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Every knock-knee layout is four-layer wirable. However, there are knock-knee layouts
that cannot be wired in less than four layers. While it is easy to determine whether a
knock-knee layout is one-layer wirable or two-layer wirable, the problem of determining
three-layer wirability of knock-knee layouts is NP-complete. A knock-knee layout may
be stretched vertically (horizontally) by introducing empty rows (columns) so that it can
be wired in fewer than four layers. In this paper we discuss two different types of
stretching schemes. It is known that under these two stretching schemes, any knock-
knee layout is three-layer wirable by stretching it up to (4/3) of the knock-knee layout
area (upper bound). We show that there are knock-knee layouts that when stretched
and wired in three layers under scheme I (II) require at least 1.2 (1.07563) of the original
layout area. Our lower bound for the area increase factor can be used to guide the
search for effective stretching-based dynamic programming three-layer wiring algo-
rithms similar to the one presented in [8].

Keywords: Knock-knee layouts, three-layer wirable, stretching schemes, three-dimensional
layouts, layer assignment, detailed routing

1. INTRODUCTION

The rectangle routing problem (RRP), which is also
referred to as the switch-box routing problem, is a
fundamental problem in computer-aided VLSI
physical design. The input to this problem is a
rectangular grid R determined by the horizontal
lines with y-coordinate values i, 0 < < h + and
the vertical lines with x-coordinate values j,

0 <j < w+ 1. The horizontal lines with y-coordi-
nate values 0 and h + and the vertical lines with
x-coordinate values 0 and w + form the boundary
of R. Let N {N1, N2,..., Np}, where each Ni is a
subset of grid points on the boundary of R
(excluding the corners of R), such that Ni f3

N= for all :/:j. Each set Ni is called a net and its
grid points are called terminals. A special case of
RRP is the channel routing problem (CRP), in
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which all terminals are located on two opposite
sides of R.

Traditionally, the RRP has two conducting
layers available for routing. Recent advances in
VLSI fabrication technology have made it prac-
tical to use three or more layers for the
interconnection of the nets. A typical knock-knee
multi-layer RRP routing algorithm consists of two
phases. In the first phase, a knock-knee wire
layout W { W1, W2,..., Wp} is constructed, where
each Wi is a subgraph of the grid R connecting all
terminals in Ni such that Wg does not share any
grid edge with l/F. for all j :/: i. In the second phase,
each wire segment in W is assigned to a layer in
such a way that no two wire segments from
distinct wires share a grid point in any layer. For
example, this approach is used by the routing
algorithm for the two-terminal-net CRP (each net
has exactly two terminals) by Preparata and
Lipski [18]. Their algorithm guarantees an optimal
three-layer wiring. Several other routing algo-
rithms are also based on this approach (e.g., see
[13, 16, 17, 19]). Brady and Brown [2] showed that
every knock-knee layout can be transformed into
a four-layer wiring with dimensions identical to
those of the knock-knee layout. By using the
reduction given in Theorem 2.1 (refer to the next
section), Lipski [14] showed that the problem of
deciding whether a given knock-knee layout is
three-layer wirable is an NP-complete problem.
Only restricted classes of knock-knee layouts are
known to be three-layer wirable (e.g. [13, 20, 17,
19]).
A knock-knee layout may be stretched vertically

(horizontally) by introducing between a pair of
adjacent rows (columns) an empty row (column)
[see Fig. 6]. Clearly, stretching a knock-knee
layout increases its area; however, if a knock-knee
layout is stretched in appropriate places it can be
wired in fewer than four layers. This approach has
been considered in [4, 8, 9, 10, 11, 12, 16, 21]. It is
important to investigate the trade-off between the
routing area and the number of layers needed for
wiring a knock-knee layout. Let A(W) denote the
area of knock-knee layout W. The simple stretch-

ing algorithm described in 16 generates a two-layer
wiring with area at most 2A(W), by vertically
stretching it between every pair of adjacent rows.
Gonzalez and Zheng [9] showed that there are
knock-knee layouts that need to be stretched by
this factor of two even when more general
stretching schemes are allowed. Algorithms that
construct minimum area two-layer wirings by
vertically stretching the knock-knee layout are
given in [4, 12]. Algorithms that construct area-
efficient three-layer wirings by vertically stretching
the knock-knee layout are given in [4, 8]. When
there are more than four layers available for
wiring, a routing solution is rather complicated
and thus harder to generate due to its 3-dimen-
sional structure. In such a situation, the partition
approach of [1, 5, 7] can be used. In this approach,
an RRP can be decomposed into several RRP’s,
each consists of a collection of subnets of the
original RRP. Then, each of these new RRP’s is
solved using a fixed number of layers. One possible
partition method is to ensure that each generated
RRP to be routable in knock-knee mode. The
routability can be guaranteed by using the condi-
tions given in [3, 6] and algorithms in [3, 6, 16].
Once the knock-knee layouts for these RRP’s are
generated by some knock-knee routing algorithms,
the multilayer wiring can be constructed by
stretching and wiring each of these knock-knee
layouts.

In this paper we discuss two different types of
stretching schemes, scheme I and scheme II, for
three-layer wiring knock-knee layouts. Scheme I
allows layout stretching only in one dimension,
whereas scheme II allows layout stretching in both
dimensions. A stretched three-layer wiring is
optimal if the resulting layout area is minimum.
By the results of [14], the problem of finding an
optimal stretching is NP-hard. We investigate the
lower-bounds of the ratios of the stretched 3-layer
wirable layout and the original layout under these
two schemes. This problem is important since it
provides a measurement for evaluating the perfor-
mance of stretching and 3-layer wirability. It is
known that under scheme I, any knock-knee
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layout may be stretched and wired using three
layers in no more than (4/3) the knock-knee
layout area (upper bound) [4, 8]. In section 4(5),
we show that there are knock-knee layouts that
when stretched and wired in three layers under
scheme I (II) require at least 1.2 (1.07563) of the
knock-knee layout area. Our lower bound for the
area increase factor can be used to guide the search
for effective stretching-based dynamic program-
ming three-layer wiring algorithms similar to the
one presented in [8].

2. PRELIMINARIES

In this section, we review some of the fundamental
concepts and the main theorem in the theory of
wiring knock-knee layouts [15]. A tessellation T of
the plane is a partition of the plane into regular
polygons, called tiles, such that each partitioning
line segment is shared by exactly two tiles. The
sides of the tiles are called tile edges, and the
endpoints of the tile edges are called tile vertices.
The dual graph of a given tessellation T of the
plane (called the grid of T and denoted by R(T)) is
defined by grid points (vertices) located at the
center of each tile and the grid edges that join grid
points located on adjacent tiles. We say that a grid
of T is uniform if each grid point has an even
degree, i.e. each tile in its corresponding tessella-
tion T has an even number of sides. There are
exactly four different uniform grids: square,
hexagonal, octo-square and dodeco-hexo-square
[15]. In this paper, we only consider the uniform
square grid. A layout domain D is a collection of
tiles of T. The definition of the grid of D, which is
denoted by R(D), is similar to that of R(T). I.e.,
the grid edges of R(D) are the grid edges in R(T)
that intersect a tile edge of a tile in D, and the grid
points of R(D) are the grid points in R(T) incident
to a grid edge in R(D). The grid points in R(D)
outside the tiles in D are called terminals. When-
ever there is no ambiguity, we will draw terminal
points at the intersection of its corresponding grid
edge and the boundary of D. A wire w in D is a

connected subgraph of R(D) such that no grid
point of D has exactly one wire edge (each edge in
w is called a wire edge), except for the grid points
called terminals.
A knock-knee layout (or simply layout) in D is a

collection W { W1, W2,..., Wp} of mutually edge-
disjoint wires in D. In a knock-knee layout, two
distinct wires can share a grid point only by
crossing or forming a knock knee, as shown in
Figure 1. We say that a layout Wcontains a loop if
a subset of wire edges in wire Wi E Wig of the form
{(lk+l, Vk+2) (Vk+2, Vk+3) (Vk+l_l, Vk+l)} for
some > 4 and vk+ vk + t, where v+ l, v+ 2,....,

v+t represent grid points of R(D). A layout W in
D is called a full layout if every grid edge of R(D)
is covered by a wire edge of a wire in IV. If a grid
point p of D is not included in wire edges
belonging to more than wire, then p is called a
trivial gridpoint. Accordingly, a tile ofD is called a
trivial tile if its corresponding grid point is trivial.
Let D* be the set of nontrivial tiles in D. The core
of IV, denoted by W*, is the portion of IV
restricted to D*, i.e., IV* is obtained by deleting
from IV all trivial grid points and all wire edges
joining trivial grid points. A tile vertex that is
shared by fewer than four tiles in D* is called a
boundary vertex of D*, and a tile edge that is a side
of only one tile is called a boundary edge of D*. All
other tile vertices and tile edges of D* are called
internal. The boundary vertices and boundary
edges define the boundary of D*, which is a set of
vertex disjoint cycles. Note that a layout domain D
can have any rectilinear polygonal shape, and D* is
a set of rectilinear polygons, each may contain a
set of rectilinear polygonal holes. Hereafter we
assume that all layout domains D will have a
rectangular boundary, since the results on such
domains can be trivially generalized to more
general cases.

FIGURE Crossings and knock-knees.
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A tile in D which contains half wire edges
belonging to two distinct wires Wi and W that
form a knock-knee is called a knock-knee tile. The
arrangement of diagonals bisecting both wires in
each knock-knee tile is called the diagonal diagram
Da of W in D. We say that an internal tile vertex u
of Da is of degree k if there are k diagonals incident
to u. Note that by the definition of D, there may be
more than one layout sharing the same diagonal
diagram. However, corresponding to each distinct
diagonal diagram Dd in D there is a unique full
layout W’ such that each wire W W’ has no
terminals or exactly two terminals. We call such a
full layout as the standardfull layout correspond-
ing to Da in D.
A (conducting) layer Li, < < v, is a copy of the

grid R(D). The v layers are considered laid one
upon the other, in their indexed vertical order,
with L1 and Lv being the bottom-most and the top-
most layers. A v-layer wiring of layout Win D is an
assignment of each wire edge to a layer in such a
way that if wire edges el and e2 of Wa incident to a
grid point p of D are assigned to layers L,,. and Lj,
<j, respectively, then for every edge e of Wb,
a b, incident to p, e is not assigned to a layer Lk,
for < k .<_ j. The following theorem is fundamen-
tal in the theory of multi-layer wiring.

THEOREM 2.1([15]) An arbitrary knock-knee
layout W in layout domain D is three-layer wirable

if and only if there exists a set P* of internal tile
edges in D* corresponding to IV* such that

(a) every internal tile vertex of D* is incident with
an even number of segments of P* U D’a;

(b) for each connected component of the boundary
of D*, the total number of incidences of
segments of P*U D*a with vertices along this
component is even," and

(c) all segments in P* U D*a incident at any vertex of
D* does not contain any of the eight forbidden
patterns shown in Figure 2, where diagonals
drawn as dashed segments are not present.

We call the set P* of line segments satisfying the
conditions given in this theorem a legalpartition of

FIGURE 2 Forbidden Patterns. Dashed diagonals are not
present.

the diagonal diagram D)in D*. When the layout
domain is understood we just omit it and say that
a set of edges is a legal partition of a diagonal
diagram. Theorem 2.1 shows that the existence of
a legal partition of D)in D* is a necessary and
sufficient condition for the layout W in D to be
three-layer wirable. What can be said about the
existence of a legal partition of Da in D? Since
D*a C_ Dd and D* C_ D, we know that the existence
of a legal partition P for Dd in D implies the
existence of a legal partition P* for D) in D*. It is
simple to prove that the reverse is not true.
Therefore, the existence of a legal partition P of

Dd in D can only be used as a sufficient condition
for three-layer wiring of knock-knee layouts. This
well known result is captured in the following
corollary.

COROLLARY 2.1 An arbitrary knock-knee layout
W in layout domain D is three-layer wirable if there
exists a legal partition P of Dd in D.

A legal partition divides D*U D*a(D U Dd) into
regions that are two-colorable, i.e. using two
colors one can color its regions in such a way that
every two adjacent regions (regions sharing a line
segment as their common boundary) can be
assigned distinct colors. Given a legal partition
P*(P) of a diagonal diagram D*a(Dd in D*(D)
corresponding to W*(W), the process of trans-
forming layout W into a three-layer wiring is
simple. Interested readers may refer to [18] for
details of this transformation. Using the reduction
given in Theorem 2.1, Lipski [14] gave an example
showing that there exists a 19-row wire layout that
is not three-layer wirable. Using this layout
structure he showed that the problem of deciding
whether a knock-knee layout is three-layer wirable
is NP-complete.

Consider the layout domain D and a layout W
defined in D as shown in Figure 3(a). The
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FIGURE 3 (a) Knock-knee layout. Layout domain D (all tiles), layout W (solid lines, dark dots are connections), trivial tiles
(shadowed tiles), W* (the portion of Win the non-trivial tiles), and domain D* (unshadowed tiles). (b) Diagonal Diagram D, on D*.
Shadowed area are trivial tiles.

shadowed tiles are trivial tiles and the portion of
the wires defined in the non-trivial tiles is W*
and the non-trivial tiles constitute the layout
domain D*. Note that in this case D* consists of
three rectilinear polygons, and one of them
contains a hole. Figure 3(b) shows the diagonal
diagram D corresponding to W*. A legal parti-
tion of the diagonal diagram given in Figure 3(b) is
shown in Figure 4(a). A three-layer wiring
constructed from the legal partition (Figure 4(a))
is shown in Figure 4(b). For the RRP problem the
layout domain D is an h-row by w-column
rectangular subdivision of T. If W is a loop-free
full layout in a layout domain D such that every
wire W of W has two terminals, then W* is
identical to W and D* is identical to D. Therefore,
to derive new results on three-layer wirability of
knock-knee layouts, it is sufficient to consider only
two-terminal net loop-free full layouts. We are

particularly interested in the layouts in a rectan-
gular domain D. In section 6, we discuss some
results concerning three-layer wiring based on the
conditions given in Corollary 2.1.

3. LAYOUT STRETCHING SCHEMES

Since the problem of determining whether a knock-
knee layout is three-layer wirable is NP-complete,
we investigate the problem of stretching and then
wiring a knock-knee layout. This approach has
been considered in [4, 8, 9, 10, 11, 12, 16, 21].
Stretching a layout vertically (horizontally) is
equivalent to dividing the layout horizontally
(vertically) between two adjacent rows (columns)
into two sublayouts, then inserting an empty
horizontal (vertical) grid line between these two
sublayouts and merging the vertical (horizontal)

FIGURE 4 (a) Legal partition ofD in D*. The colors are blank and dashed. (b) Three-layer wiring of W obtained from the legal
partition. Solid lines (top layer), dotted lines (middle layer), and dashed lines (bottom layer).
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wires in these two sublayouts at the newly
introduced grid line. The following layer assign-
ment scheme is a direct generalization of the layer
assignment algorithm given in [16].

(1) Divide W horizontally and/or vertically, into
sublayouts W1,...,Ws, such that wi,1 < < s,
is three-layer wirable.

(2) Find a three-layer wiring for each sublayout
W of W.

(3) Extend the grid R to form grid R by inserting
a horizontal (vertical) empty grid line between
sublayouts separated by a horizontal (vertical)
dividing line introduced in step (1).

(4) Merge two adjacent sublayouts at the newly
inserted grid line and introduce vias .at the grid
points on the new grid line if it is necessary.

Depending on the type of additional grid lines
introduced, we make a distinction between the
following two stretching schemes:

Scheme I Wirings are obtained by only introdu-
cing either additional horizontal or vertical grid
lines.
Scheme H .Wirings are obtained by introducing
additional horizontal and vertical grid lines.

Let h and w be the height and width for grid R,
respectively. We use W’ to denote the layout
corresponding.to the wiring obtained by the above
algorithm. Clearly, for scheme I we have

scheme I and II for the layout in Figure 5 are given
in Figure 6.

Consider any full layout W defined in a
rectangular layout domain D without holes. If
every wire Wi in W has two terminals and the
segments of each Wi does not form a loop, then (as
we mentioned before) W* and D* are identical to
W and D, respectively. Then, finding a three-layer
wiring of W by the above stretching and wiring
schemes can be restated as follows.

(2)

(3)

(4)

Construct the diagram Da corresponding to
W.
Divide Da into legally partitionable blocks
D1,...,Ds, by introducing horizontal and/or
vertical partitioning lines along the tile edges
of D (accordingly layout W on D is parti-
tioned into three-layer wirable sublayouts
W1,..., WS).
Find legal partition P for each D and
construct a three-layer wiring A for the
sublayout 14A from P of D.
Extend the grid R to form grid R’ by inserting
a horizontal (vertical) empty grid line between
every two adjacent sublayouts separated by a
horizontal (vertical) division line introduced in
step (2).
Obtain a stretched layout W’ and its wiring by
merging every two adjacent sublayouts in the

( t) .A(W),A(W’) 1+
(or A(W’) +- A(W)),

where is the number of additional horizontal (or
vertical) grid lines. For scheme II we have

u
A(W’) (1 +). (1 +). A(W),

where and u are the number of additional
horizontal and vertical division lines introduced,
respectively. Examples of stretched layouts under FIGURE 5 Standard full Layout for the knock-knee layout

given in Figure 3(a).
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__J , ’,,_._J L_

FIGURE 6 Layouts obtained by stretching the layout in Figure 5 using scheme and II.

division at the newly inserted grid lines and
introduce vias at the grid points on the new
grid line whenever necessary.

We call the ratio A(W’)/A(W) the area increase

factor of the stretching scheme. This abstraction of
stretching and wiring schemes, allows us. to simplify
the investigations on the area increase factor in two
different but related aspects. We elaborate this
point by considering only scheme I, because similar
arguments can be applied to scheme II. Since the
existence of a legal partition of Da is a sufficient
condition for the three-layer wirability of all
layouts sharing the same Da (see Corollary 2.1), if
we know that for any k-row diagonal diagram
there exists a legal partition, then we can conclude
that any layout Wcan be wired with three layers in
area no greater than ((k + 1)/k) A(W. Here,
(k + 1)/k is an upper bound for the area increase
factor under scheme I. Therefore, the problem of
finding a computationally attainable smaller upper
bound is equivalent to finding an efficient algo-
rithm that guarantees a three-layer wiring for any
k-row layout such that k is as large as possible. On
the other hand, if we know that there exists at least
one two-terminal loop-free full layout W with
diagonal diagram Da such that all its subdiagrams
formed by its k adjacent rows and all its
subdiagrams formed by its k adjacent columns do
not admit legal partitions, then by Theorem 2.1 we
can conclude that not all layouts W can be wired
with three layers in area less than ((k + 1)/k)

A(W). That is, one cannot design an algorithm
which guarantees three-layer wirings with area less
than (k+ 1)/kA(W) for all layouts W. Here,
(k + 1)/k is an existential lower bound (or simply
lower bound) for the area increase factor under
scheme I. The lower bound for the area increase
factor can be used to guide the search for effective
stretching-based three-layer wiring algorithms.

4. A LOWER BOUND FOR THE AREA
INCREASE FACTOR UNDER SCHEME I

To establish a lower bound for the area increase
factor under scheme I, we construct a knock-knee
full layout and show that (a) it is a two-terminal
loop-free knock-knee layout (Lemma 4.4), and (b)
when stretched and three-layer wired under
scheme I it requires at least a number of grid lines
proportional to either the height or the width of
the layout constructed in (a) [Theorem 4.1]. To
show that this layout is not three-layer wirable in
an area 1.2 times the knock-knee layout area we
show that any adjacent six rows or columns in the
diagonal diagram Da corresponding to the layout
cannot be legally partitioned. This diagonal
diagram consists of copies of a strip subdiagram
arranged as shown in Figure 11. First we show
that the strip subdiagram cannot be legally
partitioned (Lemma 4.1) and then we show that
it corresponds to a two-terminal-net loop-free full
knock-knee layout (Lemma 4.2).
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We now establish that the diagonal diagram,
called the strip subdiagram, shown in Figure 7 does
not admit any legal partition.

LEMMA 4.1 The diagonal diagram given in Figure
7 does not admit any legal partition.

Proof Since the proof is mechanical and has too
many details, it is presented in the Appendix.

LEMMA 4.2 The standardful! layout correspond-
ing to the diagonal diagram given in Figure 7 is not
wirable in three layers.

Proof The standard full layout corresponding to
the diagonal diagram given in Figure 7 is shown in
Figure 8. Clearly, there is no loop in this layout.
By Theorem 2.1 and Lemma 4.1, this layout is not
three-layer wirable.

Let us consider the standard loop-flee full
layout W given in Figure 8. We call a net in W a
rising net if its two terminals (xl,yl) and (xa,Y2) are
not located on the same boundary and Xl < xa and
Yl < Ya; afalling net if its two terminals (Xl,Yl) and
(x2,ya) are not located on the same boundary and
Xl<X2 and yl >y2; a through net if its two
terminals (xl, yl) and (x2, y2) are located on the
two opposite boundaries and x x2 or Yl =Y2; a
local net if for its two terminals (xl, Yl) and (x2,
are located on the same boundary. Clearly, each
net in the layout is of (exactly) one of these four
types. We label each terminal with r, f, or l

depending on the type of net the terminal belongs
to. For the two terminals belonging to the same
local net and located at a horizontal boundary, we
call the one with the smaller x-coordinate value the
left terminal of the net and the other the right
terminal of the net. We use ll and lr to distinguish
leftterminals and right terminals of local nets with
terminals located on the top or bottom boundary.
The layout has the following properties:

(i) Every wire (for a net) is vertically monotone,
i.e. a vertical line located between any given
two adjacent columns does not intersect the
wire of any net more than once.

(ii) There does not exist a net whose two
terminals are located on the same vertical
boundary of the layout.

(iii) The terminal located at the left end of the i-th
row and the terminal located at the right end
of((imod 6)+l)-th row, < _< 6, are
either both labeled r or labeled f.

(iv) If a terminal labeled f or l! is located at the
intersection of column c and the top bound-
ary, then the terminal located at the intersec-
tion of column c and the bottom boundary is
labeled f or lr.

(v) If a terminal labeled r or lr is located at the
intersection of column c and the top bound-
ary, then the terminal located at the intersec-
tion of column c and the bottom boundary is
labeled r or ll, except for the pairing lr on the

2 \
/
\
/

\
/ N,/ X, \ \

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

FIGURE 7 Strip Subdiagram.

rfrtrtftrt frtrtlltrlrlltlrtfrllftrt ftrtrllrtlltlrtftrtrflrtlrf
.I N "L__V nd._k_..Ir l[_L_q lli I1 f’ll’gl I,dA_.l__l__"l,,I I_1 !1 I1

I,d I’ I,d l’ll,d /’g-F-,dX-F I.lq"l Ixl I 10,d /I [Xl l,,ll"l 1 r
1" 1--I I1 I"kl_’3 IJi l’g IJ_.[_q I’g ’lJ I"1 1"1 I/]

rfrtrtftlltfrtlltftllrlrtrtfrfftrtftrtrlrlltftrtlrtrtlllrrtrlr

FIGURE 8 Labeled standard full layout for the diagonal diagram in Figure 7.
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top boundary and 11 on the bottom boundary
which is not possible.

To simplify our notation we use t, b, and r to
label the top, bottom, left and right boundaries of
the standard full layout corresponding to the strip
subdiagram given in Figure 7. We say a terminal in
the standard full layout corresponding to the strip
subdiagram in Figure 7 is of type pq if it is labeled
p E {r, f, ll, lr} and it is located on the boundary
labeled q E {t, b, l, r}, of the layout. For example,
a terminal is of typefr if it is a terminal of a falling
net localed on the right boundary of the layout.
Note that we totally ignore through nets and their
terminals. The reasons for this will be addressed
shortly. By fact (ii) we know that there are 12
different types of terminals in the layout corre-
sponding to the strip subdiagram given in Figure 7
named rt, rb, rl, rr, ft, fb, fl, fr, llt, llb, lrt and lrb.

Let the lower left corner point of the layout
domain D be (0,0). By placing a 6-row by 52-
column strip subdiagram in D such that the lower
left corner point of the strip subdiagram is (52.i,
+6.j), where 0<i<5 and j>0, we obtain a
subdiagram arrangement shown in Figure 9. We
call this arrangement the strip subdiagram arrange-
ment All. The standard full layout corresponding
to All is divided into sublayouts shown in Figure 8
by the division lines, which are the boundaries of
subdiagrams, in subdiagram arrangement All.
Thus a horizontal (resp. vertical) division line
can be treated as the top (resp. left) boundary of
one sublayout and the bottom (resp. right)
boundary of another sublayout. Consequently,
the crossing point of a wire and a division line in

AI can be treated as a terminal of both adjacent
sublayouts along the division line. We may call
such a crossing point a pseudo terminal. Obviously,
a vertical wire of a through net in a sublayout
corresponding to a subdiagram in All is a wire
segment of a vertical wire going through the
standard full layout corresponding to AI. We can
ignore these vertical wires since they never form
loops.

Let us define a directed graph G (Fig. 10) as
follows. There are 12 nodes in G, each correspond-
ing to a distinct terminal type. There are two type
of arcs, type-1 (solid lines) and type-2 (dashed
lines). The type-1 arcs are labeled either L or R. A
type-1 arc from node A to node B with label L
(resp. R) indicates that in a strip subdiagram there
is a net with terminals type A and B such that the
wire that starts at the terminal represented by node
A moves to the left (resp. right) until it reaches a
terminal represented by node B. The type-2 arcs

FIGURE 9 Strip subdiagram arrangement All.

FIGURE 10 Type-1 arcs (solid arcs) and type-2 arcs (dashed arcs).
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relate nets on adjacent strip subdiagrams. There is
a type-2 arc from node A to node B if a pseudo
terminal at a division line can be of type A for one
sublayout and it can also be of type B for the
adjacent sublayout along the division line. Note
that type-2 arcs are symmetric.

Checking whether there is a loop in the standard
full layout corresponding to AI can be determined
by tracing all wires in the layout. With graph G at
hand, the verification is simpler. Let us trace any
wire in the standard full layout corresponding to

hi.1 starting from any pseudo terminal in it. In
parallel to this tracing, we traverse the graph G
through a directed path. It is easy to see that
tracing a wire in the standard full layout corre-
sponding to All is equivalent to traversing a
directed path of arcs of type-1 and type-2 in an
alternating order on graph G. If all type-1 arcs in
an alternating path are labeled L (resp. R), then
when we trace a wire in the layout corresponding
to All we always move to the left (resp. right) from
subdiagram to subdiagram. Taking fact (i) into
account, we know that every wire in the standard
full layout corresponding to All is vertically
monotone. Therefore, there are no loops.

LEMMA 4.3 The standardfull layout correspond
ing to the subdiagram arrangement All given in
Figure 9 is loop-free.

Proof From the above observations it is simple
to prove that it is only required to show that every
alternating directed path in G has all type-1 arcs
either labeled L or R. Since the proof of this fact is
straight forward, it will be omitted.

Using the subdiagram arrangement All, let us
construct a subdiagram arrangement A 12 as shown
in Figure 11. The shadowed area in this subdia-
gram arrangement does not contain diagonals.

LEMMA 4.4 The standardfull layout correspond-
ing to the subdiagram arrangement A12 constructed

from the strip subdiagram given in Figure 7 is loop-
free.

Proof The proof follows from Lemma 4.3. 73

FIGURE 11 Strip subdiagram arrangement A12.

THEOREM 4.1 For any small e > 0 there exists a
knock-knee layout W such that under stretching
scheme I any of its three-layer wirings W’ has area

A(W’) > (c-e).A(W), where Cl (6/5).

Proof Consider the standard full layout corre-
sponding to the subdiagram arrangement A12 of
Figure 11. By Lemma 4.2 we know that it is loop-
free. In this layout, except for 6.52 rows and 6.52
columns, every six adjacent rows and columns
contains a sublayout that is not. three-layer wirable
(Theorem 2,1 and Lemma 4.2). Since the dimen-
sion of this layout can be arbitrarily large, we
conclude that for any small e > 0 there exists a
knock-knee layout W such that under scheme I
any three layer wiring W’ for it has area
A(W’) > ((6/5) e). A(W). This completes the
proof for the theorem.

5. A LOWER BOUND FOR THE AREA
INCREASE FACTOR UNDER SCHEME II

To derive lower bounds for the area increase factor
under stretching Scheme II, we need to find
layouts with small dimensions for which legal
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partitions do not exist and then use these layouts
to construct a larger layout with certain structure.
Consider an n-row by n-column diagonal diagram
satisfying that (a) both of its upper left corner tile
and lower right corner tile either do not contain
diagonal or contain diagonals of the same type, (b)
it does not admit any legal partition, and (c) its
corresponding standard full layout is loop-free.
We call such a diagonal diagram a square
subdiagram. Let us arrange identical n-row by n-
column square subdiagrams in such a way that the
lower left corner of every subdiagram has x-
coordinate i.n +j and y-coordinate j.n+ i, where
and j are integers. The arrangement restricted to
the rectangle formed by the horizontal lines of y-
coordinate value 0 and h and vertical lines of x-
coordinate values 0 and w is shown in Figure 12.
We call the arrangement restricted to this rectangle
the square subdiagram arrangement A2. By (a), we
know that A2 is a diagonal diagram of some full
knock-knee layout. If the standard full layout
corresponding to diagonal diagram A2 is loop-free,
then from (b) we know that this layout is not
three-layer wirable. Note that condition (c) does
not imply that the standard full layout correspond-
ing to diagonal diagram A2 is loop-free.

Suppose that the standard full layout corre-
sponding to diagonal diagram A2 is loop-free. We
define a window in the arrangement A2 as a
rectangular region with boundary lines formed
by tile edges of D. We define t(u,n), for u > n, as
the smallest integer v such that in the arrangement
A2 any u row by v column window contains at least
one square subdiagram. By symmetry, the compu-
tation of t(u,n)can be performed by only
considering those windows whose lower left
corners are located at tile vertices (0, y), where
0 < y < n2. Therefore,

f
t(u,n) max min{xlthe window defined by

O<_y<_n x

(0, y), (0, y + u), (x, y) and (x, y + u)
in A contains at least one n-row by

,square subdiagram}n-column

In any (wirable) division by Scheme II, if there is
a sublayout with u rows there must be at least
[(h/u)] -1 horizontal division lines and there
must be at least [w/(t(u,n)- 1)] vertical
division lines. Without loss of generality assume
that w h and these values are large. Then, the
area of the stretched wirable layout is about

) .A(W)(t(u,n)- 1)

and a lower bound for the area of the stretched
wirable layout is given by

(t(u, n) 1) lu > n

FIGURE 12 Square subdiagram arrangement A2.

To obtain a larger lower bound, a smaller t(u,n)
value is required; and a smaller t(u,n) value can be
derived .only from a smaller value for n. Let us
consider the square subdiagram shown in Figure
13, where n 10.

LEMMA 5.1 There is no legal partition for the
diagonal diagram given in Figure 13.
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6

4

0 2 4 6 8 10

FIGURE 13 Square Subdiagram.

Proof The proof has similar structure as the one
for Lemma 4.1. Since the proof includes too many
details, it is given in the Appendix. [5]

LEMMA 5.2 The standardfull layout correspond-
ing to the square subdiagram shown in Figure 13/s

three-layer unwirable.

Proof The standard full layout corresponding to
the square subdiagram of Figure 13 is shown in
Figure 14. Clearly there is no loop in this layout.
By Lemma 5.1 and Theorem 2.1, this layout is not
three-layer wirable. F]

7 /

/

/

/

\
\ \

_/

Based on the above discussions, we establish the
following Theorem.

THEOREM 5.1 There exists a knock-knee layout
W such that under stretching scheme H any of its

three-layer wirings W’ has area A(W’) >_ c2.A(W),
where c2 is 1.075630.

Proof Consider the subdiagram arrangement A2.
If we use the diagonal diagram of Figure 13 as the
component subdiagrams, there are wire loops in
the standard full layout corresponding to the
arrangement. To eliminate loops we extend this
10-row by 10-column square subdiagram to a 11-
row by 11-column square subdiagram shown in
Figure 15. The standard full layout corresponding
to this square subdiagram is shown in Figure 15.
This layout does not contain any loop. From
Theorem 2.1 and Lemma 5.2, we know that to
complete the proof of the theorem we only need to
show that there is no loop in the standard full
layout corresponding to this subdiagram arrange-
ment. The proof is not obvious. First let us show
that there are no loops. In Figure 15, we label the
wires in the layout corresponding to the square
subdiagram. Let us now consider the wires in A2.

3 22 13 21

I0

5 7

/

16 14 19 22 11 16

\

Z
/

/

9

4

6

6

12 20 15 13 18 21 12 17 8 2

FIGURE 14 ".Standard full layout corresponding to the
diagram in Figtfie 13.

FIGURE 15 Extended diagonal diagram and its standard full
layout.



MULTILAYER WIRABILITY 377

We claim that there is only one type of global wires
(see Fig. 16). These wires are formed by the
repeated sequence of the wires

without any loop (Fig. 16). Therefore, no wire in

A2 has a loop..One can also modify the top row
and right column of the diagonal diagram in

FIGURE 16 Global wire.

Figure 15 to obtain a loopless A2 diagram with
two, three or even four different types of wires. We
used the one in Figure 15 for convenience. The
values for the subdiagram arrangement are given
in Table I. Therefore, c2 1.075630 (the mini-
mum is achieved for u 17 and t(u, n) 64).

6. DISCUSSIONS

We considered two different layout stretching
schemes for three-layer wiring knock-knee layouts.
We showed the lower bounds 1.20 and 1.075630
for the area increase factor under stretching
schemes I and II, respectively. The upper bound
4/3 for the approximation factors under scheme I
by using the algorithms given in [4] and [8] is close
to the lower bound 1.20 developed in this paper.
The lower bound we found for the approximation
factors under scheme II is much smaller than that
for the scheme I. This provides "evidence" that
smaller upper bounds tbr the stretched layout area
may be obtained under scheme II. Several
techniques for stretching and three-layer wiring
are proposed in [8]. We believe that the combina-
tion of the two stretching schemes considered in
this paper and some wiring techniques proposed in
[8] may result in better wiring area upper bounds.

Let us now define the following four classes of
knock-knee layouts

(a)

(b)

(c)

Knock-knee layouts whose diagonal dia-
grams Dd are of degree greater than two.
Knock-knee layouts whose diagonal dia-
grams Da are of degree two.
Knock-knee layouts whose diagonal dia-
grams. Da are of degree two and the standard
full layouts of the diagonal diagrams are
loop-free.

u 11

t(u, 11) 130

(1 + (l/u))(1 + (lit(u, 11) 1)) 1.1

12

119

1.09

TABLE u and t(u, ll)

13 14 15 16 17 18 19. 20 21

108 97 86 75 64 53 42 31 20

1.09 1.08 1.08 1.08 1.0756 1.08 1.08 1.09 1.1

> 22

< 20

> 1.08
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TABLE II Upper and lower bounds for stretching and three-layer wiring

Scheme Scheme II

Class upper bound lower bound upper bound lower bound

a 1.33 1.33 1.33 1.173
b 1.33 1.25 1.33 1.134
c 1.33 1.20" 1.33 1.075"
d 1.25 1.167" 1.25 1.060

(d) Knock-knee layouts whose diagonal diagrams
Da are of degree one.

In Table II we summarize the lower and upper
bounds for stretching and wiring knock-knee
layouts in these four classes. The upper bounds
are derived in [4] and [8]. The lower bounds are
derived [9], [10], and in this paper (for class (c)).
An entry marked with a "*" means that the lower
bound is with respect to any algorithm that
obtains the wiring by partitioning the correspond-
ing diagonal diagram of D and not Da (see
Corollary 2.1 in Section 2). Itis worthwhile to note
that the lower bounds for the wiring area under
scheme II are much smaller than those for
scheme I.

Acknowledgments

We wish to thank Donna J. Brown, Franco P.
Preparata, Majid Sarrafzadeh and Ioannis Tollis
for their comments and suggestions to earlier
versions of this paper. The extended diagonal
diagram given in Figure 15 was generated by a
program running on UCSB’s MEIKO CS-2.

References
[1] Braun, D., Burns, J. L., Romeo, F., Sangiovanni-

Vincentelli, A., Mayaram, K., Devadas, S. and Ma,
H. -K. T. (1988). Techniques for Multilayer Channel
Routing, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Syst., 7(6), 698-712.

[2] Brady, M. L. and Brown, D. J. (1984). VLSI Routing:
Four Layers Suffice, Advances in Computing Research, 2,
245-258.

[3] Becker, M. and Mehlhorn, K. (1986). Algorithms for
Routing in Planar Graphs, Acta Informatica, 23(2), 163-
176.

[4] Brady, M. L. and Sarrafzadeh, M. (1990). Stretching a
Knock-Knee Layout for Multilayer Wiring, 1EEE Trans-.
actions on Computers, 39, 148-152.

[5] Cong, J., Hossain, M. and Sherwani, A. (1993). A
Provably Good Multilayer Topological Planar Routing
Algorithm in IC Layout Designs, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 12(1), 70-78.

[6] Frank, A. (1982). Disjoint Paths in Rectilinear Grid,
Combinatorica, 2(4), 361 371.

[7] Greenberg, R. I., Ishii, A. T. and Sangiovanni-Vincentelli,
A. (1990). MulCh: A Multi-Layer Channel Router Using
One, Two and Three Layer Partitions, Proceedings of the
IEEE International Conference Computer-Aided Design,
pp. 52-55.

[8] Gonzalez, T. F. and Zheng, S. Q. (1989). Stretching and
Three-Layer Wiring Planar Layouts, INTEGRATION:
the VLS1 Journal 8, 111 141.

[9] Gonzalez, T. F, and Zheng, S. Q. Three Layer Wirability
of Planar Layouts, Proceedings of the 25th Annual
Allerton Conference on Communications, Control and
Computing, October 1987, 387- 396.

[10] Gonzalez, T. F. and Zheng, S. Q. (1990). Area Bound for
the Three-Layer Wirings of a Class of Planar Layouts,
Congressus Numerantium, 74, 181 192.

[11] Gonzalez, T. F. and Zheng, S. Q. (1992). Grid Stretching
Algorithms for Routing Multiterminal Nets through a
Rectangle, INTEGRATION: the VLSiJournal, 13, 153-
177.

[12] Kaufmann, M. and Molitor, P. (1991). Minimal Stretch-
ing of a Layout to Ensure 2-Layer Wirability, INTE-
GRATION: The VLSI Journal, 12, 339- 352.

[13] Kuchem, R., Wagner, D. and Wagner, F. (1989). Area-
Optimal Three-layer Channel Routing, Proceedings of the
30th Symposium on Foundations of Computer Science, pp.
506- 511.

[14] Lipski, W. Jr. (1984). An NP-complete Problem Related
to Three-layer Channel Routing, Advances in Computing
Research, 2, 231 244.

[15] Lipski, W. Jr. and Preparata, F. P. (1987). An Unified
Approach to Layout Wirability, Mathematical Systems
Theory, 19, 189- 203.

[16] Mehlhorn, K. and Preparata, F. P. (1986). Routing
Through a Rectangle, Journal of the ACM, 33(1), 60-85.

[17] Mehlhorn, K., Preparata, F. P. and Sarrafzadeh, M.
(1986). Channel Routing in Knock-Knee Mode: Simpli-
fied Algorithms and Proofs, Algorithmica, 1, 213- 221.

[18] Preparata, F. P., and Lipski, W. Jr. Optimal Three-layer
Channel Routing, IEEE Transactions on Computers,
33(5), (May 1984), 427-437.



MULTILAYER WIRABILITY 379

[19] Preparata, F. P. and Sarrafzadeh, M. (1984). Channel
Routing of Nets Bounded Degree, VLSI." Algorithms and
Architectures, North-Holland.

[20] Sarrafzadeh, M., Wagner, D., Wagner, F. and Weihe, K.
(1994). Wiring Knock-Knee Layouts: A General Ap-
proach, IEEE Transactions on Computers, 43(5), 581-
589.

[21] Tollis, I. G. and Vaguine, A. V. (1992). Improved
Techniques for Wiring and Stretching Layouts, Journal
of Circuits, Systems and Computing, 2, 39-58.

\
/ ,,,,

0123456789101112

FIGURE 17 Basic component.

APPENDIX

To simplify our proofs of Lemma 4.1 and Lemma
5.1, we use the following conventions. We use the
ordered pair (x, y) to refer to the tile vertex in D
with coordinate values x, y. A horizontal line
connecting two tile vertices (Xl, Yl) and (x2, Yl) is
referred to by [(x1, Yl), (x2, yl)]. Similarly, a
vertical line connecting two tile vertices (xl, Yl)
and (Xl, y2) is referred to by [(Xl, yl),(Xl, y2)]. We
use the notation "S1$2-...-Sk" to mean that
"statement $1 holds; since S1 holds, then $2 holds;
since S1 and $2 hold, then $3 holds;...; since
statements S1,...,Sk_I hold, then statement Sk
holds". Let Dd be a diagonal diagram in layout
domain D and let P’ be a set of tile edges of D. We
say that a tile vertex v in D is legally connected by
P’ if the number of segments from DdtOP
incident at v is even, and there are no forbidden
patterns that include v. Clearly, if P’ is a legal
partition of Dd in D, then all vertices in D must be
legally connected by P’.
The proof of that there exists no legal partition

for the strip subdiagram shown in Figure 7 is
based on the proof that a basic component in it
cannot be legally partitioned when some key
partitioning lines are present (Lemma A).

connected in P there are two cases need to be
considered.

Case 1 Vertex (10,3) is the right end point of a
horizontal partitioning line, b, in P (Figs. 18 and
19).

Since vertex (7,3) is of degree one in the
diagonal diagram, it must be the left end point
of this horizontal line. There are two sub-
cases, depending on how vertex (8,2) is legally
connected in P.

Subcase 1.1 Vertex (8,2) is the left end point of a
horizontal line, c, in P (Fig. 18).

a [(0,4),(11,4)], b [(7,3),(10,3)], and
c=[(8,2),(12,2)] are in P-.vertex (11,3) can-
not be legally connected in P (Fig. 18). This
contradicts the assumption that P is a legal
partition.

\
/ /

0123456789101112

FIGURE 18 Subcase 1.1.

LEMMA A The diagonal diagram given in Figure
17 does not admit any legal partition which contains
a horizontal partitioning line with vertex (11,4) as
its right end point.

Proof The proof is by contradiction. Suppose it
has a legal partition P which contains a horizontal
partitioning line with vertex (11,4) as its right end
point. Depending how vertex (10,3) is legally

a

0123456789101112

FIGURE 19 Subcase 1.2.
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Subcase 1.2 Vertex (8,2) is the top end point of a
vertical partitioning line, b, in P (Fig. 19).

a= [(0,4),(11,4)], b= [(7,3),(10,3)] and c

[(8,0),(8,2)] are in Pd=[(5,1),(7,1)] is in P
vertex (6,2) cannot be legally connected in

P (Fig. 19). This contradicts the assumption
that P is a legal partition.

Case 2 Vertex (10,3) is the top end point of a
vertical partitioning line, b, in P (Fig. 20).

a [(0,4),(11,4)], and b [(10,0),(10,3)] are in
Pc [(7,1),(9,1)] is in P-+d= [(6,2),(8,2)]4
e- [(3,3),(7,3)] are in Pf= [(4,0),(4,2)] is in P
--g [(1,1),(3,1)] is in P vertex (2,2) cannot
be legally connected in P (Fig. 20). This
contradicts the assumption that P is a legal
partition.

In either case there is a contradiction. Therefore,
the diagonal diagram given in Figure 17 has no
legal partition which contains a horizontal parti-
tioning line with vertex (11,4) as its right end
point. U]

Proof of Lemma 4.1 The proof is by contra-
diction and follows similar arguments as the one
for Lemma A. For convenience, we divide the
diagonal diagram given in Figure 7 into five
sections by dotted lines shown in Figure 21 to
28. The rightmost section, which consists of two

e

c

0 1 2 3 4 5 6 7 8 9 101112

FIGURE 20 Case 2.

columns, is meaningless in the proof of Lemma
4.1. However, proofs of other lemmas in Section 4
are greatly simplified because of these additional
columns. Three of these five sections are similar to
the diagonal diagram shown in Figure 17. With the
aid of figures and labels we shall give the skeleton
of the proof and leave it to interested readers to
verify correctness. Suppose it has a legal partition
P. Since vertex (25,4) is of degree one in the
diagonal diagram, there must be a partitioning line
in P with vertex (25,4) as its end point. The
possible partitioning line segments incident to
vertex (25,4) are labeled a and shown in Figures
21, 22-26, 27 or 28. Let us now consider these
four different cases.

Case 1 Line segment a in Figure 21 with vertex

(25,4) as its bottom end point isin P. The line
segment a implies line segment b which in
turns implies the conditions of Lemma A
(Fig. 21). This contradicts the assumption
that P is a legal partition.

Case 2 Line segment a in Figure 23-27 with
vertex (25,4) as its top end point is in P. Now,
vertex (24,3) can be legally connected in P by
the line segment b in Figure 22 or in Figure
23-26.

Subcase 2.1 Line segment b in Figure 22 with
vertex (24,3) as its top end point is in P.

This line segment implies line c which in turns
implies the conditions of Lemma A (Fig. 22).
This contradicts the assumption that P is a
legal partition.

Subcase 2.2 Line segment b in Figures 23-26
with vertex (24,3) as its right end point is in P.

Now, vertex (20,4) can be legally connected in
P by the line segment c in Figures 23- 25 or in
Figure 26.

\ \ iX\ / /
/ XX./

>" .. ...,.

2 4 6 8 I0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

FIGURE 21 Case 1.
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FIGURE 22 Subcase 2.1.

Subcase 2.2.1 Line segment c in Figures 23-25
with vertex (20,4) as its left end point is in P.

Now, vertex (21,5) can be legally connected in
P by the line segment d in Figure 23, 24, or 25.
Subcase 2.2.1.1 Line segment d in Figure 23

with vertex (21,5) as its bottom end point is in P.
This line segment implies the line segment e

(Figure 23). This in turn implies that vertex
(23,4) cannot be legally connected in P
(Figure 23). This contradicts the assump-
tion that P is a legal partition.

Subcase 2.2.1.2 Line segment d in Figure 24
with vertex (21,5) as its right end point and left end
point (18,5) is in P.

This line segment implies that vertex (19,4)
cannot be legally connected in P (Fig. 24).
This contradicts the assumption that P is a
legal partition.

Subcase 2.2.1.3 Line segment d in Figure 25
with vertex (21,5) as its right end point and left end
point (19,5) is in P.

This line segment implies the line segments
e, f, g, h, i, j, k, l, and m (Fig. 25). These in
turn imply that vertex (12,5) cannot be
legally connected in P (Fig. 25). This
contradicts the assumption that P is a legal
parition.

Subcase 2.2.2 Line segment c in Figure 26 with
vertex (20,4) as its bottom end point is in P.

This line segment implies the line segment d
(Fig. 26). Arguments similar to the ones in
Subcase 2.2.1.3 can be used to obtain a
contradiction (Fig. 26).

Case 3 Line segment a in Figure 27 with vertex

(25,4) as its right end point is in P.

\/\’\, \
\\

2 4 6 8 I0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

FIGURE 23 Subcase 2.2.1.1.

4 \
/
\ \ \

/’ "._V_d\

246810121416182022242628303234363840424446485052

FIGURE 24 Subcase 2.2.1.2.

FIGURE 25 Subcase 2.2.1.3.
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FIGURE 26 Subcase 2.2.2.
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FIGURE 27 Case 3.

",, \\

2 4 6 8 I0 12 14 16" 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

FIGURE 28 Case 4.

The remaining part of the proof follows similar
arguments to the ones in case starting with the
degree one vertex (24,3).

Case 4 Line segment a in Figure 28 with vertex
(25,4) as its left end point is in P. This line
segment implies the conditions for Lemma A
(Fig. 28). By Lemma A, P is not a legal
partition. This contradicts the assumption
that P is a legal partition.

Since P does not satisfy any of the Cases, it must
be that there is no legal partition for the
diagonal diagram Dd given in Figure 1. [2]

Proof of Lemma 5.1 The proof is by contra-
diction. Suppose it has a legal partition P. Since
vertex (5,5) is of degree one, there must be a
partitioning line in P with vertex (5,5) as its end
point. Since the diagonal diagram is symmetric, it
is sufficient to consider only the case when there is
a vertical line, a, in P with vertex (5,5) as its left
end point. Since vertex (6,4) is of degree one, there
must be a partitioning line in P with vertex (6,4) as
its end point. There are two cases, depending on
how vertex (6,4) is legally connected in P.

Case 1 Vertex (6,4) is the left end point of a
horizontal line, b, in P (Fig. 29). The right end
point of this horizontal line is (10,4) as

10

0 2 4 6 8 I0

FIGURE 29 Case 1.

otherwise there is a forbidden pattern.
b=[(6,4),(10,4)] is in P c=[(7,0),(7,3)] is
in P d= [(9,1),(9,3)] is in P vertex (8, 2)
cannot be legally connected in P (Fig. 29).
This contradicts the assumption that P is a
legal partition.

Case 2 Vertex (6,4) is the top end point of a
vertical line, b, in P (Figs. 30 and 31). Since
vertex (6,2) is of degree one, it must be the
bottom end point of this vertical line. There
are two subcases, depending on how vertex
(5,2) is legally connected in P.
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10

0 2 4 6 8 10

10

FIGURE 30 Subcase 2.1.

0 2 4 6 8 i0

FIGURE 31 Subcase 2.2.

Subcase 2.1 Vertex (5,2) is the right end point of
a horizontal line, c, in P (Fig. 30).

The left end point of this horizontal line must
be (0,2) as otherwise there is a forbidden
pattern, c [(0,2),(5,2)] is in ed [(1,3),
(1,5)] is in P e [(3,3),(3,5)] is in Pvertex
(2,4) cannot be legally connected in P (Fig.
30). This contradicts the assumption that P is
a legal partition.

Subcase 2.2 Vertex (5,2) is the top end point of a
vertical line, c, in P (Fig. 31). b [(6,2),(6,4)] and
c [(5,0),(5,2)] are in ed= [(6,1),(9,1)] is in ee
=[(8,2),(8,4)] is in Pvertex (7,3) cannot be
legally connected in P (Figure 31). This contradicts
the assumption that P is a legal partition.

Since in all cases there is a contradiction we
conclude that the diagonal diagram given in
Figure 13 has no legal partition.
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