r+4;2r + 5] P is idle in the time interval [r+1;r+ 2],

> Bi
[2r+ 3;2r+4]),[3r+ 5;3r+ 6]; and the set of edge and node-edge

processors are idle from time 0 to time 3r+ 6. O




24

Since G 1is three colorable it is possible to partition the set of

nodes N into sets Sl’ 82 and 53 in such a way that if node i and node

j belong to Sk then {i,j}é E. Using these sets we partition the set

of node and dummy jobs into sets Al’ A2 and A3 as follows:

= | !
A = {NJi|vi€Sl}lJ{DJi,llviESZL,S3}
= | I
A2 = {NJilviESZ}l“{DJi,l|viesl}l“{DJi,ZlVi€S3}
= [ |
and A3 = {NJilvi€S3}L“{DJi,ZlviESll“SZ}

Claim 4: The set of jobs in A k=1, 2, 3 will use processors

k,
P i it.

TPi’ ENPi,j’ EPj and B i for no more than one time unit

Proof: We just prove this for k =1. The proofs for k=2 and 3 are

similar and will be omitted. Since all node jobs and dummy jobs have r+ 2

nonzero tasks and since (81,52,83) is a partition of N, it follows that

the number of nonzero tasks for the set of jobs in Al is n{r+2). From

the definition of node and dummy jobs we have that the set of processors

used by jobs in A denoted by R is

1’ 1
= 1 ! . . .
Rl {TPilvigsl}L’{Eleedge ej is incident upon a vertex \
) . s . |
in Sl}LJ{ENPi,jIej is not incident upon a vertex v, in Sl}LJ{BPiI
! ! I i !
Viesl}l“{TPiIViESZL“S3}L“{ENPi,j|Vi€SZL“S3 and ejEE}L,

{Bpi]viesztjs3}

Since S, US, US; =N, S, f]Sj =@ for all i#3j and no two nodes

in Sl are adjacent, we get

I{ - I V. Elq I e . dellt upOIl a ve .

] {T . ' } L_/{E . ledg e 18 1ncl rtex v in

s P \Y e S alld e is not 1IlC1deIlt upon a vertex v, 1 S )
]} U{EN . . l ( . ] . n l

or (vie SZLJSB) and ejEE)}\J{BPilvieN}




25

Since the number of processors in Rl is the same as the number of

nonzero tasks, it follows that processor TPi’ENPi,j’ EPj and BPi

are used for no more than one time unit. g

We now show that the set of jobs in Ak can be scheduled in the time
interval (k-1)(r+2) to k(r+2) . This will be shown only for k=1 (the
cases k=2 and 3 are similar). The set Al consists of n jobs. Since

all jobs have their first nonzero task to be executed by TPi; all jobs

P, (claim 4); and the processors are free from

use different processor o

time 1 to 2 (claim 3 iv) it then follows that the first nonzero task of
all jobs in Al can be scheduled to complete at time 2. The tasks using

P, . and P. can be scheduled from time 2 to r+1 because
EN"i,j E ]

processors
of claim 3iv and claim 4. The last nonzero task for all jobs in Al is
to be executed by processor BPi' Since BPi is free from time r+1

to time r+2 (claim 3 iv) it follows that all the last tasks for each
job can be scheduled to complete at time r+ 2. Hence, the set of jobs

in Al can be scheduled to start at time O and terminate by time r+2.

The total contribution to the mft from the jobs in Al’AZ and A3 is

3
z (k)(r+2)n = 6(r+2)n. The contribution from the position jobs (claim
k=1

3 iii) is (3r4-6)2n and the contribution from the final jobs (claim 3 i)
is wzn . Hence, mft(S) = n(w2+-6(r+-2) + (3r+—6)2)/n = w2'+ (3r+6)(3r+8) .

This completes the proof of part a. O

b) If G is not three colorable then all schedules for flow shop, FS,
must have mft(S) > w24-(3r4-6)(3r4-8).
This will be shown by contradiction. Assume there is a schedule

s' with mft(S') < w24-(3r4-6)(3r4-8).




26

Before proceeding to the proof we explain how this part is proven.
First we will show that if S' exists then there is another schedule S"
with no preemptions in which all tasks start and terminate at integer
times and mft(S") < mft(S'). We then proceed to show that if
mft(S") < w2 + (3r+6)(3r+8) then in S" no node job, dummy job or
position job will be scheduled after time 3r+ 6. Since all the position
jobs must execute for 3r+6 time units, it will then follow that these
jobs are scheduled in S" as in figure 2. Now, if S" dis to have
mft(s") < w2 + (3r+6)(3r+8) all the node and dummy jobs terminate by
time 3r+6 and can only use the top processor TPi during the time
intervals [1;2],[r+2;r+3],[2r+4;2r+ 5] and the bottom processors
BPi during the time intervals [r+ 1‘;r+ 21,[2r+3;2r+4],[3r+5;3r+ 6],
This implies that all the node jobs and dummy jobs must execute continu-
ously in three disjoint regions which in turn implies that G is three
colorable. We now state the proof in detail.

From lemma A.2 in appendix III it follows that if there exists a
schedule S' with mft(S') < w2 + (3r+6)(3r+8) then there exists an-

other schedule S'" with no preemptions in which all tasks start and

terminate at integer times and mft(S") < mft(S')

2

Claim: If mft(S") < w” + (3r+6)(3r+8) then in S" no node job,

dummy job or position job can execute after time 3r+6.

Proof: We show that if there is a node job, dummy job or position job

2 4 (3r+6)(3r+8). Let

with finish time > 3r+6 then mft(S") > w
v be the time at which such a job terminates. Since all node jobs and
dummy jobs have execution time requirements of r+ 2 units it must be

that their finishing times are at least r+2. Also the position jobs

have execution time requirements of 3r+ 6 units so their finishing




i

27

times are at least 3r+ 6. Since the late job is a node, dummy or position
job it must be that it executes from time v~1 to time v 1in one of the
top, middle, bottom or low processors. Since all of these processors are
used by the final jobs it then follows that some final jobs will not

complete at time w when v £ w,

case l: vzw+1
The total contribution to the mft by the jobs in the

shop in as follows:

node and dummy jobs 2 (3n-1)(r+2)
position jobs 2 (n(3r+6)-1)(3r +6)
final jobs p- nw2

late job 2 w+l

Therefore mft(S") = ((3n-1)(r+2)+ (n(3r+6)-1)(3r+6) + nw> + w + 1)/n
Since w = 3rn + 6n + 4r + 8 it then follows that

nft(s") > w2 + (3r+6)(3r+8)

case 2: v<w+1l

For this case we have that at least w - v + 1 final jobs
must complete at time = w+ 1 (see figure 2). The total contribu-
tion to the mft by the jobs in the shop is as follows:

node and dummy jobs z (3n-1)(r+2)

position jobs ) > (n(3r+6)-1)(3r+6)
2

v

final jobs (w=v+1) (w+l) + (v-1)(w) + (n-1)w

late job = v




1Y

28

Therefore mft(S") 2((3n-1)(r+2)+ (n(3r+6)-1)(3r+6) +
(w=v+1) (w+ 1) + (v-1)(w) +v)/n

Since w = 3rn + 6n + 4r + 8 it then follows that
mEE(S") > w2 + (3r+6)(3r+8).

This completes the proof of the claim. il

So, all node jobs, dummy jobs and position jobs should complete by
time 3r+6 in Sﬁ. Since all position jobs must execute
for 3r+ 6 time units, it follows that these jobs are scheduled in S"
as in figure 2. Hence, the top processors TPi will only be free in the
time intervals [1:;2)][r+2;r+3][2r+4;2r+5] and the bottom processors

BPi during the time intervals [r+—1;r+—2],[2r+—3;2r4—4],[3r+—5;3r4~6].

Since J., . J and DJi

i’ pli,1 use both processors P, and Pi and since

s 2 T i B
these jobs must complete by time 3r+ 6, it must be that these jobs execute

continuouly in the time intervals (k-1)(r+2) to k(r+2) for k=1, 2

and 3. But if VJi& NJj execute in the same time interval it implies

N

that in G, {i,j} ¢ E . Hence, if all node jobs and dummy jobs are
scheduled to complete by time 3r+6 it must be that the set of nodes

in G can be partitioned into three disjoint sets such that if two nodes
belong to the same set then they are not adjacent. This contradicts that
G is not three colorable. So, all schedules must have nft(S') > w2 +

(3r+6)(3r+8) when G is not three colorable.

This concludes the proof of the lemma. O

Lemma 6: Preemptive FOMFT is recognizable in nondeterministic polynomial

time.




29

Proof: This proof follows the same arguments as the ones used in lemma
4. The bound for the number of preemptions is rn. a
Theorem 3: Preemptive FOFT is NP-complete even when all nonzero tasks

have equal execution times.

Proof: The proof is similar to theorem 2 but the reduction in lemma 5

will ignore the final jobs. g

Corollary: Nonpreemptive FOFT is NP-complete even when all nonzero

tasks have equal execution times.

Proof: Similar to theorem 3. O

Since all flow shop problem instances and also job shop problem

instances, the same results for flow shop hold for job shops.




30

IV. ©No Wait Schedules

In this section we study the problem of constructing no wait sched-
ules {once a job starts execution it will remain executing until the
job terminates) for open shops, flow shops and job shops. When all
nonzero tasks have equal execution time requirements and all jobs use all
the machines, the problem of constructing OFT and OMFT no wait schedules
for an open shop and a flow shop it trival. The next case is when not
all jobs use all the machines and all nonzero tasks have identical
execution times. For this case we show that the problem of constructing
OFT and OMFT no wait schedules for open shops, flow shops and job shops
is NP-hard.

For two machine open shop problems, Sahni and Cho [SC] have shown
that the problem of constructing OFT no wait schedules in NP-hard, even
when all jobs require nonzero execution time requirements on both machines.
In this section we show that the problem of comnstructing OFT and OMFT no

wait schedules in NP-hard even when all nonzero tasks are identical.

Theorem 4: No wait LOMFT is NP-complete even when all nonzero tasks have

equal length.

Proof: Similar to theorem 1. B

Theorem 5: No wait LOFT is NP-complete even when all nonzero tasks have

equal length.

Proof: Similar to theorem 1. 0




31

For two machine flow shop problems, the problem of constructing
OFT no wait schedules when all tasks have nonzero execution times can be
solved efficiently [GG]. Papadimitriou and Kanellakis [PK] have shown
that the problem is NP-hard when there are four machines in the shop.
If some tasks are allowed to skip execution an some machine then the
problem is NP-hard even when there are two machines in the sﬁop [sC].
The problem of constructing an OMFT no wait schedule for flow shops is
NP-hard [LRB]. 1In this section we show that the problem of constructing
OFT and OMFT no wait schedules is NP-hard even when all nonzero tasks

have identical execution time requirements.

Theorem 6: No wait FOMFT is NP-complete even when all nonzero tasks

have equal length.
Proof: Similar to theorem 2. 0

Theorem 7: No wait FOFT is NP-complete even when all nonzero tasks have

equal length.

Proof: Similar to theorem 3. g

Sahni and Cho [SC] have shown that the problem of constructing OFT
no wait schedules for a two machine job shop is NP-hard even when all
jobs have at least two tasks. The same results stated in theorem 6 and

7 apply for job shops.




32

V. Discussion

We have shown that the problem of constructing OMFT preemptive and
nonpreemptive schedules for an open shop, flow shop and job shop in
NP-hard. These results will also extend to the case when the problem is
to construct an OFT preemptive and nonpreemptive schedule for a flow shop
and job shop. 1In section IV we showed that the problem of contructing
OFT and OMFT no wait schedules for open shops, flow shops and job shops
is NP-hard. All of these problems remain hard even when all nonzero
tasks have equal execution time requirements. The interesting fact is
that if there exists an efficient algorithms to solve any of these re-
stricted problems then there exists an efficient algorithm to solve the

more general problems as well as many other well-known problems.

Acknowledgement: The author is grateful to professor Donald B. Johnson

for his helpful comment and suggestions while preparing this manuscript.




33

REFERENCES

[B] Brooks, R. L., "On Coloring the Nodes of a Network,'" Proc.
Cambridge Philos. Soc., 37 (1941) 194-197.

[C] Coffman Jr., E. G., "Computer and Job Shop Scheduling Theory,"
John Wiley and Sons, New York, 1976.

[cMM]  Conway, R.W., W. L. Maxwell and L. W. Miller, "Theory of Scheduling,"
Addison-Wesley, Reading, Mass., 1967.

[J] Johnson, S. M., "Optimal Two-and-Three-State Production Schedule,"
Naval Research and Logistics Quarterly, 1, 1 (1954)

[G] Gonzalez, T., "A note on Open Shop Preemptive Schedules,'" Technical
Report #214, Department of Computer Science, The Pennsylvania State
University, December 1976. (To appear IEEE TC)

[GJ] Garey, M. R. and D. S. Johnson, "Strong NP-Completeness Results:
Motivations, Examples, and Implicants,' JACM 25, 3, 499-508(1978).

[GJSe] Garey, M. R.., D. S. Johnson, R. Sethi, '"Complexity of Flow Shop
and Job Shop Scheduling," Math, Opns. Res. 1, 117-129 (1976).

[GIJSt] Garey, M. R., Johnson, D. S., and Stockmeyer, L., "Some Simplified
NP-Complete Graph Problems," Theoret. Comptr. Sci. 1, 237-267(1976).

[GG] Gilmore, P. and R. Gomory, ''Sequencing A One State-variable Machine:
A Solvable Case of the Travelling Salesman Problem," Op. Res., 12
1964, p. 655-679.

[GS1] Gonzalez, T., and Sahni, S. ''Open Shop Scheduling to Minimize
Finish Time," JACM, 23, 665-679 (1976).

[GS2] Gonzalez, T., and Sahni, S. "Flowshop and Jobshop Schedules:
Complexity and Approximation,' Oper. Res. 26, 1, 36-52 (1978).

[K1] Karp, R. M., "Reducibility among Combinational Problems," in
Complexity of Computer Computation, pp. 85-104, R. E. Miller and
J. W. Thatcher (Eds), Plenum Press, New York, 1972.

[K2] Karp, R. M., "On the Computational Complexity of Combinational
Problems," Networks 5, 45-68 (1975).

[L] Lenstra, J. K., unpublished manuscript.
[LR] Lenstra, J. K., A, H. G.Rinnooy Kan, ''Computational complexity
of discrete optimization problems," Ann. Discrete Math., (to

appear).




[LRB]

[PK]

[scC]

34

Lenstra, J. K., A. H. G. Rinnooy Kan and P. Brucker, '"Computational
Complexity of Machine Scheduling Problems," Ann. Discrete Math.,
1, 1977, p. 343-362.

Papadimitriou, C. H. and Kanellakis P. C., "Flowshop Scheduling
with Limited Temporary Storage,' Proceeding of the 16th Annual
Allenton Conference on Communication,Centrol and Computing,"”
Oct. 1978, pp. 214-223.

Sahni, S., and Y. Cho, "Complexity of Scheduling Shops with No
Wait in Process," Technical Report #77-20, Department of
Computer Science, University of Minnesota, Dec. 1977.




35
APPENDIX 1

In this section we show that the (3,4d)-graph coloration problem
is NP-complete. Garey, Johnson and Stockmeyer [GJSt] showed that the
3-graph coloration problem in which all nodes are of degree at most 4 is
NP-complete. We use such a problem to prove that the (3,4d)-graph color-
ation problem is NP-complete. It would be of interest to prove the (3,
3d)-coloration problem to be NP-complete, but as noted in [GJSt], the 3
graph coloration problem can be solved efficiently when each node is of
degree at most 3. The algorithm relies on the well-known results of
Brooks [B] which implies that a connected graph with maximum degree 3 is
3-colorable iff it differs from Ka, the complete graph on four nodes,

which is easy to determine.
Theorem A.l: The (3,4d)-graph coloration problem is NP-complete.

Proof: It should be clear that this decision problem is in NP. We now
show that 3-graph coloration with node degree at most 4 o (3,4d)-graph

coloration.

Let G = (N,E) be any graph with node degree at most 4. From this
graph we construct G'" = (N",E") in which all nodes are of degree four
and such that G" is 3-colorable iff G 1is 3-colorable.

First of all let us transform G to G' in such a way that each
node in G' is of even degree < 4 and G' 1is 3-colorable iff G is
3-colorable. It can be easily shown that any graph G has an even
number of odd degree vertices. If the graph has zero vertices of odd

degree then G' = G. Otherwise let il,...,i be the vertices of odd

k
degree in G. Now, G' = (N',E') where




36

N'

1l

NUv,v, oo

1’2 k/2}

B =B ULy v ie 1
J
It is simple to shoyw that G' g 3-colorable iff ¢ is 3-colorable.
We now construct g is of degree 4 and g is 3-colorable iff g
is 3-colorable.
Initially g@" {g just a copy of G, For each vertex i in G"
of degree 2 (vertices of zero degree can be eliminated), augment G"

with the subgraph in figure 4,

It should be clear that G" i1l now have all vertices of degree four

and G" 4g 3-colorable iff G is 3-colorable. This completes the

proof of the theorem. 0




37

APPENDIX TITI

Let T be an open shop problem in which all nonzero tasks have
unit execution time. Let m be the number of machines and n the number
of tasks. Let Li be the number of nonzero tasks in job 1 and let
M. be the number of nonzero tasks to be executed by machine j.
Gonzalez and Sahni [GS1) have shown that for an open shop there
is a preemptive schedule of length ??? {Li,Mj} . The way their algorithm
proceeds will not produce preemptions when all the nonzero tasks are
of equal length. Hence, an optimal finish time schedule can be obtained

with no preemptions for this case. We will just state this result and

refer the reader to [GS1].

Lemma A.1: An OFT nonpreemptive schedule for an open shop problem in
which all nonzero tasks have equal length can be obtained by an efficient
algorithm, and the length of the schedule in max'[Li,Mj}.

1,]

APPENDIX TIITI

Let T be a flow shop problem in which all nonzero tasks have unit

execution time requirements. Let S be a preemptive schedule for T.

Lemma A.2: et T and S be as defined above. S can be transformed
to a schedule S' for T with the following properties:

1) S' has no preemptions

2) ft(s') < ft(S)

3) mft(S') < mft(S)




38
Proof: Let us assume that up to time o (integer) we have a schedulewith no
preemptions, and all tasks start and finish at integer times. We now show that
a scheduleup to time a+ 1 can be constructed withno preemptions, in which

all tasks start and finish at integer times. Let us now transform the schedule

for machine j in such a way that from time d to time o +1 either
there is idle time or only one task executes. If no tasks have been
assigned from a to o + 1 then the machine will be idle from time o
to o+ 1 . Otherwise let By sy be the set of tasks that execute
in this interval. Let f(ai) be the latest time at which task a;

executes on this machine. Assume without loss of generality that

f(ai) < f(ai+1) for 1 € i < k. The schedule is now modified as shown
in figure 5.
ol at+1 f(al)
machine j f{a a}; lay | a. -a‘} a a, a ee. la,
SR S S N I N O O B4 I k|
U/ o a+1l
) ) S, — T LT e
machine j L ay l azj | ale ag §a25 gak:
SO S SR | | S PR
s
TN
{a2 ... ak}

Figure 5: trans formation

al is scheduled from time o to a+1 and the tasks ap .- ak which were
scheduled in the interval [a,a+ 1) are scheduled where a, was scheduled
after time o+1 . Clearly the ft and mft will not increase. The only

question that remains is if some precedence constraints are violated.

Since f(ai) is not increased for any task then no precedence constraints

are violated when considering tasks to be executed by machines j+1,...,m.
Precedence constraints on machines 1,...,j-1 are not violated since
tasks a a were not scheduled on these machines after time «

1 "




39

(note that if a, 1is scheduled after time o on machine j" < j-1
then it cannot be scheduled on machine j from time a to o + 1 since

task a, would not complete before time a+1 on machine j")

This same transformation in applied to the remaining machines
from time «a to time o+ 1 . This completes the proof of the lemma. []

We should note that this same result also holds for job shop

problems.






