On Minimizing the Number of Page Faults with Complete Information COPYRIGHT BY

P a8 " 10th IMACS
(preliminary version) WORLD CONGRESS

ON SYSTEM SIMULATION AND

SCIENTIFIC COMPUTATION

: Teofilo F. Gonzalez
: Programs in Mathematical Sciences
i The University of Texas at Dallas

Richardson Tx 75080

USA ’
ABSTRACT Let us assume that the execution of instruction L3 j
b

Let P represent a computer program specified requires the use of exactly one page (ri,j)' Now we

by a set of m chains, each chain consists of an say that P; consists of li page references denoted
ordered list of page references. All the chains and :

- the page references are known in advance. Program
P is to be.executed by a system with k page frames.
Our problem is to find an order in which these chains
are to be executed and to find a page replacement
strategy which guarantees that the number of page
faults is minimized. When m is 1, it is well
known that our problem can be solved efficiently.
When m is arbitrary (input), we show.that minimiz- - i<m and 1< j :.Zi), find a way to execute program
ing the number of page faults is NP_hard.

by ri,l , 1:]._,’2 » *+r 5 Ty o . A superchain 'Q is

b
defined the same way it was defined for instruction
chains. Our problem, which we shall denote PF, is
defined as follows:

PF: Given k', m, L, (1<4iz<m) and 54 (1<
P and find a page replacement strategy which produces

the least number of page faults, .
When m =1, problem PF reduces to the problem

I. INTRODUCTION . of finding an optimal page replacement strategy. A
simple strategy was presented in [B] and [ADU} to solve
Let P. denote a computer program. P is this problem. The replacement scheme is as follows:
specified by a set of m chains {pl,pz,...,pm}. "the page to be replaced is the one with the largest
Chain p consists of & instructions denoted by forward distance, where the forward distance of page
i i w is the number of pages that need be referenced
Ko 35X: pyenesX, . Instruction x, ., cannot be before page w is referenced again". This simple

i,1°74,2 i,e, i,3) . : .

i strategy can be computed in polynomial time, i.e.,
executed until LIRIRY has been completed (1 < j= there is an efficient algorithm to solve the PF pro-
£.) Program P ;i to be executed in a computer blem when- m is 1.

i’" When m > 1, we also need to specify the order
system with one central processing unit (CPU). Let in which each of the chain's elements will be executed.
Q = yl,yz,...,yZ where z = Zli , be a chain. Chain Our problem, PF, can be restated as follows:

Py is said to be included in Q if for all 1 <] PF: Given k , m, % (1 <i<m) and r, . (1<
<Ly, =x and k, <k, < ... <k, . Chain , T T ,tad -
- "1 kj i,3 1 2 11 i<m and 1 < j 2y), find a superchain such that
Q is called a superchain for P = {pl,pz,...,pm} if we apply the optimal page replacement algorithm to

it, the least possible number of page faults for P

. ' . . . £1 i
if all p; s are included in Q and if we fix the will be generated.

inclusion of each P then each element in Q 1is

covered by exactly one chain. Superchain Q speci- Since PF, for m = 1, can ?e easily solved, it is not
X : at all clear why we are making the problem harder.
fies the order in which the different instructions in . ,
chains p,,p P are to be executed by the CPU. The reason for this is that the more chains we use to
12522 by represent program P, the more likely we are to
The maximum number of different superchains for pro- produce a smaller number of page faults when executing
gram P is roughly m #* Eli. P. One of the questions that arises at this time is:

Who finds the superchain Q? ,i.e.,Who specifies the
order in which the chains or parts of chains are to
be executed?. This task could be performed by the
programmer or by the system. Since k ig usually
known only at execution time, then it seems appropriate
to obtain the superchain Q at execution time, unless

i1 X i i i for
auxiliary storage. Whenever a page is referenced and there EX%StS a superchain with the Property that fo
P . N . all k it can be used to solve optimally our problem.
1t is not in main storage, we say that there is a . N

. . Unfortunately this is not the case in general. The

page fault. 1In this case the page has to be brought followin xample proves otherwise:
from auxiliary storage to main storage. Let k be g examp P *
the number of page frames and let n be the number

The main memory of our computer system is
partitioned into equal-sized blocks of adjacent me-
mory locations called page frames. Also, the program
space (address space) is partitioned into fix sized
blocks called pages. A page can be assigned to any
of the page frames., Initially all the pages are in

of pages in P, If k > n , then page 1 1is stored EXAMPLE 1: = a.b b 1.2.3
in page frame i and there will be exactly k page P; = ab,e,a,b,0,1,2,
faults. On the other hand, if k < n then each Py = 1,2,3,a,b,c,a,b,c

page might have to be brought from auxiliary storage
to main storage more than once while executing P.
If there are k pages in main storage and there is
page fault, then one of the k pages in main storage
will be replaced by the page now being referenced.

For the case of k = 1, one can show that the
superchain l,2,3,a,a,b,b,c,c,l,2,3 is the only chain
producing the least number of page faults which is 12.
This superchains generates 9 page faults when k is 3.

279

o g e g ey e

PN DA R P S

{
i
i
s

However the superchain
a,b,c,a,b,c,1,1,2,2,3,3,a,b,c,a,b,c

produces only 7 page faults when k is 3. It

can be easily shown that all superchains producing

7 page faults (which is the minimum) when k is 3,

will generate more than 12 page faults when k

is one. . ’

end of example 1

It should be clear the advantage of specifying
a program as a set of chains rather than by using
only a single chain. Clearly, the more chains we
use, the smaller number of page faults would ‘re-
subt forisome ‘values of k.

Since it is required to know all the page
reference strings in advance, problem PF 1is not
likely to arise in practice. In practice one could
find systems in which programs are specified in the
format used to describe PF but without the know-
ledge of the reference strings. However, it is
still worthwhile studying problem PF because of
the following potential applications in the type
of systems just described. If there is some simple
strategy to solve PF, as in the case of m =1, it
might be possible to estimate the information used
by the algorithm at each step and use it in the case
when the reference strings are not known in advance.
Another application of our results is in the per-—
formance evaluation of systems. Once we fix some
policy in a system which executes programs specified
in the format of PF but without knowing the referen
ce strings, we could execute these programs and then
after their termination use our optimal strategy to
check how far from optimal is our replacement policy.
We could also use our algorithms while executing
programs under some policies different than the
optimal , to detect when the policy deviates far
from the optimal policy.

In the following section we study the complexity
of the PF problem. It will be shown that this
problem is NP_hard even when k¥ is 1. The case
when k and m are equal to one can be solved
in polynomial time. We conjecture that even when
m is some fixed constant, PF remains NP_hard.

The should not stop research in this area, but
motivate the search for efficient approximation
algorithms to solve the PF problem.

II The Complexity of the PF problem

In this section we study the complexity of
the PF problem. First of all it is shown that the
PF problem is NP_hard when k is 1. We prove
this result by reducing the Shortest Common Super-
string (SCS) problem to it. Then we show that the
PF problem is NP _hard for all k > 1. This will be
shown by reducing the PF (k = 1) problem to it.
Before proving our result we define the S5CS
(Shortest Common Supersequence) problem, which
was shown to be NP_hard in [M].

DEFINITION:
SCS: Given a set R = {Sl,Sz,...,Sm} of sequences,

find a supersequence S' for R with the least
number of elements. If § = 8;,89,...,5) then S"

is said to be a subsequence of S when S" is S
after deleting x symbols (0 <x <n) from S.
S is said to be a supersequence of S". Now, §' is
a supersequence of R 1if S' is a supersequence

of S, for 1 < i < m.

280

THEOREM 1: PF for k =1 1is NP hard.
PROOF: The proof is omitted.

We now show that the PF problem is NP_hard for
all values of k. We prove our result by reducing
the PF (k = 1) problem to it.

THEOREM 2: PF is NP_hard.
PROOF: Given an instance P = {pl’pZ""’pm} of

the PF (k = 1) problem, we construct an instance,
(P',2), for the PF problem with k = 2. Assume
without loss of generality that the set of distinct
pages in P is {al,az,...,an}. Let bi,j,l ,
bi,j,Z s eee s bi,j,l—l for 1<i<m and 1< j
< i ;

-li be other pages not included in {al,az,...,an}.‘
P' is defined as follows:

Fori=1,2, ... ,m

1 '. =B, . . . R
et p i Bl,l ’ r1,1 ’ Bl,l ’ r1,1 ’ Bl,Z 4 ri,2 ’
B, T, e B. r,
i, 2’ "i,2 i 1,£i * 1,£i 4
B, T,
1,9.i ’ 1,li
where B, is bi,j,l R bi,j,Z , +es 5 b

1sj i’jfl-l'
Since the construction of P' can be carried out
in polynomial time it is only required to show that
(P',2) has an optimal solutiom with h + (& - 1)*
(Zli) if and only if P has an optimal solution

which generates h page faults. .

Since the proof of this part is straight forward,
it will be omitted. We will just present an example
to illustrate the reduction.

EXAMPLE 2:
Let P = {pl,pz,pa} , where
Py = 1,4,3,2
Py, = 2,4,3,2

Py = 1,2,4,3,2.
(P',2) comstructed by our rule§ is as follows:

P'p]=By g - 1By g 1By, b, By,
Blas 3 e By 3. By 02 B2
Ply =By 15 20 By s 2By b, By, 0
Bygs 3nByga3aBy 02,8, 02
P'3=B3 1, 1By 5 1,B3,,2,8,,2
By g b eBygahoBy s 3,8y, 3

Byg s 2By g2

where Bi,j = bi,j,l , b 1,3,2

It is simple to show that h is 5 in this case.

III. DISCUSSION

We should point out that when m is 2 the
SCS problem can be solved in polynomial time M].
The results in [M] indicates that the SCS problem
is NP_hard when m is a variable (input). The
complexity of the SCS problem for the case when
m is some fixed constant greater than 2 1is not
known. The same holds true for the PF problem
when k is 1. We conjecture that the PF problem
is NP_hard even when wm is some fixed constant.

.

-

It is worthwhile studying the complexity of
finding approximate solutions to the PF problem.
For the case when k 1is one, it is simple to find
an approximation algorithm which guarantees solutions
whose number of page faults is within [m/2] of the
optimal number of page faults. For other values of k
one can easily obtain efficient algorithms which
guarantee solutions within a bound of m from the
true optimal solution value.

IV. REFERENCES

[ADU] Aho,A., Denning, P. and Ullman, J., 'Principles
of Optimal Page Replacement", Journal of the ACM, Vol.
18, Jan 1971, pp 80-93.

[B] Belady, L., "A Study of Replacement Algorithms
for a virtual-storage computer”, IBM SYSTEMS JOURNAL,
Vol 5, No. 2, 1966, pp 78-89.

[CD] Coffman. E and Denning, P. "Operating Systems -
Theory", Prentice Hall , 1973. :

[M] Maier, D. "The Complexity of Some Problems on
subsequences and supersequences”, Journal of the
ACM, Vol. 25, No. 2, 1978, pp322-336.‘

281

EVALUATING ARITHMETIC EXPRESSIONS T
(preliminary

Teofilo Gonzalez#® ar

Department of Co

The Pennsylvania ¢

University Par

1. INTRODUCTION

Several interesting results concerning the
problem of code generation for arithmetic ex—
pressions have been established by several
authors. Extending the work of Anderson [A],
Nakata [N], and Redziejowski [R], Sethi and
Ullman [SU] have presented an efficient algo-
rithm to generate minimal length codes for a
special type of arithmetic expressions, namely
those expressions with no common subexpressions.
Aho and Johnson [AJ] have found a more general
algorithm which allows general addressing
features such as indirect addressing, but again
restricting themselves to the same type of ex-
pressions. The case of arbitrary expressions
has been proven to be difficult in a precise
sense, i.e., it is NP-complete ([K]), even for

‘the class of one-register machines with no

algebraic identities allowed (Bruno and Sethi
[BSe]). Aho et. al. [AJU] have shown that the

‘problem remains NP-complete for dags whose

shared nodes are leaves or nodes at level one
and have developed heuristic algorithms to
generate good codes.

The effect of algebraic laws on code gen-

‘eration has received little attention in the
literature. Sethi and Ullman [SU] have discus-

sed the case where some of the operators of an
expression tree are associative and commutative,
and Breuer [B] used the distributive law to
factor polynomials in a manner similar to that
of Horner's algorithm. When certain algebraic
transformations apply for an arithmetic expres-—
sion A, we are not required to generate codes
for A, bdbut we may generate codes for any
equivalent expression A' obtained by succes—
sive applications of the algebraic laws. Since
the number of arithmetic operations may then
vary, the optimality criterion of generated
codes should depend on the number of arithmetic
operations as well as on the code length. 1In
this paper, we assume that the distributive law
holds and consider the problem of minimizing
the number of arithmetic operations for a single
arithmetic expression which involve only addi-
tion and multiplication. We also assume that
addition is commutative and associative and
that multiplication is associative. In section
2, we show that minimizing the number of multi-
plication nodes is NP-hard even when the given
dag is a leaf dag and the expression is of

"Supported in part by the National Science Foun-
dation under Grant MCS 77-21052.
A%
Supported in part by the National Science Foun-
dation under Grant MCS 78-06118.

