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ABSTRACT: We consider the via assignment problem that
arises in multilayered printed circuit board routing.
2n efficient approximation algorithm for this problem
is presented. The algorithm is of (low) polynomial
time complexity and guarantees solutions that use no
more than 3 * s via columns, where s is the number of
via columns in an optimal solution. Several issues
relating to the computational complexity of via assign-
ment problems are discussed.
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I. Introduction,

Large-scale computer systems are built by inter-
connecting silicon chips. The interconnections are
carried out by placing the chips on a multilayer
printed circuit (MPC) board., The components (chips)
are mounted on top of these boards and their terminals
are inserted in drilled-through holes called pins.
Terminals from different chips are connected by printed
wires located on any of the layers in the MPC board.
Enough vias have been added for interlayer connections
and it 1is known precisely the vias and pins that need
to be connected. The MPC routing problem consists of
finding physical routes for the printed wires.

In this paper we make the same basic assumptions
made by So [SO]. These are:

(1) The pins and vias are at fixed locations.
Vias appear only column-wise.
(2) only points (pins or vias) on the same line
(row or column) can be connected directly and
the physical routes must be confined within
the channels on both sides of the line.
(3) All row connections are in one layer and all
column connections are on the other,
Under these assumptions So has shown that the MPC rout-
ing problem can be reduced to several single-line
single-layer routing problems, The single-line single-
layer problem can be solved by the algorithms given in
[RKF] and [RS]. ‘

In practice we are given a set of components
placed on a MPC board together with sets of terminals
to be interconnected, Each set of terminals to be
intercomnected 1is called a net. One can solve this
problem with any algorithm for the MPC routing problem
if one adds some via columns and specifies the vias to
be connected to each point (pin or wvia). Since the
addition of wvia columns increases the cost of the
board, it is desirable to add the least number of via
columns. This problem is known as the via assignment
problem (VAS) and it was initially studied in [TKS] and
[TSA]. 1In [TKS] it was shown that this problem can be
solved efficiently when only one via column is needed
for all the interconnections. However, when three or
more via columns are required, the problem is NP-hard
(ITKS], [TSAl). These results rely on the restriction
that no net is connected to vias from more than one via
column, If this restriction is relaxed, it has been
conjectured [TKS] that the problem remains in the class
of problems known as NP-hard. We shall refer to this
relaxed version of the problem as the multi-via assign-
ment problem (MVAS). In this paper it is shown that the
MVAS problem is NP-hard. Furthermore, it is shown that
the VAS and MVAS problems are NP-hard even when only
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two via columns are required for all the interconnec-
tions., Our results finely separate "difficult” from
"easy” cases of the problems.

Because of the computational difficulty in obtain-
ing an optimal solution to the VAS and MVAS problems,
we turn our attention to the study of algorithms that
generate suboptimal solutions to these problems, i.e.,
generate solutions that use a number of via columns
that 1is not far from the optimal number. In [TKS] and
[TSA] several approximation algorithms to solve these
problems are presented. However these algorithms do
not always generate solutions that are close to
optimal. In fact the solutions given by these algo-
rithms can be arbitrarily far from the optimal ones.
The problem of obtaining a solution within 100% of the
optimal solution for the VAS problem is NP-hard. This
can be easily shown by using the reduction outlined in
[TKS] and the results in [GJ] relating to the complex—
ity of generating approximate solutions to the graph
coloration problem. The results in [TKS] can also be
used to show that any approximation algorithm for the
VAS problem is also an approximation algorithm for the
graph coloration problem. The converse does not seem
to be true. The approximation problem for graph
coloration has been widely studied [GJ] and seems to be
computationally intracteble., Therefore it is unreason-
able to try to obtain an efficient approximation algo-
rithm for the VAS problem before one can be found for
the graph coloration problem. Because of this we turn
our attention to the MVAS problem. Our main result is
an efficient algorithm that guarantees solutions close
to optimal for the MVAS problem.

Our contribution, on the theoretical aspects of
the VAS and MVAS problem, 1is to settle some issues
relating to their computational complexity. On the
practical side, for the MVAS problem we present an
efficient algorithm that generates solutions with an
objective function value that in the worst case is not
far from the objective function value of an optimal
solution.

In what follows we define the via assignment prob-
lem and in section II we show that some versions of
this problem are NP-complete. An approximation algo-
rithm for the MVAS problem is presented in section III.

Let P be a multilayered printed circuit board.
Board P consists of r rows and ¢ columns. In the
intersection of a row with a column there is a pin.
Each pin belongs to at most one net. The nets are
represented by N, , N, ,..., N and each N. consists
of a set of piﬁs thét need tB be interconnécted. All
pins in each net have to be made electrically common.
This is accomplished by interconnecting the pins by
wires. Vias can be added for interlayer connections,
however vias appear only column-wise., Wire segments
can only connect points (pins or vias) located in the
same line (row or column), Tt is assumed that all the
wire segments connecting points in the same row are in
one layer and the ones connecting points in the the
same column are in the other layer, A wire in one
layer can only be connected to a wire in another layer
if both wires are connected to the same pin or via.
The VAS problem consists of adding the least number of
via columns in such a way that all pins in each net can
be interconnected by sets of wires that satisfy the
above requirements and no net is interconnected by
using wvias from more than one via column. The MVAS is
defined similarly, except that the restriction that




each net must be connected by using vias from at most

one via column is relaxed, i.e., it is possible to use
vias from two or more via columns for the interconnec-
tion of all the pins in a net. Since every feasible
solution to the VAS problem is also a feasible solution
to the MVAS problem, the MVAS problem has an optimal
solution wvalue that is never worse than the optimal
solution value for the corresponding VAS problen, It
is simple to show that the converse is not true [TKS].
An instance of the VAS problem is shown in example 1.1
(figure 1.1) and one of its solutions is depicted in
figure 1.2.

Fig. 1.1: The VAS or MVAS
problem in example 1.1.

Fig. 1.2: A solution to
the problem in example 1.1.

Example 1.1: An instance of the VAS or MVAS problem.
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Nl = '[ (2il) 7 (314) 7 (411) 12 (5'5) }I
N2 = { (114) I (413) I (475) 7 (513) }I
and N3 ={ (113) 7 (115) I (312) v (315) 7 (512) }o
col | col
----- ] 1 2 3 4 5 “Jl—1 1 2 3 4 5 6
row | | row |
| X | JE—
1 3 2 3 o1 323
I [ J
2 |1 W2 | -+
I I ]
3 3 13 TN 3 18
| [ |
4 | 1 2 2 4 | 4 2 2
I I I {
5 | 3 2 1 Il 5 | 3 Lo ro
I
I
_ 1l

Our NP-completeness results are established by
reducing the exact cover by 3-sets (XC3) problem to the
vAS and MVAS problems. The XC3 problem was shown to be
NP-complete by Karp [K].

II. NP-completeness Results.

In this section it is shown that the MVAS and VAS
problems are NP-complete even when only two via columns
are needed for all the interconnections. This result
is obtained by reducing the XC3 problem to the VAS
problem, The NP-completeness of the MVAS problem is
egtablished by using the same reduction and the obser-—
vation that in the instance constructed from XC3no net
can be connected using vias from more than one column
in any solution that requires two wvia colums. The
problem of deciding whether an instance of the VAS
problem can be routed by using at most two via columns
is referred to as the 2-VAS problem. The 2-MVAS prob-
lem is defined similarly.

Theorem 2.1: The 2-VAS problem is NP-complete.
Proof: For brevity the proof is omitted. []
Theorem 2.2: The 2-MVAS problem is NP-complete.

Proof: The proof is similar to the one used for theorem

2.1.1]

[II. Approximation Algorithm.

In this section we describe an efficient approxi-
nation algorithm for the MVAS problem. The algorithm
is of polynomial time complexity and generates solu-
tions that use at most 3 *  via columns, where
is the number of via columns in an optimal solution,

. As input we are given an instance, Y, of the MVAS prob-
lem, Our approximation algorithm consists of three
najor steps. In the first two steps of the algorithm
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we construct an instance of the VAS problem, X, in
which all nets have exactly two pins. Problem X has
the property that the maximum number of pins sharing
the same row in the MPC board is not greater than 2 *
o, where o 1is a lower bound on the number of via
columns in an optimal solution to Y. Furthermore, a
simple algorithm can be used to construct €£rom any
solution to X a solution to ¥ with the same number of
via columns as the one in the solution for X. The
specific computations performed in these steps are to
construct a bipartite graph and then find a "special"
subset of edges in it, The "special® subset of edges
and a decomposition of the nets in Y are then used to
define the nets for X.

The third step of the algorithm consists of find~
ing an approximate solution to X. An approximate solu—
tion to this problem is required since it is an NP-hard
problem, The specific computations performed in this
step are to construct a multigraph from X, then the
edges of this multigraph are "colored" and from any
such coloration we obtain a solution to X. The number
of via columns used in our solution to X is not greater
than (3/2) * B, where B is the maximum number of

nets sharing the same row in X. A detalled description
of the algorithm appears in appendix A
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Appendix A: The Algorithm,

Before presenting our algorithm we outline in more
detail the three major steps in it. Additional defini-
tions as well as some intermediate computations have
been introduced to clarify our algorithm.,

STEP I:
The set of plns in each net N,

the sets Ni,l .1'2 gocoy Nlrli

is partitioned into
such that all the
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pins in each set Ni . can be made electrically common
without the use ‘6¢ vias and all the pins in each set

Ni . cannot be made electrically common with any pin in
N.'i (k#j) without the use of vias. We shall refer to
the®sets N, as subnets. For N, . we define R, . as
the set of’“rows 1in which the piﬂ in Ni . 1ie}’JThe
sets N, . and R, . for the MVAS problem givéﬂ in exam-
ple 1.17dre:  *7d
N = { (211) 7 (411) } R = { 214 }r
Ny =4 (3,4) ) R = (3],
N1'3 = { (5,5) } R1’3 ={51},
Ny’ = (1,4) } RS =1{1},
NZ:Z = { (413) . (4,5) (5,3) } R2:2 = { 4,5 }I
and N3'l = N, R3'1 ={1,3,51}.

Every net with {. = 1 can be eliminated since it needs
no via column “for its connection. If all nets are
eliminated then our solution is an .optimal solution
since it uses no via columns for the connections. 1In
example 1,1, net N, is the only net eliminated. From
now on, n repreéents the number of nets not yet been
eliminated.

In this step we select a row with at least one pin
from each subnet N, .., 2Any pin from subnet N.
Jocated in the row selédted will be used for the cdfd

nection of Ny to all other subnets of net N.,, In
other words, éle element from each Ry will be
selected, The selection of these elements 1d performed

in such a way that the maximum number of subnets shar-
ing the same row for its connection, is minimized. wWe
shall refer to this minimum value as d. The value for
d can be shown to be a lower bound on the number of
via columns used in an optimal solution to the original
MVAS problem. Our final solution uses no more than 3
*  wvia columns.

The selection of the row in each subnet is made by
constructing an optimal complete s-matching in a bipar-

tite graph. This is explained in what follows. Let S
= {(i,3) 1IN, .isasubnet}; T={1,2, aco 4
rYandE={ ( (13 3) ,k) I keRr, .}. clearly
G =(8()T,E) is a bipartite grdgl. The bipar-

tite graph obtained for example 1.1 is depicted in fig-
ure A.l.

Fig. A.l: Bipartite graph constructed for example 1.l.

An s-matching, I, for G is a subset of edges such that

no node in set S is adjacent to more than one edge in
set I. A complete s-matching is an s-matching that
includes every node in set S, For a complete s—

matching, I, we define as M(I), the maximum number of
edges in I adjacent to any node in set T. We say that
the complete s-matching, I, is an optimal complete s-
matching ( ocs-matching ) for G if every complete s-
matching Z for G has M(Z) > M(I). The set of edges I =
{ ((111)12) 7 ((112)13) 14 ((113)15) 4 ((zll)rl)‘l
((2,2),4) } is an ocs-matching for the bipartite graph
depicted in figure A.l. The problem of selecting a row
for the connection of each subnet reduces to finding an
ocs-matching for G. In appendix C we present an effi-
cient algorithm to construct an ocs-matching for G.
Given an ocs-matching, I, for G we find r. ., the
row to be used for the connection of subnet Ni'J to
14

]
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all other subnets of net WN., as follows: r; . =k if
edge ( (i, 3) » k ) i% in the ocs-mitéhing I.
Clearly, from the definition of an ocs-matching we can

see that each subnet will have one and only one row
selected and in such a row there is at least one pin
and if "I" is an ocs-matching for G then o = M(I). The
optimality of the complete s-matching will guarantee
that there is no feasible solution to Y that uses less
than d via columns, where d is defined above. The r,

values for the ocs-matching obtained above are: r} i';
2, r = = = = ’

' Ty g 3, £ 3 5, T 1 and £,2 4. [
STEP II:

At this point we construct an instance, X, of the
VAS problem, such that from a solution to X it is sim-
ple to construct a solution to Y that uses the same
number of via columns as the ones used in the solution
to X. Also, it is shown that no row in X contains
more than 2 * % pins.

Let L= 3 Xi. The instance X consists of n'

L - n nets éﬁé the board has r!

= =r rows and c' =

2n' columns. We shall refer to the n' nets as

N, v, i LI
1,00 c00 vt N i1 for 1 <1<n. Net N i3 has

two pins, one is lodated at position (r. .,k) and the

. s a e i _ * N
other ;Pjn at position (ri,j+l'k+l)’ wherd” k =2 * ( j
-1+ 3 (Kz 1) ) + 1. Pigure A.2 shows the

instangzlx constructed for the problem in example 1.1.

r=5,c=6,n=3,

N'l l={ (Zrl) 7 (312) }I

N'YT'S = (3,3) 5 (544 1,
and N'Z:l = { (115) 2 (416) }'

Figure A.2: Instance X constructed for example 1.1.

The proof for the claim that from any solution to
X one can construct a solution to Y is left to the
reader as an exercise. []

STEP III:

In this step we find an approximate solution to X,
the restricted VAS problem obtained in step II. This
solution is obtained by constructing a suboptimal solu-
tion to the edge coloration of a multigraph problem.
The multigraph that we construct is M= ( V* E' ),
where V' is the set of edges and E' is a multiset of
edges, is defined as follows:

vi={i]| iisarowinX}

and E' { {i,3} | a net in X uses rows i and j }.

The multigraph M constructed from X given in figure A.Z2
is shown in figure A.3. An edge coloration for multi-
graph M consists of assigning the least number of
colors to the edges E is such a way that no two edges
adjacent to some node have the same color. For the
multigraph depicted in figure A.3, an edge coloration
for it is: edge {3,5} is colored "one"” and all the
remaining edges are colored "two". Given a coloration
for M, a solution to X can be obtained by simply con-
necting a net using ith via column if the edge used to
represent this net is assigned color "i¥. Clearly the
number of colors used in M is the, same as the number of
via columns in our solution for XC By construction it
is simple to show that the least number of colors ir
any edge coloration for M is at least B, where B is the
is the maximum number of pins in a row of X. 1In the
next section we present an algorithm that finds an edge
coloration for M that uses no more than (3/2) * F
colors. Hence, in our solution to the original MVAS
problem there are at most 3 * o wvia columns., The
solution obtained for the MVAS problem in example 1.]
is shown in figure A.4. [}



Fig.A.3: Multigraph
for ex. 1.1,

Fig. A.4: Solution constructed
for Example 1.1.
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Our algorithm is depicted in figure A.5. Addi-
tional definitions as well as intermediate steps have
been introduced to clarify the exposition of the algo—

rithm,

Algorithm APPROX ( Y //an instance of the MVAS
problem// )

1 Use Y to construct
=(S()T,E) //stepI//
2 Obtain an optimal complete s—matching, I,
for G //step 1//

3 Define r, from I
4 Construct ﬂ from r,
5 Use X to constructlm’= (v , E

//step 1//
{/)step 11//

//step 111//
6 Find a coloration, C, for M //step T11//
7 Use C to construct solution S, for X
//step 111//
8 Use S to obtaln the solution S for Y
9 Retur%
End of Algo¥1thm

Figure A.5: Algorithm APPROX.

Theorem A.1l: Algorithm APPROX constructs a solution to
Y Dby introducing at most 3 * OPT via columns, where
_OPT 1is the number of via columns in an optimal solu-
tion to Y,

Proof: By the above discussion. []

In. appendix B we show that an ocs-matching for a
blpartéys ?/aph G =(5 () T, E) can be obtained in
log s ) time, where s = |S|, t = IT| and
e = |E|l. In appendlx B it is shown that a colbration
using no more than (3/2) * d colors for a multigraph
M= (V', E') can be obtained in 0O(m n2) time, where d
is the maximum degree of any node in M, n= |[V'| and m
= |E'|. Using these results we compute the overall
time complexity of the algorithm.

Theorem A.2: Algorithm APPROX ﬁgn 9e implemented to

execute no more than than 0Of l /2 1og P ), where p
; is the number of pins 1n net N, and r is

the ﬁumbe% of rows in the board.

Proof: For brevity the proof of this theorem is omit-

ted, {1

Appendix B: OCS-Matchings.

We present- -an- -algorithm to construct an ocs-—
natching for G, where G= (S () T , E) is a bipar-
tite graph and an ocs-matching is defined in appendix A
Lets—{x,x,...,xs}, {Y ,y 7 eee ¢

} and e =7|E].” For a complete s—matchlng Z, let
AFZ be the maximum degree of any node in G' = ( 8
() T,2)., It is simple to show that an ocs-

* natching, I, has 1 < M(I) £ IS| = s. Our procedure
>erforms a binary search on the set of integers { 1 ...
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s } to find the least value, [, such that G has a
complete s-matching, I, with M(I) < f. Clearly, at
most O( log s ) of these tests are required. The
problem of testing whether G has a complete s-
matching, I, with M(I) < f can be reduced to the prob-
lem of testing whether a bipartite graph H= ( S ()
T , E') has a complete matching for S, where T' = {

Y j ly;eTand1<j</ } and E' { {x
.Je S, ¥y eT and {x, , y:} €E }. ge éM? for
tﬁe deflnltfdﬂ of a comple%e ma%chlng for S in H.

Theorem B.1: Let G, H and { be as deflned above., G

has a complete s-matching, I, with M(I < A 1iff H has
a complete matching for S.

Proof: The proof is straightforward and therefore it is

omitted. []

Theorem B.2: An ocs-matching §95 G gn be obtained by

the above procedure in 0( e s log s ) time,

Proof: For brevity this proof is omitted. [1

In a subsequent paper we present another algorithm
to construct an ocs-matching. The algorithm is more
efficient than the one presented in this paper.

Appendix C: Coloring the Edges in a Multigraph.

Any multigraph M with maximum node degree, d, can
be colored by using at most (3/2) * d colors. The
proof of this fact is based on a generalization of
Vizing's theorem [V] (see [BMj). It is simple to
design an algorithm that constructs such a coloration.
The algorithm colors one edge at a time. When consid-
ering an edge for coloration, the algorithm first
checks if it 1is possible to color the edge without
recoloring any previously colored edge, This operation
takes O( 4 ) time, If some edges need to be
recolored, this is accomplished by following a pro—
cedure similar to the one used in the proof of Vizing's
theorem outlined in [BM]. In the worst case, the time
complexity of this recoloration is 0( d n )._ Since 4
is 0( n ), then the time complexity is O( n“ ). As
there are m edges in M, _the overall time complexity of
our procedure is O( m n® ),

Theorem C.3: Given a multigraph G = (N , E ) with

maximum node degree d, the edges in E can be colored
with no more thaa (3/2 #* d colors by a procedure that
requires O( m time, where n = IN| and m = |E|.
Proof: By the above discussion. [



