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1 Variable Power (Hu and Engel)

A traffic matriz D is an n by n matrix with non-negative entries. Entry d;; represents the
traffic from site ¢ to site 7. To simplify our notation we assume that 0 <7 < n,and 0 < 7 < n.
The total amount of power available is given by a positive number p The number of links
that can be active simultaneously is a positive integer ¢ (channels). A (c,p) switching matriz
(cpSM) is an n by n matrix of nonnegative numbers with at most one nonzero entry in each
row or column and at most ¢ nonzero entries altogether. The sum of the entries of a cpSM
must not exceed p, i.e., 3. d;; < p. A cpSM switching matrix represents the traffic that can
be carried during one time slot. The number of time slots is a positive integer ¢.

The Variable Power (VP) problem is defined as follows, given p, ¢, ¢, and D, to determine
whether or not there exist cpSM switching matrices 51,55, ...5; such that D = 3% _, S;.
Hu and Engel showed that the VP problem is NP-Complete, by*reducing 3-partition to it.

3-partition

INSTANCE: A finite set A of 3m elements, a bound B € Z*, and a size s(a) € Z+ for each
a € A, such that, B/4 < s(a) < B/2, and 3 s(a) = mB

QUESTION: Can A be partitioned into m disjoint sets A;, Ay, ..., Ap, such that 3,c4, s(a) =
B > 2 for 1 <: < m? Note that each of the sets in a 3-partition must have exactly there
elements.

Theorem 1.1 The VP problem is NP-complete.

Proof: It is simple to show that VP is in NP. We now give Hu and Engel’s polynomial
reduction from 3-partition to VP. Given an instance of 3-partition I3P we construct the
instance IVP of VP as follows.
Let D be a 3m by 3m diagonal matrix with diagonal entries s(ay), s(az),...,s(asn), let
p = B be the power constraint, let ¢ = m be the time constant, and let ¢ = 3 be the channel
constraint. The correspondence of these two problems is obvious.
O

Definition 1.1 A star network is a network configuration in which a single site (the hub)
commaunicates with all other sites, and each site communicates with the hub.



A star variable power (SVP) problem is the VP problem restricted to all entries in the D
matrix being zero except of the ones in row 0 and in column 0.

Theorem 1.2 The star variable power problem is NP-complete.

Proof: It is simple to show that SVP is in NP. We now give Hu and Engel’s polynomial
reduction from 3-partition to SVP.
Given an instance of 3-partition I3P we construct the instance ISVP of SVP as follows.
Let D be a 3m + 1 by 3m + 1 matrix whose entries d; ; are all zero except:

doj=Bforl1<j<m
dio= B —s(a;)for 1 <i<3m

So, row 0 of D has exactly m nonzero entries, all equal to B. Column 0 of D has exactly
3m nonzero entries. All other entries are zeroes, so D is the traffic matrix of a star network.
Let p = B be the power constraint. Let ¢ = 3m be the time constant. Let ¢ = 2 be the
channel constraint.

We now show that ISVP can be scheduled in ¢ time slots iff I3P has a 3-partition. The
proof is in two parts.

(a) If I3P has a 3-partition then ISVP has a schedule.

Let Ay, Ay,..., A, be a 3-partition for I3P, i.e., Ay, As,..., A, is a partition of A into
three elements subsets such that the sum of the sizes of the element in each set sums up to
exactly B. For each set A; we construct three switching matrices. For A; = {a,b, ¢} the first
switching matrix has nonzero entries d,o = B — s(a) and do; = s(a), the second switching
matrix has nonzero entries dy o = B — s(b) and do; = s(b), and the third switching matrix has
nonzero entries d.o = B — s(c) and do; = s(c), Clearly each of the three switching matrices
satisfies the power constraint, and the channel constraint. Therefore the concatenation of the
m switching matrices constructed from the A;s also satisfies the time constraint and forms a
schedule for ISVP.

(b) If ISVP has a schedule, then the I3P has a 3-partition.

Clearly, the sum of all the entries in D is 3mB. Since t = 3m and p = B it must be that
each switching matrix must sum up to B. Since there are 3m positive entries in column zero
and one can use at most one such entry in each switching matrix, it follows that each entry in
column zero must be in exactly one switching matrix. Reorder the switching matrices so that
the one for that uses entry d;g is the i"* one. We say that the i** switching matrix represents
element a;. Since p = B, each switching matrix matrix must sum to B and one can only use
one entry in row zero in each switching matrix, it then follows that exactly one entry in row
0 in the s switching matrix must be nonzero and has the value s(q;). Since D = t_, Sy, it
must be that the switching matrices that contribute to do; must contribute exactly B units,
and and the elements a; these switching matrices represent sum to B. Therefore, A has a
3-partition.

O

2 Weighted Variable Power (New Result)

The Weighted Variable Power (WVP) Problem is a generalization of the VP problem. A

traffic matriz D is an n by n matrix with non-negative entries. Entry d; ; represents the traffic
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from site ¢ to site j. To simplify our notation we assume that 0 <i <n,and 0 < j <n. A
weight matriz W is an n by n matrix with positive entries. Entry w; ; represents the amount
of power needed to transfer one unit of traffic the from site i to site 5. To simplify our
notation we assume that 0 <4 < n, and 0 < j < n. The total amount of power is given by a
positive number p The number of links that can be active simultaneously is a positive integer ¢
(channels). A (¢, p) switching matriz (cpSM) is an n by n matrix of nonnegative numbers with
at most FOUR nonzero entry in each row or column and at most ¢ nonzero entries altogether.
The total (weighted) amount of power used must not exceed p, i.e., Y w;; - di; < p. A cpSM
switching matrix represents the traffic that can be carried during one time slot. The number
of time slots is a positive integer ¢.

The Weighted Variable Power (WVP) problem is, given p, ¢, t, W, and D, to determine
whether or not there exist integer valued cpSM switching matrices S;,93,...5; such that
D=%%_,5;.

The differences between the VP and the WVP problem are: the power constraint is
weighted (3" w;; - d;; < p rather than just 3 d;; < p), the switching matrices are integer
valued (rather than real values), and there can be four nonzero entries in each row or col-
umn in each switching matrix rather than just one. We show that the WVP problem is
NP-Complete. We reduce 3-partition to WVP.

Theorem 2.1 The WVP problem is NP-complete.

Proof: It is simple to show that WVP is in NP. We now give polynomial reduction (identical
to the one by Hu and Engel) from 3-partition to WVP.

Given an instance of 3-partition I3P we construct the instance IWVP of WVP as follows.
Let D be a 3m by 3m diagonal matrix with diagonal entries s(a;), s(az),. .., s(asn), and all
the entries in the W matrix have value 1. Let p = B be the power constraint, let ¢ = m be
the time constant, and let ¢ = 3 be the channel constraint. The correspondence of these two
problems is obvious.

O
We now show that the problem remains NP-complete even when the network configuration is
a star network.

Theorem 2.2 The star weighted variable power problem is NP-complete.

Proof: It is simple to show that SWVP is in NP. We now give a polynomial reduction from
3-partition to SWVP similar to the one by Hu and Engel for the SVP.

Given an instance of 3-partition I3P we construct the instance ISWVP of SWVP as follows.
Let D be a 12m + 1 by 12m + 1 matrix whose entries d; ; are all zero except:

doj =B forl1 <j<10m
dip = B —s(a;) for 1 <i<3m
dio=Bfor3m+1<i<12m

Column zero and row zero for the weight matrix W have the following entry values and
the rest are not important.



doj=1for1<j<m

do,j=B2form+1_<__j§10m
dio=1forl <i<3m
clw:B6 for3Im+1<:<12m

So, row 0 of D has exactly 10m nonzero entries, all equal to B. The first m entries have
weight 1, and the remaining ones have weight B?. Column 0 of D has exactly 12m nonzero
entries. The first 3m entries have weight 1, and the remaining ones have weight B%. All other
entries are zeroes, so D is the traffic matrix of a star network. Let p = 3B” + 3B% + B be the
power constraint. Let ¢ = 3m be the time constant. Let ¢ = 8 be the channel constraint (this
will always be satisfied because there is only one row and column in D with nonzero values).
We now show that ISWVP can be scheduled in ¢ time slots iff the I3P has a 3-partition. The
proof is in two parts.

(a) If I3P has a 3-partition than ISWVP has a schedule.

Let Ay, Az, ..., An be a 3-partition for I3P, i.e., Ay, Ag,..., An is a partition of A into
three elements subsets such that the sum of the sizes of the element in each set sums up to
exactly B. For each set A; we construct three switching matrices. For A; = {a,b, ¢} the first
switching matrix has the following nonzero entries, and the corresponding weights are given
below.

dyo =B — S(G) dm+9(i—1)+1,0 =B dm+9(i-—1)+2,0 =B d7n+9(i—1)+3,0 =B

— — — — 36
Weo =1 Wn49(i~1)+1,0 = B Wm49(i—-1)42,0 = B Wm+49(i—1)+3,0 = B
dO,'i = S(d) do,3m+9(i—1)+1 =B d0,3m+9(i—-1)+2 =B d0,3m+9(i—1)+3 =B
=1 141 = B? 142 = B? 143 = B?
Wo,; = Wo,3m+9(i~1)+1 = Wo,3m+9(i—1)+2 = Wo,3m49(:i—1)4+3 =

the second switching matrix has nonzero entries

db,o =B - S(b) d‘m+9(i—1)+4,0 =B dm+9(z'—1)+5,0 =B dm+9(i—-1)+6,0 =B

wpo = 1 Wi 49(i—1)+4,0 = B Wm49(i—1)+5,0 = B® Wm+9(i—1)4+6,0 = B¢

do; = S(b) d0,3m+9(z'—1)+4 =B d0,3m+9(i—1)+5 =B d0,3m+9(i-1)+6 =B

=1 i1)44 = B 145 = B? i_1)46 = B?
Wo,; = Wo,3m+9(i~1)4+4 = Wo,3m49(i~1)+5 = Wo,3m+9(i-1)4+6 =

the third switching matrix has nonzero entries

dc,O =B - S(C) dm+9(i-—1)+7,0 =B dm+9(i—1)+8,0 =B dm+9(i—-1)+9,0 =B

— —. 36 —. 36 _ R6

Weo =1 Wrn49(i~1)47,0 = B Wm49(i~1)+8,0 = B Wm49(i-1)49,0 = B
dO,i = S(C) d0,3m+9(i-1)+7 =B d0,3m+9(i—1)+8 =B d0,3m+9(i—l)+9 =B
— — N2 — 12 —_ 2

wop,; = 1 Wo,3m+9(i~1)4+7 = B Wo,3m+9(i~1)4+8 = B Wo,3m+9(:i-1)4+9 = B

Multiplying the weights by the transmission we know that the power used is B+3B7+3B3
which is equal to p. So, each of the three switching matrices satisfies the power constraint,
and the channel constraint. Therefore the concatenation of the 3m switching matrices also
satisfies the time constraint and is a schedule for ISWVP.

(b) If ISWVP has a schedule, then the I3P has a 3-partition.

4



We now claim that a feasible schedule must have each of its switching matrices with at
most 3B transmissions with weight B®. Suppose not, suppose that one such switching matrix
has more than 3B of such transmissions. Then the power consumed by those entries is at
least 3B7 + B® but that is greater than p = B + 3B7 4+ 3B because B is at least 2. Therefore
every switching matrix in a feasible schedule must have at most 3B entries with weight BS.
Since the sum of all the entries in D with weight B® is 9m B, and ¢ = 3m, it must be that all
the switching matrices in a feasible schedule have exactly 3B transmissions with weights B®.

At this point one can use similar arguments to show that all the switching matrices in a
feasible schedule have exactly 3B transmissions with weights B?. Similarly, one can show that
all the switching matrices in a feasible schedule have exactly B transmissions with weights 1.

Since there can be at most four different transmissions in each row and in each column, it
must then be that each switching matrix in a feasible schedule has exactly three transmissions
of B units each with weight B®, exactly three transmissions of B units each with weight B2,
and two transmissions (one in column zero and one in row zero) of a total of B units with
weight 1. Reorder the switching matrices so that the one for that uses entry d; ¢ is the i** one.
We say that the :** switching matrix represents element a;. Since D = Y%_, S, it must be
that the switching matrices that contribute to dy; must contribute exactly B units, and the
elements a; that these switching matrices represent sum to B. Therefore, A has a 3-partition.
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