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We investigate the pin redistribution problem (PRP) for multi-chip modules. We trans-
form the PRP to the max-flow problem and obtain an efficient algorithm for finding a
2-layer solution, whenever one exists. A greedy heuristic to find a k-layer solution is
described. Our approach can also construct a minimum layer solution for two variants;
nets can be routed on more than one layer, and terminals (source and target) are drilled
through all layers. Our algorithms take O(min{|S|, mk!/2}m2k) time, except for the
heuristic procedure which takes O(Icm4 log? m) time, where S is the set of source termi-
nals, m is the number of rows and columns in the grid, and k is the number of layers
required. Several variations of the PRP when generalized to graphs can also be solved
efficiently by our algorithms, whereas other variations are shown to be NP-complete.

1. Introduction

The packaging between computer chips has become a greater factor in system perfor-
mance as chip speeds have increased. Fifty percent of the delay in high-performance
systems can be attributed to packaging, and this is likely to increase in the future.?
Multi-Chip Modules (MCMs) have been introduced to reduce inter-chip delay by
removing one layer of packaging. This improves system performance and reliability.
In MCM technology,'# bare chips are placed on a common substrate called the chip
layer. Directly below the chip layer there are a number of pin redistribution layers,
and below them there are the signal distribution layers (see Fig. 1). Some MCMs
use the bottom signal distribution layer as a power distribution layer. For simplic-
ity, we omit this special layer, but our algorithms can be easily adapted to handle
this situation. The pin redistribution layers are used to redistribute the chips’ I/O
pins to a set of pins with a minimum spacing, as required by the signal distribu-
tion layers. This redistribution can also be used to spread the pins uniformly over
the MCM, which leads to fewer signal distribution layers, fewer vias, and minimal
crosstalk.? Lastly, the signal distribution layers are used to connect the appropriate
(redistributed) chip I/O pins.

*A preliminary version of this paper appeared in the Proceedings of the Fourth Great Lakes
Symposium on VLSI, March 1994, pp. 114-119.
TDouglas Chang was partially supported by NSF Grant CCR-8918409.
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chip layer
pin redistribution layers
signal distribution layers

Fig. 1. Multi-chip module.

An early example of MCM technology is IBM’s ceramic multichip technology,
used in the IBM 3081 processor in the late 70s.® More recent examples are IBM’s
glass-ceramic/copper module for the System 390/9000 and DEC’s multilevel thin
film for the VAX 9000.16 A detailed discussion of various MCM technologies is given
in Ref. 15.

In this paper, we investigate the k-layer pin redistribution problem (PRP). The
k-layer PRP is to connect (redistribute) the (source) I/O pins on the chip layer to
target locations on the bottom redistribution layer, using & redistribution layers.
A wiring with the minimum number of redistribution layers (i.e., the optimization
version of the PRP) can be obtained by solving a set of k-layer problems. Since
an algorithm for one of these problems can be easily derived from an algorithm to
solve the other problem, we will refer to both of these problems as the PRP.

1.1. The pwn redistribution problem

The basic model used is the k-layer routing model as described in Ref. 11. In this
model, the routing graph consists of k stacked grid graphs (each representing one
layer). The grid graphs (or layers) are numbered in increasing order from top (1) to
bottom (k). Each edge in the graph can accommodate one wire segment. Vertical
vias are available at a set of grid intersection points.

Given a set of source terminals on grid 1 (the top grid) and a set of target
terminals on grid & (the bottom grid), the PRP is to connect each source terminal
to a different target terminal by a wire in only one layer (grid) such that no two
wires on the same layer (grid) intersect. Note that a source terminal does not have
to be connected to a specific target terminal; it just has to be connected to some
target terminal. This is the main difference between the PRP and conventional two
pin routing problems.

A source (target) grid point is defined as an (r, ¢} grid point where there is a
source (target) terminal on grid 1(k). Note that the only vias that can be used
are at the source and target grid points, and these vias can only be used by the
corresponding source or target terminal. This is because each net has to be routed
on only one layer. Another observation is that if the net for source (target) terminal
(7, ¢) is routed in layer ¢ then the grid point (r, ¢) in any layer § > ¢ (j < 1) can
be used to route another net in layer 7. However, the grid point (r, ¢) in any layer
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Fig. 2. PRP instance.

J <1 (j > i) cannot be used by another net. An instance and solution of a PRP is
shown in Fig. 2.

We also consider two variations of the PRP. In one variation nets are allowed
to be routed on more than one layer, and vias are allowed at any given subset of
grid points. Under this model, stack vias are allowed. The main advantage of this
model is that the number of layers in an optimal solution is less than or equal to the
optimal number of layers of the corresponding problem under the original model.
However, there may be a larger number of vias. The second variation of the PRP is
when source and /or target terminals are drilled through all the redistribution layers.
This routing model is similar to the one used in printed circuited board (PCB)
technologies. For instances that have a solution under this model, a minimum layer
solution also has the minimum number of vias. However, the number of layers
may be larger than in an optimal solution to the corresponding problem under
the original model. In the following sections we discuss computational complexity
aspects of the PRP under these different routing models.

1.2. Previous work

Cho and Sarrafzadeh® introduce and formalize the PRP. In their formulation, the

PRP is a 6-tuple, (k, m, S, T, A, o) (see Fig. 2), where

1. kis the number of layers available for pin redistribution, including the chip layer.

2. m is the number of rows and columns in the grid.

3. S is the set of grid points on the chip layer where the source terminals are
located.

4. T is the set of grid points on the bottom redistribution layer where the target
terminals are located.
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5. X is the minimum legal distance between two parallel wires on the same layer.
6. target terminals are spread uniformly over grid k£ at a horizontal and vertical

distance of o.

A solution to the PRP is a wiring connecting all the source terminals to the
target terminals in the k-layer grid, such that each net is wired on one layer, no two
wires intersect on any layer, and the minimum distance A between two parallel wires
on the same layer is maintained. We assume |S| < |T'|, since there is no solution
when |S| > |T|. Our PRP formulation differs in two ways: (1) target terminals
cannot be placed in adjacent grid points (less restricted than the above model),
(2) the value of A is equal to 1, and (3) in our routing model if the net for source
(target) terminal (7, ¢) is routed in layer ¢ then the grid point (r, ¢) in any layer
j > 1 (j < 1) can be used to route another net in layer j, whereas in their model an
additional constraint is imposed.

Cho and Sarrafzadeh® present three heuristics to solve the PRP. Their first
heuristic is based on concurrent maze routing. The other two heuristics are based
on finding a global routing, and then performing the detailed routing. They also
show that given a special type of global routing with density two (at most two wires
can be assigned to each grid point), a 2-layer solution can be found in polynomial
time. However this special type of global routing does not always exist, so in the
worse case, the routing area must be doubled in order to generate a 2-layer solution.

Shiao et al.!® and McBride et al.'? study a different type of pin redistribution
problem on multi-chip modules. Rather than redistributing the pins to targets
spread over a grid, they redistribute the pins over different signal layers. Thus the
problem becomes a layer assignment problem.1? Shiao et al. finds the center of mass
of each net from its pin locations. They then calculate the induced force between
two nets as a function inversely proportional to the square of the distance between
the center of masses. Then they use a greedy algorithm to reduce the induced
forces. McBride et al. are interested in the case where the source pins are in several
rows. They find that redistributing pins in inner rows to lower layers, and pins in
outer rows to higher layers facilitates routing. Thus they use a heuristic similar to
the one by Shiao et al., but also taking into account the pin row number.

The one layer PRP with A = 1 in which all the target terminals are located on
the boundary is called the escape problem in Ref. 6, pp. 625-626. Cormen, Leiserson
and Rivest® solve the escape problem by reducing it to the max-flow problem. Our
approach, developed independently, is a generalization of the one in Ref. 6. The
PRP is reduced to the maximum flow (max-flow) problem, which can be solved
efficiently.® In Sec. 2, we show that given the restriction of A = 1, a 2-layer solution
can be found quickly, whenever one exists. The time complexity of our 2-layer
algorithm is O(min{|S|, m}m?). We then present a heuristic procedure, based on
the 2-layer algorithm to find a suboptimal solution to the optimization version of
the PRP. Note that in most practical cases a solution using at most three layers
exists.® We also present an algorithm for the k-layer PRP when nets are allowed to
be routed on more than one layer. Lastly, we show that if we restrict each source
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and target grid point to be used only by the wire connecting that source or target
terminal, a k-layer solution can be found efficiently, whenever one exists. These
algorithms take O(min{|S|, mk'/?}m?k) time, except for the heuristic procedure
which takes O(km*log® m) time.

The versions of the PRP just discussed can also be solved efficiently by our
algorithm when the grid graph is replaced by an arbitrarily connected graph. We
show in Sec. 3 that the PRP, when generalized to arbitrarily connected graphs, is
an NP-complete problem even when the number of layers is three. We also show
that the problem remains NP-complete even when the targets or sources (not both)
are drilled through.

2. Flow Solution

An input to the max-flow problem is a directed graph G, called the flow graph,
with two special nodes labeled s (source) and ¢ (sink). Each arc in the flow graph
has a positive real capacity associated with it. A feasible flow F' is any assignment
of flow values to each of the arcs in the flow graph such that the flow along each
arc is between 0 and the flow capacity of the arc, and the flow at each node (other
than the source and sink) is conserved (i.e., the flow into a node must equal the
flow out of it). The max-flow problem consists of finding a maximum feasible flow
from the source s to the sink ¢. There are a number of efficient algorithms to solve
the max-flow problem.! It is well known that when all the capacities are integers, a
maximum flow in which all the arcs have integer flows exists, and algorithms such
as Ford and Fulkerson’s and Dinic’s generate such a flow.?

Let us now consider the following reduction from the k-layer PRP to the max-
flow problem. We map the routing grid to a flow graph as follows. Each grid point is
represented by a flow cell (see Fig. 3). Each flow cell has a subset of the in arcs (IN,
IE, IS, IW), out arcs (ON, OE, OS, OW), layer arcs (IA, OB), and the inner layer
arc F. All the arcs in this construction have capacity 1. A flow cell with all its arcs is
shown in Fig. 3(a). Flow cells corresponding to adjacent grid points are connected
as follows. Flow cell X immediately to the west of flow cell Y has a correspondence
between arcs X.OE and Y.IW. There is also a correspondence between arcs X.IE
and Y.OW. A similar arrangement holds for flow cells immediately to the east,
north, and south, as shown in Fig. 3(b). The inner layer arc is present in every flow
cell. The only flow cells with layer arcs are those representing source and target
grid points (called source and target flow cells). If flow cells X and Y correspond to
the same source or target grid point in layers ¢ and ¢ + 1, respectively, then X.OB
corresponds to Y.IA.

There are two additional nodes, the source s and the sink ¢. The IA arcs of all
the source flow cells on grid 1 emanate from s, and all the OB arcs of the target
flow cells on grid k end at t (see Fig. 4).

Let us discuss our flow algorithm that finds a 2-layer routing for the PRP when-
ever one exists. The algorithm takes as input an instance of the PRP and constructs
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a flow graph as shown above. It then finds a maximum flow using Dinic’s algorithm.
If the flow value is less than |S|, we claim that no 2-layer routing exists, otherwise
a 2-layer routing can be constructed as follows. Because the capacities are integer,
from max-flow theory we know there is always a flow with integer values on all the
edges, and such a flow is obtained by Dinic’s algorithms. This flow can be seen as
consisting of a set of edge disjoint flow paths, and these flow paths can be easily
translated to a routing of each one of the nets in exactly one of the two layers.

ON

ow, OE
1A IN \
F
\ 0s OB
™ IE
. (b) flow cell connected | i
(a) flow cell with all arcs in NSEW directions

Fig. 3. Flow cell (all arcs have capacity 1).

flow cell

source § from the OB arcs of the
target flow cells on grid &

(Vo

to the IA arcs of the
source flow cells on grid 1 sink ¢
(a) global source (b) global sink

Fig. 4. Global source and sink (all arcs have capacity 1).

The following theorem shows that our algorithm finds in O(min{|S|, m}m?)
time a 2-layer solution, whenever one exists.

Theorem 2.1: Our flow algorithm determines in O(min{|S|, m}m?) time whether
or not any instance of the PRP is two layer routable. Furthermore, for PRP in-
stances that have a 2-layer solution, our algorithm also constructs a wiring.
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Proof: Suppose that a problem instance I of the PRP has a k-layer routing. We
claim that the max-flow problem instance, M(I), generated by our reduction for
problem instance I has a maximum flow from source to sink equal to |S|. We prove
this by showing that for any valid routing R, we can find a maximum flow from
source to sink equal to |S]. Let R be any valid routing for I. Now consider net j
routed on layer ¢ in I. For this net we construct a flow of one unit from s to ¢ (i.e.,
its flow path) as follows. Starting at the source s send a flow of one unit through
the source flow cells for the net until you reach the flow cell in layer ¢. Then send
a flow of one unit from that flow cell in layer 7 to the flow cell that represents the
target grid point for net j along the path corresponding to the route followed by
the wire connecting net j in layout R. Then from that target flow cell to the sink, a
flow of one is sent that goes through only the corresponding target flow cells for the
net. The flows for all the nets can be easily combined into a valid flow from s to ¢
with value |S|, because they follow the same paths as the routing and no two wires
in the routing intersect in any layer. Since there are at most |S] arcs emanating
from the source, the maximum flow is at most |S|. Therefore, if I has a k-layer
routing, then M (I) has a maximum flow equal to |S|.

For the case when k = 2, the converse claim also holds. The reason for this is
the following. The only illegal flow path that may be found is one that flows from s
to a source cell on the first layer to a target cell on the first layer, to a target cell on
the second layer, to a different target cell on the second layer, and finally flows to
t. This would correspond to a routing in two layers, which is not allowed. However
this flow path can be modified by rerouting it directly to the sink ¢ when it reaches
the second layer, thus converting the two layer flow path to a one layer flow path.

Because the capacities are integer, from max-flow theory we know there is always
a flow with integer values on all the edges, and such a flow is obtained by all well
known maximum flow algorithms. This flow can be seen as consisting of a set of
edge disjoint flow paths, and these flow paths can be easily translated to a routing
of each one of the nets in exactly one of the two layers.

Therefore, we claim that for the 2-layer case, there is a solution to the PRP
if and only if the maximum flow is equal to the number of source terminals (5]}
Furthermore, the layout can easily be constructed from any maximum integer flow.

In the flow graph we have defined all arc capacities as one. For flow graphs
of this type, Even and Tarjan? have shown that Dinic’s max-flow algorithm has
O(min{V?/3, E*/?}) phases, and each phase takes O(E) time, where V' is the num-
ber of nodes and E is the number of arcs in the flow graph. This leads to a time
complexity of O(min{V?/3E, E3/?}). For a (k-layer) flow graph, V is O(m?k) and
E is O(m?k) so for the 2-layer case (i.e., solution in at most 2 layers), we get the
time complexity of O(m?3). For our special type of flow graph we can establish an-
other time bound. Since the maximum possible flow is |S| and each phase increases
the flow by at least one, we can bound the number of phases by |S|. Thus the time
complexity of our 2-layer algorithm is O(min{|S|, m}m?). ad
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In the proof of Theorem 2.1, we showed that in the case k = 2, if there is a flow
with value |S| from source to sink in M(I) then the PRP instance I has a routing.
For k > 2, this does not hold, because the flow might imply a routing for a net in
the PRP in more than one layer. An example of this is shown in Fig. 5. For this
simple example there is an obvious 2-layer solution. For more complex examples
(see Appendix) there are no 3-layer solutions, but an illegal 3-layer solution is found
by the algorithm (i.e., some nets are routed in two or more layers).

(a) First layer (b) Second layer (c) Third layer

Fig. 5. Illegal wiring (thick line) that could occur with a 3-layer PRP.

We now present a heuristic algorithm to construct a routing for any instance of
the PRP. Note that the number of layers k, is not necessarily minimum.

The heuristic begins by connecting the maximum number of nets in the first
two layers, while allowing the unconnected source terminals to reach layer three.
Then repeat the same operation for the unconnected nets in layers three and four,
and so on. This can be done by modifying the previous flow graph to have the OB
arcs of both the source and target flow cells on the second grid enter ¢. Then a cost
of 1 is placed on each arc in the flow graph, except for the arcs from source flow
cells to £, which get a cost of 22m? + 1. This cost is larger than any set of paths
from the source s to target flow cells to the sink ¢ because each flow cell has at most
11 arcs and there are 2m? flow cells. Therefore a minimum cost flow will include a
minimum number of these arcs, which implies that a maximum number of nets are
connected. Now the PRP has been transformed to the minimum cost flow problem
which can be solved efficiently.* This gives the maximum number of connections on
two layers, and source terminals not connected on the first two layers are available
for connecting on lower layers. When we reapply the algorithm on lower layers the
grid points of the target terminals that have been connected above are no longer
available for wires, so their inner layer arc is removed.

Theorem 2.2: Our heuristic algorithm constructs in O(km*log® m) time a rout-
ing for any instance of the PRP, where k is the number of layers in the solution.

Proof: The proof that a feasible wiring is generated follows from the fact that the
source terminals not connected on the first two layers are available for connecting
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on lower layers, the target terminals that have been connected above are no longer
available for wiring, and the restriction that target terminals are not located in
adjacent grid points. Note that with this last condition our heuristic algorithm will
be able to generate a solution to all problem instances.

The time complexity of the minimum cost flow algorithm is O(m*log? m) for
our flow graphs using Orlin’s algorithm.! Since we need to repeat this [k/2] times,
the algorithm has a total time complexity of O(km*log? m). Note that the solution
does not necessarily have the minimum number of layers. 0

2.1. Variations of the PRP

Two interesting variations of the PRP can also be solved by our flow strategy.
One variation allows nets to be wired on more than one layer. A k-layer solution
for this variation is found by the max-flow algorithm on our original flow graph
construction. Note that the PRP solution in Fig. 5 would be a legal wiring under
this variation. The flow graph can easily be modified to allow vias at locations other
than the source and target grid points. If vias are allowed at grid point (7, ¢) then
the corresponding (r, ¢) flow cell will have the layer arcs. Note that the solution
allows stacked vias. Algorithm VPRP given below finds a minimum layer solution
to this variation of the PRP.

Algorithm VPRP

begin
create appropriate (depends on the PRP variation) flow graph for 1-layer PRP;
apply Dinic’s max-flow to the flow graph and let F be the flow value;
while (F < |5])
begin
add one layer to the bottom of the flow graph;
extend flows that have already been found through added layer;
apply Dinic’s max-flow to the new flow graph and let F be the flow value;
end
output the flow paths found;
end

Theorem 2.3: Our VPRP algorithm constructs in O(min{|S|, mk'/2}m2k) time
a minimum k-layer solution to any PRP instance when nets are allowed to be routed
on any number of layers.

Proof: It is simple to prove that the PRP on a line (1-dimensional PRP) always
has a solution. Since the grid (2-dimensional) PRP can be traversed in a snake
fashion, corresponding to a 1-D PRP, we know that the grid PRP always has a
solution. Thus the VPRP algorithm always finds a solution because for large &k the
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solution to the snake 1-D PRP can be generated. The algorithm finds a minimum
k-layer solution because the max-flow algorithm insures the maximum number of
nets are connected in the k layers.

Note that the flows found by Algorithm VPRP during iteration ¢ are not dis-
carded at iteration 7 + 1. Since the maximum flow is obtained by Dinic’s algo-
rithm, the total number of phases that are needed is O(min{mk'/2, |S|}), and the
size of the final flow graph is O(m?2k). Therefore the time complexity bound is
O(min{|S|, mk*/?}m?k). i

It is worthwhile noting that algorithm VPRP finds k sequentially rather thanin a
binary search fashion. The reason for this is that for problem instance that require
few layers, the procedure does not have to construct huge graphs for k = |S|/2
layers, and in the case of a sequential search one can use all previously computed
flows at each iteration.

A second PRP variation is restricting each source and target grid point to be
used only by the wire connecting the corresponding source or target terminal. In
other words, the source and target terminals are drilled through all the layers. In
this variation, we can also obtain a k-layer solution efficiently, whenever one exists.
The flow graph for this variation is a modification of the original flow graph by
removing the in arcs for each source flow cell, and removing the out arcs for each
terminal flow cell.

Our algorithm MVPRP is a slight modification of algorithm VPRP. The modi-
fication needed is to test whether or not the flow value increases in each iteration.
If the flow value does not increase and is less than |S|, then terminate without a
solution. This test is needed because unlike the first variation, there is no solution
to certain problem instances.

Theorem 2.4: Our MVPRP algorithm, determines in O(min{|S|, mk'/?}m?2k)
time whether or not a k-layer solution to any PRP instance exists when all the
sources and targets are drilled through. Furthermore, for PRP instances that have
a solution, our algorithm can also construct a minimum layer solution.

Proof: It is simple to prove that a flow of |S| can be achieved in the graph if and
only if there is a k-layer layout, and that a minimum layer solution is found by
MVPRP (if one exists) in time O(min{|S|, mk'/?}m2k). a

3. Generalized PRP

Our algorithms can easily be adapted to handle the case when the grid has holes
in it, where routing is not possible. This could occur, for example, if areas are
reserved for routing power and ground. We now consider a more general PRP
(GPRP) in which the grid graph is replaced by an arbitrarily connected graph. Our
flow technique and algorithms can easily be adapted to handle this case. For the
GPRP, we can obtain a 2-layer solution (whenever one exists), and we can obtain a
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k-layer solution (whenever one exists) for the GPRP, under the two variations given
in the conditions of Theorems 2.3 and 2.4.

In the following subsection, we show that the 3-layer GPRP is NP-complete. We
also show that the 3-layer GPRP with drilled through sources or drilled through
targets is NP-complete.

3.1. Complexity of the GPRP

We show that the 3-layer generalized PRP (GPRP) is NP-complete. This is shown
by reducing the three-dimensional matching problem (3DM)? to it. The 3DM prob-
lem is defined as follows.

Instance: Given M C X XY x Z, where X, Y, and Z are disjoint sets,
each having h elements, and [M| =m.

Question: Does M contain a matching, i.e., a subset M’ C M such that
|M'| = h and no two elements of M’ agree in any coordinate?

Theorem 3.1: The 3-layer Generalized PRP (3GPRP) is NP-complete.

Proof: Since showing that 3GPRP is in NP is straight forward, we only show
that 3DM o 3GPRP. We assume without loss of generality that there is a triple
containing each element in X, Y, and Z, as otherwise the 3DM problem has a “no”
solution.

Before presenting the reduction, we first describe two 3GPRP structures with
special properties that will be used in the reduction. Secondly, we describe the
sources, targets, and structures to be used in the 3GPRP instance that we generate
from the 3DM instance. Then we show how these components are connected to
create the 3GPRP instance. Lastly we show that there is a solution to the 3DM
instance iff there is a solution to the 3GPRP instance, and show that the transfor-
mation takes polynomial time.

The FS1 graph structure is shown in Fig. 6(a). It has three sources and two
targets. Thus at least one of the sources must be connected to a target through the
edge labeled “out”. Since there are only three layers one of those connections must
be on layer 1. This is because there are three sources that need to be connected
through target T'3, so we must have each of these sources connected on different
layers. If the source connected on layer 1 does not go through the “out” edge, then
it must be connected to T2 or T3, but then at least one of the other two sources
cannot be connected to any target. But in a solution to the 3GPRP all sources must
be connected. Thus the FS1 graph structure forces one source to be connected to a
target through the “out” edge on layer 1. We will call that source the F'S1 source.

The FT2,3 graph structure is shown in Fig. 6(b). It has four targets and three
sources. Under the assumption that there are an equal number of source and target
terminals, which will hold in our final reduction, at least one of the targets must
be connected to a source through the edge labeled out. In particular the target
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labeled X must be connected to a source through the “out” edge, because if X is
connected to one of the sources in FT2,3 then it must be connected on layer 1.
However in that case target T'1 cannot be connected to any source. Thus the FT2,3
graph structure forces there to be at least one target that must be connected to a
source through the “out” edge on layer 2 or 3.

T1
out edge
out edge X

T2

T2
T3 T3

FS1source S2 S3 S1 S2 S3
(a) FS1 structure (b) FT2,3 structure

Fig. 6. Special graph structures.

Given an instance of 3DM, we construct an instance of 3GPRP as follows. For
each element y; € Y (2; € Z) there is a source vertex named S, (S.,). For each
element z; € X there is a FT2,3 structure. We label the X target in the FT2,3 as
T,,. For each triple (z;, y;, 1) € M thereis a target vertex named T, y, -, - Lastly,
there are m —h FS1 structures. This gives a total of A+h+3h+3(m—h) = 3m+2h
sources and 4h+m+2(m—h) = 3m+2h targets. Since there are an equal number of
sources and targets, all sources and targets must be connected in a feasible solution.

We partition the triples in M into h sets as follows. The triples which contain
x1, the triples which contain xy, etc. We now describe the portion of the 3GPRP
graph corresponding to the triples containing z;. By assumption we know there
are T > 1 such triples. Then associated with this partition there are T'— 1 FS1
structures, one FT2,3 structure, and targets Tg, ;. -, for each (@1, y;, 2zx) € M.
These components are put together as follows. There is an edge from each Ty, 4. -,
to Sy;, Sz, Tz, in FT2,3, and lastly to each T2 in the associated FS1 structures.
The portion of the 3GPRP graph corresponding to the other A — 1 partitions are
constructed similarly. See Fig. 7 for an example of this construction. The reduction
takes time O(]M|) which is polynomial in the size of the 3DM problem instance.

Now we must show that there is a solution to the 3GPRP instance iff there is a
solution to the 3DM instance. The basic idea is that S,; and S, are connected to
Teiy;,zm and Ty, iff (@4, y5, 25) € M'.

< Let M’ C M be any solution to the 3DM. Then the corresponding 3GPRP
has the following solution. For each (z;, y;, 2x) € M’, the corresponding Ty, 4, 2
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will connect to S, on layer 3. Then T, will connect to Sy, on layer 2 along the
path through T3, ,, ... Since M’ is a 3-dimensional matching, it follows that all
the sources S,, and S, have been connected. For each (z;, y;, 2x) € M’, the
corresponding T, . -, Will connect to an FS1 source on layer 1. At this point the
only remaining unconnected source and targets are in the FS1 and FT2,3 structures.
Within each structure S% will connect to T on layer 4, 1 <4 < 3. This is a solution
to the 3GPRP. Part of the solution to the 3GPRP instance in Fig. 7 is shown
in Fig. 8. In Fig. 8, wire connections are shown by the numbered lines; dashed
lines have no connections on them. The numbers indicate the layers of the wires
connections.

= Suppose there is a solution to the 3GPRP problem instance constructed from
the 3DM instance. Let’s examine any FS1 structure, introduced because of ;. This
FS1 structure has an FS1 source A. Source A must be connected to a target since
there is a solution to the 3GPRP. And, as we established before, source A must
connect to a target on layer 1. Potential targets for A to connect to are: a target
in a different FS1 structure, a target in the T, FT2,3 structure, or a Ty, y; o, -
The source A cannot connect to a target in a different FS1 structure, because that

M= {(x1;y2,22), (x1, y1, 21), (x2, 1, 23), (2, y2, 23), (x3, ¥1, 22), (x3,y2, 23), (x3, y3, 21)}

x1,y2,22
!
g
— Fs1
FT23 E i

FS1

FT23

FS1

FS1

FT2,3

Fig. 7. Example reduction from 3DM to 3GPRP. For clarity only the subscripts of § sources and
T targets are shown.
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M= {(x1,y2,22), (x1,y1,21), (x2, y1, 23), (x2, ¥2, z3), (x3, y1, 22), (x3, 2, 23), (x3, y3, z1)}

@ ......... '."." i ."'. - 1,2

FS1 3

x3,y3, z1

2

o
ogs
-

Fig. 8. A portion of the solution of 3GPRP shown in Fig. 7, with (z3, y3, z1) € M'. For clarity
only the subscripts of S sources and T targets are shown.

FS1 structure also has an FS1 source, which must come out on layer 1. The source
A cannot connect to a target in the FT2,3 structure because that would leave at
least one of the sources in FT2,3 without any possible connection. So source A must
connect to one of the Ty, o, ., targets. In order to reach a target Ty, y;, -, Withs # 1
A has to go through a source node. This is not possible since A must be connected
on layer 1. Thus it follows that A can only be connected to a target of the form
Ty ,y;,2,- Since there are T —1 FS1 sources in the same partition as source 4, T'—1
targets of the form T, 4. . will connect to FS1 sources. That leaves one target,
T2v,y;,2» and the FT2,3 structure with T, remaining in this partition. By the
construction of the FT2,3 structure T, must be connected on layer 2 or 3. Since it
must be connected through T, 4, ,,, we must have T, connected on layer 2 and
Tz, ,y; 2, connected on layer 3.

Also Ty, 4z, and T, must connect to S;,, and Sy,. Suppose that T;, does
not connect to S, or Sy],,. Then it must connect to a source after passing through
S, or Syj,, but that means S, , or Syj, must be connected on layer 1 which is
not possible since all remaining targets must be connected on layer 2 or 3. Suppose
Tzl,yj,,zk, does not connect to S;,, or Syj, . Then it must pass through S, , or Syj, to
another source, but 5, and Syj, are only adjacent to targets so Ty, 4, 2, cannot get
to another source. Thus in a solution the set of terminals, {Sy,, Sz;, To;y;,20r Tr: }s
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are connected to each other. Since there is only one Sy;, S, , and T, we define M’
to include all the triples (z;, y;, 2 ) representing the previously defined sets. Since by
construction we only allow T}, to be adjacent to S, and S,, when (z;, y;, 2x) € M,
and since all sources are connected in a solution to the 3GPRP, it then follows that
M’ is a solution to the 3DM. O

Theorem 3.2: The 3GPRP with drilled through sources is NP-complete.

Proof: In the reduction shown for Theorem 3.1 no connections were made through
any source. Thus the sources can be drilled through and the same reduction works
for this case. .

Theorem 3.3: The 3GPRP with drilled through targets is NP-complete.

Proof: This follows from the symmetry between sources and targets. The reduc-
tion for Theorem 3.2 can be modified by switching sources and targets. Then layer
3 is renamed layer 1 and layer 1 is renamed layer 3. |

4. Conclusion

We solved versions of the PRP using maximum flow and minimum cost flow tech-
niques. This led to an efficient algorithm for the 2-layer PRP. We also proposed
a greedy heuristic for the k-layer PRP. Two variations on the k-layer PRP were
solved by the flow technique. This technique also can be used for the generalized
k-layer PRP. We can show this problem is NP-Complete for & > 2. Currently we
are studying the case when A > 1, and trying to extend the reductions in the NP-
completeness proofs to the grid PRP. Our algorithms can be adapted to the problem
of reconfiguring 2-dimensional arrays in the presence of defective cells studied in
Ref. 17. An interesting open problem is to develop faster algorithms for the versions
of the PRP that can be solved in polynomial time. It is not unlikely that at least
restricted versions of the PRP, such as the escape problem,® may be solvable by
faster greedy algorithms.
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Appendix

In Fig. 9(a) we show a sample PRP that does not have a 3-layer solution, yet an
illegal solution will be found by our flow algorithm. We first show that no 3-layer
solution is possible for this PRP instance. Then we will show the illegal 3-layer
solution found by our flow algorithm.

In the PRP shown in Fig. 9(a), there are three differently colored sources. The
white sources can be connected on any layer (1, 2 or 3). The shaded sources can
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only be connected on layer 2 or 3 because they must be connected under at least
one white source. The black sources can only be connected on layer 3 because they
must be connected under at least one shaded source. The source labeled A must
be connected through (under) the source labeled B. Thus the B source must be
connected on layer 2. Then we must have source B connected through (under)
the source labeled C. Thus source C' must be connected on layer 1 and must be
connected to target D (because of the other sources). However in that case source
B cannot be connected to any target in layer 2. Therefore, there is no solution.

In Fig. 9(b), we show an illegal 3-layer solution that could be generated by the
flow algorithm. Source B is connected on layer 2 and on layer 3, switching layers
under source C.

ee

o-r=0®0O0

(a)

> 10 ®
w —taB

B (O]

Fig. 9. There is no 3-layer solution, but an illegal solution will be found by our flow algorithm.
The grid continues to the right so that there are 11 targets. Grid lines are not drawn for clarity.

One can create a PRP instance with targets spread uniformly over a square grid
that does not have a 3-layer solution, but does have an illegal 3-layer solution. This
is done by viewing the above PRP instance as one horizontal strip and replicating
it 11 times in the vertical direction. One can show in a similar manner as above
that this PRP would have no 3-layer solution, but an illegal 3-layer solution would
be found by our flow algorithm. There are an infinite number of problem instances
with this property.



Pin Redistribution Problem for Multi-Chip Modules ... 475

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications, Prentice Hall, Englewood Cliffs, NJ, 1993.

H. B. Bakoglu, Circusts, Interconnections, and Packaging for VLSI, The VLSI systems
series, Addison-Wesley, Reading, Mass., 1990.

A. J. Blodgett and D. R. Barbour, “Thermal conduction module: A high-performance
multilayer ceramic package”, IBM J. Research and Development 26 (1982) 30-36.

J. D. Cho, K. F. Liao, and M. Sarrafzadeh, “Multilayer routing algorithm for high
performance MCMs”, in IEEFE Int. ASIC Conf. and Ezhibit, 1992, pp. 226-229.

J. D. Cho and M. Sarrafzadeh, “The pin redistribution problem in multi-chip
modules”, Mathematical Programming B63 (1994) 297-330.

. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-

Hill, New York, 1990.

. S. Even and R. E. Tarjan, “Network flow and testing graph connectivity”, SIAM J.

Computing 4 (1975) 507-518.

. S. Even, Graph Algorithms, Computer software engineering series, Computer Science

Press, Potomac, MD, 1979.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Co., New York, 1979.

J. M. Ho, M. Sarrafzadeh, G. Vijayan, and C. K. Wong, “Layer assignment for
multichip modules”, IEEE Trans. Computer-Aided Design 9 (1990) 1272-1277.

T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Applicable
Theory in Computer Science Series, John Wiley & Sons, New York, 1990.

R. R. McBride, J. Chung, E. C. Shi, and C.-K. Cheng, “Pin redistribution for multichip
module designs”, in Int. Symp. on Microelectronics, 1993, pp. 605-609.

M.-F. Shiao, C. Changfan, S.-J. Chen, and C.-C. Tsai, “An efficient signal redistribu-
tion algorithm for MCM” | in Custom Integrated Circuits Conf., 1993, pp. 29.6.1-29.6.4.
N. A. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer Academic
Publishers, Boston, Mass., 1993.

R. R. Tummala, Microelectronics Packaging Handbook, Van Nostrand Reinhold, New
York, 1989.

R. R. Tummala, “Electronic packaging in the 1990’s — A perspective from
America”, IEEE Trans. Components, Hybrids, and Manufacturing Technology 14
(1991) 262-271.

H. Y. Youn and A. D. Singh, “An efficient channel routing algorithm for defective
arrays”, IEEE Int. Conf. on Computer-Aided Design, 1989, pp. 432-435.







