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ABSTRACT

Efficient approximation algorithms for statistical
tests, graph partition and job sequencing are obtained.
These polynomial time bounded algorithms guarantee
approximate solutions that are within a certain percent
age of the true optimal solution value. The specific
problems studied are the k-MaxCut; Kolmogorov-Smirnov
and Lilliefors tests; and scheduling on: uniform proces
sor systems, open shops, flow shops and job shops. For
preemptive scheduling disciplines we show that the flow
shop and.job shop problems are P-Complete. For other
problems it is shown that finding a good approximation
algorithm is as hard as finding a good algorithm for
the optimal solution, i.e. the approximation problem is
also P-Complete. Some problems with this property are:
the travelling salesperson, cycle covers, 0-1 Integer
Programming, multicommodity network flows, quadratic
assignment, general partition, k-MinCluster and the
~generalized assignment. Efficient exact algorithms are
- obtained for the Kolmogorov—Smirnov and Lilliefors tests
; preemptive open shop scheduling and nonpreemptive

scheduling on 2 processor open shops.
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CHAPTER I
INTRODUCTION

In this thesis we study several problems for which
there are no known polynomial time algorithms. These
problems fall into the class of problems known as P-Com

plete ([8]1,I21]1 and [35]), which we now define:

Definition 1.1 A problem L will be said to be P-Com

plete iff the following holds: L can be solved in poly-
nomial deterministic time iff the class of nondeter-

ministic polynomial time languages is the same as deter

ministic polynomial time languages ( i.e. P = NP).
Our notion of P-Complete corresponds to the one
used by Sahni [35]. This can easily be seen equivalent
to that of Cook [8]. Knuth [23] suggests the termino-
logy NP-Complete. However, his notion of "completeness"
is that of Karp [21]. Since.the equivalence or non -
equivalence of the two notions is not known, we will
use the term NP-Complete for problems that can be shown
- complete with Karp's definition and P-Complete for
those which require the definition of Sahni [35]. The
reader unfamiliar with P-Complete problems is referred
to [21] and [35]. All problems that are NP-Complete
( i.e. complete under Karp's definitions) are also

1



P-Complete ([8] and [35]). The reverse is unknown. At
present it is not known whether P = NP. None of the
P-Complete problems has a known polynomial time algo -
rithm. All P-Complete problems have the property that
if one is solvable in polynomial time, then all other
problems in this class will also have a polynomial time
bounded algorithm. The best known algorithms for these
problems require an exponential amount of time, with
respect to the size of the problem being solved. Since
it is conjectured that P # NP, it is unlikely that any
P-Complete problem has a polynomial soluﬁion.

We shall make use of the operator "o" as in
P, a P_ to mean problem Pl reduces to problem P

1 2 27

Informally, this will mean that if P2 can be solved in

polynomial time then so will P By P = NP we shall

1°
denote the question: Is the class of nondeterministic
polynomial time languages the same as the class of
deterministic polynomial time languages.

Many of these problems have'practical significance
and for some we might be interested in algorithms that
will produce good approximate solutions quickly.
Several authors ([13]1,[151,1[17]1,1[19],1[24]1,133],[34] and
[36]) have shown that even though finding the optimal
solution to a problem is very expensive, we can

construct very fast algorithms that obtain solutions

which are guaranteed to be within a certain percentage



of the true optimal solution value. Such algorithms

will be termed e-approximate algorithms.

" Definition 1.2 An algorithm will be said to be an

e-approximate algorithm for a problem P iff .fi—%—i < e
and either i) P is a maximization pfoblem and
0 <e <1
or ii) P is a minimization problem and € > 0

where f* denotes the optimal solution value ( assumed
> '0) and E is the approximate solution value obtained. @
For a more detailed definition see [36].

In Chapters II, IV, V and VI we present e—-appro -
ximate algorithms for several P-Complete problems.
These problems include graph partition and scheduling
on: uniform processor systems, open shops, flow shops
and job shops.

After looking at these results and at the results
of other people in the area ([13],[15]1,[17]1,119]1,1[24],
[331,I34] and [36]), we could easily conjecture that
every naturally occuring P-Complete problem has a poly
nomial time bounded e-approximate algorithm. In
Chapter VII we present a strong argument against such
a conjecture. We show that for several natural P-Com
plete problems their approximation problem is also
P—Complete. Thus for these problems the approximation

problem is as hard as the exact, in the sense that a



polynomial time bounded algorithm for the former imply
a polynomial time bounded algorithm for the latter.
Some of the approximation problems that are P-Complete
are the travelling salesperson, cycle covers, 0/1 inte-
~ger programming, multicommodity network flows, quadra-
tic assignment, general partition, k—MinCiuster and the
generalized assignment problem.

Several nonpreemptive scheduling problems have
been shown to be P-Complete. Some of these can be
solved in polynomial time when we allow preemptive
schedules. The problems in Chapter IV and V become poly
nomial solvable when we allow preemptive schedules.
However, Ullman [37] has shown that the general preem-
ptive problem with precedence constrains is also P-Com-
plete. In Chapter VII we show that the flow shop and
job shop preemptive scheduling is also P-Complete. Even
though preemptive scheduling is as hard as nonpreem-
ptive, the solutions given by the former are much
better than the ones‘given by the latter. In Chapter VI
we present bounds between the ratio of nonpreemptive
and preemptive optimal solutions.

Approximate solutions are not restricted to prob-
lems-which are hard to solve exactly. In Chapter III we
present approximate solutions to problems that belong
in P, i.e. problems that can be solved in polynomial

time. Here, we look at the Kolmogorov-Smirnov and



Lilliefors statistical tests. In the case of these prob
lems, we want to compute a value Kmax’ and compare it
against a given critical value, in order to accept or
reject a hypothesis. This critical value is itself
known only to some accuracy. So, there is no need to

compute Km any more accurately than the accuracy of

asx
the criticdal value. Even though the exact value of K

max
can be determined in O(n) time, we show how to obtain

an approximate value in less time and using less space
than the exact algorithm. The O(n) exact algorithm pre-
sented in Chapter III is itself an improvément over the

best previously known algorithm ( which had a com -

plexity of O(n log n)).



CHAPTER II

GRAPH PARTITION

2.1 Introduction

In this Chapter, we look at a problem that arises
in information retrieval [20]. This problem is that of
obtaining an optimal set of k or n/k clusters given n
documents. When the optimization criteria is to maxi -
mize the dissimilarity among the clusters, it is shown
that e-approximate solutions may be obtained in O (n)
time for € > 1/k or € > k/n respectively. Thus, for the
n/k cluster problem the solution values are guaranteed
to be very close to the optimal for "large" n. When the
optimization criteria is that of minimizing the dissi-
milarity among documents in the same cluster, the
approximation problem becomes P-Complete, as we shall
see in Chapter VII. Note that this change in optimiza-
tion criteria does not change the optimal solutions but
does change the complexity of obtaining approximate
solutions.

The set of n documents is represented by a weight-
ed undirected complete graph G. The vertices are label
1 thru n with vertex i corresponding to document i and
the weight of the edge (i,j), w(i,j) is a measure of
the documents i, j. The objective is to partition the

6



set of n documents into k disjoint clusters (groups)
such that the total dissimilarity among clusters ( i.e.
L w(i,j) for i,j in different clusters) is maximized.
Sometimes, we may be interested in obtaining n/k
clusters for some constant integer k. We first show
that the clustering problem with these two optimization
constrains is P-Complete. Then we present the approx -
imation algorithm.
| The following known NP-Complete problems (see Karp
I21]) shall be used in the reductions:

i) Partition: Given s integers (c_,c

1 2
there a subset I ¢ {1,2,...,s}

seee,C ) 1is
s

such that I c, = T ch
heT h¢I

ii) Cut: Given an undirected graph G(N,A3),
weighting function w : A +» Z, positive
integer W, is there a set S C N such
that 2 wiu,v} > Ww

{u,vlea
ues
VEs
iii) Sum of Subsets: Given n+l positive integers

(r ye+«,r ,m), is there a subset of
n

r

1772 ‘
the ri's that sums to m.

Before proceeding with the completeness proofs we

present below abstract formulations of the cluster

problems (k-MaxCut and n/k-MaxCut) together with some



generalizations of the Partition problem.

a) k-Partition: Given n integers rl,rz,...,r
n

and an integer k > 2, are there

disjoint subsets 11,12,...,Ik
k
such that I.=1,2,...,n and
i=1 *
T r. = I r, , 2<8<k
ielg 1 ier * :
L

(The Partition problem i) above
is then just the 2-Partition
problem.)
b) k-Cut: Given an undirected graph G = (N,3),
integer k > 2, weighting function
w : A > 2%, positive integer W, are

there disjoint sets Sl,SZ,...,Sk such

k
that \Us, =N and z w(u,v) > W.
i=1 {u,vlea
ueSi
vsSj
i#3

(The Cut problem ii) above is just the
2-Cut problem.)

b') k—MaxCutlz Fina disjoint sets, S, 1 < i <k,

1

lrhe k-MaxCut problem is also a generalization of
the 'grouping of ordering data' problem studied in [1].
[1] restricts the set S. to be sequential, i.e., if
i,jes  and i < j then ti+l, i+2,...,3-1les,. [1]

presents an 0 (kn2) dynamic programming algorithm for
this.



k
such that \UJ s, =N and ¢ w{u,v}
i=1 1 {u,v}ien

ueSi
VeSS

i#3’
is maximized.
c) rn/k]-Partition: same as a) except that the
number of disjoint subsets
is now [n/k] , k > 2.
d) rn/k]—Cut: same as b) except the number of
disjoint subsets is now [n/K],
k > 2,
d') [n/k]-MaxCut: same as b') with k replaced by

[n/x] .

2.2 Completeness Proofs and Approximations

In this section we first prove ( Lemma 2.2.1) the
completeness of the problems a) to d). Then we will
present algorithm MAXCUT which generates approximate

solutions.

Temma 2.2.1

(I) The following problems are NP-COMPLETE
a) k-Partition
b) k-Cut
c¢) [n/k]-Partition
d) [n/K]-Cut

(II) k-MaxCut and [n/k|-MaxCut are P-Complete.
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Proof

We have to show that i) if P = NP then a)-d) can
be solved in polynomial time and ii) if a)~-d) can be
solved in polynomial time then the class of P-Complete
problems is polynomial solvable (this can be shown by
reducing any known P-Complete problem to a)-d)).

i) is trivial, so we shall only show ii).v

ii) Partition o k-Partition. For any Partition

problem (cl,cz,...,c ) define a k-Partition problem
S
(rl,rz,...,rS+k_2) where
cy 1<icx<s
ry = and p = Lc;/2
: P s+l < i < s+k-2

(we may assume that Iec; is even as otherwise the
partition problem clearly has no solution). Now,
Zry = kp and the k-Partition problem has a solution iff

the corresponding Partition problem has one.

k-Partition o k-Cut. If the given k-Partition

problem is'(r ,rz,...,rn) define the corresponding

1
k-MaxCut problem to be G = (N,A) with N = (1,2,...,n),

A= {{i,j}|ieN, JeN, i#j}

W({lrj}) = rirj
~ (k~1) 2
and W = R ( Zri )

(Note, we may again assume k divides Zri.) Clearly,

there is a k-Cut > W iff (rl,r .,rn) has a

ore



only for k = 2. From the partition problem (cl,c

11

k-partition.

- Partition o [n/k]|-Partition. We prove this

gre s
cn), s > 3, construct the following rn/21—partition

problem:
r. = C. 1l <1i<es
i i - -
r; =p s+l < 1 <n
n = 2(s-2)
p = Zci/2 (if Zc; is odd then there is

no partition)
Clearly, the partition problem has a solution iff the
[n/2]-Partition problem has one.

[n/K]-Partition o [n/k]-MaxCut. The proof for

this js similar to that for k-Partition o k-Cut, II
follows from I and the techniques of [23]. @

We note that the proofs used in Lemma 2.2.1 are
minor extensions of the ones used in Karp [21]. The
(n-k)-Partition and (n-k)-MaxCut problems are polyno =
mial. We next present an approximation algorithm for
the k-MaxCut and [n/k|-MaxCut problems. Consider the
algorithm MAXCUT below: (Intuitively, this algorithm
begins by placing one vertex of G into each of the 2
sets Si 1 <i < % ; the remaining n-% vertices are
examined one at a time. Examination of a vertex, 3Jj,

involves determining the set Si 1 < i < % for which
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2 w{m,j} is minimal. Vertex j is then inserted/assign-
meS.,
i

ed to this set.) A similar algorithm for this problem

appears in [20].

" Algorithm MAXCUT (%,G)

// %...number of disjoint sets, S into which the

il
vertices, N = (1,2,...,n), of the graph G(N,A) are to
be partitioned, SOL...the value of the vertex parti -
tioning obtained, w{i,j}...weight of the edge {i,j}.

SER(i) ... the set to which vertex i has been assigned

(SET(i) = 0 for all vertices not yet assigned to a set)
WT(i) ... used to compute I wim,j}, 1 < i < g.
meSi

This algorithm assumes that the graph G(N,2) is
presented as n lists vl,vz,...;vn. Fach list v contain
all the edges, {i,j}eA, that are adjacent to vertex i.
No assumption is made on the order in which these edges

appear in the list. //

Step 1 // Initialize // If & >n then do

SOL « I wi{i,j}
{i,jlen '

s; «+{i} 1<iz<n
S; « {#} n+l < i <2

Stop

end;

otherwise S; <« i 1<1i<14
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WT(i) <« O 1 <i< g,

SET(i) <« i 1 <1

IA
P

SET(i) « 0 %+1 < i <n
soL « 1 w{i,j}
{i,jleA
1<i<j<y
j« 2+ 1
" Step 2 // process edge list of vertex j //
for each edge {j,m} on the edge list of vertex j do

if SET(m) # 0 then WT'(SET(m)) < WI(SET(m)) +

w{j,m} ;
end
dj + degree of vertex j = # of edges adjacent to
. Vertex j

“Step 3 // find the set for which I w{j,m} is minimal//

meSi

look at Wr(a) 1 < a 5_mih{d5+l,2} and determine i
such that Wr(i) is minimal in this range. (Note that
if dj + 1 < & then at least one of WT(a) 1 < a < d:+l

J
must be 0 and minimal. For d;+1 > £ all WT (a) are

J
looked at and the minimal found.)
" Step 4 // assign vertex j to set S; //
SET(j) « i
" Step 5 // update SOL and reset WT //
 for each edge {j,mleA for which SET(m) # 0 do

if SET(m) # i then SOL < SOL + w{j,m}

WT (SET(m)) <« 0 ; end
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Step 6 // next vertex // j <+ j + 1,
if j < n then go to STEP 2
- otherwise terminate algorithm

end MAXCUT

" Lemma 2.2.2

The time complexity of algorithm MAXCUT is
O(F + n + e) on a random access machine {( n is the num-
ber of vertices, e the number of edges and 2% the number

of groups into which the vertices are to be partitioned

).

" Proof
- Step. Time Per Execution' Total Time

1 O(n + e + ) O(n + e + 1)

2 O(dj) O(e)
3 O(dj + 1) O(e + n)
4 o(l) 0(n)
5 O(dj)' O(e)
6 0(1) 0 (n)

Hence , the total time = O(n + e + 1)

" Lemma 2.2.3

Algorithm MAXCUT is a 1/k - approximate algorithm

for the k-MaxCut problem.

- Proof

If n < k then MAXCUT generates the optimal solution
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value.

Define the internal weight of the set S; to be

¥ wi{u,v} . Then the total internal weight
U#v ‘
u,ves:
ok ,
(TIW) = ¥ internal weight (S4). The external weight
i=1
(Ew) = . ) w{ulV} .
u,V
ues.
ves;
i#j

In Step 4 when vertex j is assigned to set i either

WT (i) = 0 (corresponding to dj < %) or

< I WI'(m)/k. i.e. if the total internal weight
1<m<k

=
~~
|—l.
S
A

increases by WT(i) then the external weight increases
by at least (k-1)WT(i). Consequently, at termination,
TIW < EW/(k-1) (note that SOL = EW). But, the optimal
value of the solution < TIW + EW. Let F* be the optimal.
EW = SOL is the approximation obtained by MAXCUT. The

worst case occurs when TIW approaches EW/(k-1). Hence

|F* = SOL

e < 1/k.

From Lemma 2.2.3 it follows that algorithm MAXCUT
is a k/n -approximate algorithm for the n/k-MaxCut
problem. While approximately optimal clusters may be
found in linear time using the maximization criteria,
one of the results in Chapter VII is that finding

approximately optimal clusters under the minimization



16

criteria is P-Complete. This is the approximation prob-
lem is as hard as the exact, in the sense that a poly-
nomial time bounded algorithm for the former implies

a polynomial time bounded algorithm for the latter.
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CHAPTER III

STATISTICAL TESTS

3.1 Kolmogorov-Smirnov and Lilliefors Tests

The Kolmogorov-Smirnov and Lilliefors tests allow
us to evaluate the hypothesis that a collected data set,
i.e. a random sample Xl’x2""’Xn' was drawn from a
specified continuous distribution function F(X). For
both tests, a determination is made of the ﬁumeric
difference between the specified distribution function
F(X), and the sample distribution function S(X) as
defined by equation 3.1.1.

S(X) = {(number of Xj's < X)/n} (3.1.1)

If the sample, Xl’XZ""KX , has been sorted into

In B

hondecreasing order so that X X2 < .. < Xn' then

1

the Kolmogorov-Smirnov statistics Kgax (maximum posi-
“tive) K_ (maximum negative) and K (maximum abso =
max max

lute) deviations are computed by formulas 3.1.2.

rF = vn max { J - F(X.) }

max 1<3<n n j

- . ) 11

K = yn max { F(X,) - 422} (3.1.2)
max 1<3<n J n

K = max { k¥ , kK }

max max max

K are

The distribution functions of Kﬁax' K;axl max

known and tabulated. We accept the null hypothesis that

the sample was indeed drawn from the distribution F(X)
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if the statistiCs computed do not exceed the criti -
cal values tabulated for the level of significance
selected. For certain F(X), (see [25],[26}) tabulated
values of the test statistic distributions are avail -
able for the case where the actual parameters of F(X)
have been replaced by estimates computed‘from the
sample. The test also has application for certain
spectral tests, see for example, [ 9, p. 197].

Previous algorithms [ 22, 27 and 32 ] for comput -
ing these test statistics are essentially identical to

algorithm K below:

. -|.. _—
- Algorithm K( K. _» Koax' Ko aX)

// Knuth's algorithm for Kolmogorov-Smirnov test
statistics [22 pp.44] //
" Step 1 obtain the n observations Xl’ X2"“’Xn

~Step 2 sort them so that X; < X5 < ... < X,
+

Step 3 Compute Kmax’ Kmax and Kmax using equation
3.1.2.
" end K 8

Since, step 2 sorts the observations, it requires
O(n log n) time. The remainder of the algorithm takes
O(n)btime (assuming F(X) may be computed in a constant
amount of time 0(1)). Hence, the total time required is
O(n log n). The algorithm we present in section 3.2

. . + - .
computes the test statistics Kmax' Kmax and Kmaxw1thout
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explicity sorting the Xi's; This algorithm has a time
complexity of O(n). The tabulated acceptance/rejection
values of these statistics are usually accurate only to
three or four decimal places. Hence, there seems little
point in computing these statistics to greater preci -
sion than the tabulated values. With this in mind, we
present in section 3.3 an approximation algorithm which
~guarantees a certain closeness to the exact values of

K-!-

, K© and K . This approximate algorithm require
max max max

less storage space than the exact algorithm and so
should be useful when n is large. The computing time is
still O(n). Empirical tests, in section 3.4, show that
the approximation algorithm is actually slightly faster
than the exact algorithm. The desired closeness of the
approximate and exact solutions can be fixed through an
algorithm parameter.

Both the exact and approximate algorithms apply
equally well to the Lilliefors test [6] which is very
similar to the Kolmogorov-Smirnov Test. In this test,

instead of using the raw observations, X

i+ the observa-

tions are first normalized as in equation (3.1.3) and
then these normalized observations are used in (3.1.2)
to obtain the test statistics. If the Zi's are the

normalized values of X; then
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Xl - X
7 = l<l<n
1 8 —_— —
_ n

where X = I Xi/n (3.1.3)

1 L

n = 2

and s = ( Z(Xi - X)) /(n-1))

Since the normalization can clearly be done in
O(n) time and the rest of the computatién is the same
as in the Kolmogorov-Smirnov test, it follows that our
algorithms can also be used to obtain the Lilliefors

statistics in O(n) time.

3.2 Exact Solutions

K™

. +
Our algorithm to compute the values of K .., K o

and K .. for the Kolmogorov—-Smirnov test proceeds by
dividing the range of the cumulativebdistribution
function F(X) into n+l intervals. The point y, 0 < y< 1
lies in the interval [y * n|. For each of the n samples
or points X5 1 i i < n, the value of F(X;) is computed.
For each of the n+l intervals for F(X), the number of
sample points for which F(X) is in that interval is
recorded, together with the minimum and maximum values
of F(X) achieved in that interval. Theorem 3.2.1 shows
that this information is sufficient to enable an

accurate determination of the values of Kt K and

max’ “max -
Kpax+ We first formally present the algorithm. Lemmas
3.2.1 and 3.2.2 analyze the time and space complexity

of this algorithm.
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. + -
Algorithm Ks(n’Kmax’Kmax’ Kmax)

// This algcrithm inputs n sample points and performs
the Kolmogorov-Smirnov test against the cumulative dis-

tribution function F(X). The outputs of the algorithm

R 4 . v .
are: Kmax"‘ the KXK' maximum deviate
Kmax“' the K maximum deviate
Kmax"‘ the absolute maximum deviate

3 vectors of size n+l each are made use of:
NUM, . .. number of samples in bin i
MAX; ... maximum sample value in bin i 0 <ic<n

MIN;... minimum sample value in bin i
//
Step 1 // Initialize //
for i + 0 ton do
XMINi <~ 1
XMAXi « 0
NUM, « O
i
end
" Step 2 // input observations and put into bins //
| for i « 1 to n do
input X
f « F(X)
j < rf*nT // compute bin for X //
NUM, < NUM, + 1
J J

if MAX,K < f then [MAXj <« f]
2L i Laen
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(if MIN;>f then [ MIN, < £ ]
Step 3 // process eachvbin finding maximum poéitive
and negative deviates //
j « 0; DP « 0; DN <« O;
for i « 0 ton do
if NUMi> 0 then [ z <« MINi - j/n |
if z > DN then [ DN <« Z]
j+< J+ NUM;
z < j/n - MAXi ’
if z > DP fhen [ DP « z ]

]

end

. o + -
Step 4 // Compute Kmax’ Kmax'and KmaX 7/

+ *
Kmax+_/ﬁ DP
Kpax < Y0 - * DN
Kmax < max { K$ax' Kﬁax‘}
" return

"end KS @

We now prove that the above algorithm does in fact

~give the correct results.

" Theorem 3.2.1 Algorithm KS gives the correct values

for Kt K-~
m

and K .
max’ m

ax ax

Proof We prove this only for the case where all the
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sample points Xi are distinct. The extension to the
~general case is fairly straight-forward. The proof is
in two parts. Fifst, we show that it is sufficient to
consider only the smallest and largest samples in each
bin and then that algorithm KS determines accurately
the index of these sample ipoints in case all samples
were sorted into nondecreasing order.

(i) Since F(X) is a cumulative distribution
function, it must be monotone increasing in X i.e.
x >y iff F(x) > F(Y). Hence, it is immaterial whether
for each bin we retain the largest and sﬁallest sample
points or the largest and smallest values for F( ). Let
X be the smallest sample point, Z the largest and Y any
sampie point in bin i. Then X < Y < Z and F(X) < F(Y) <
F(Z). Let j, k, & be the number of sample.points < X, Y
and Z respectively. Then j < k < £.

By definition K+(>’&j) = j/n - F(X5). If k ;é 2

then: Kt(Y) = k/n - F(Y)

A N | _
<(-1-@F@ -im

F(2) = KT (2)

]
P
~
o]
|

also, if k # 7,

K (YY) = F(Y) - Q‘;—l)—




Hence, for any bin it is sufficient to consider
only the maximum and minimum in that bin.
(ii) Again, since F(X) is monotone increasing,

all sample points in bin £ are less than all sample

points in bin £ + 1, 1 < & < n. Therefore if X is the

smallest and Z the largest sample points in bin £ then

24

the number of sample points < X is I NUM. and the num

o<i<g T

ber > Z is X NUMi.
0<i<4

max

(i) and (ii) show that the correct values for K¥__ and

Km are obtained. By definition of K .., the correct
K is also obtained.
max

" Lemma 3.2.1 The time complexity of algorithm KS is

O(n).

Proof Step. Time.
1 O(n)
2 O(n)
3 o)
4 0(1)

Hence the total time = 0O(n)

" Lemma 3.2.2 Algorithm KS requires 3n + c amount of

space where ¢ is a constant.

- Proof The vector NUM, MAX and MIN each are of size

n + 1. A fixed amount of additional space for simple
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variables such as i and j is also required. Hence the

total space requirements are 3n + c.

3.3 Approximations

In this section we present an algorithm to deter -

mine approximatetely, the values of K$ax' Kmax

-and Kmax'
This algorithm is slightly faster than the algorithm of
section 3.2 and requifes at most 1/3 the space required
by that algorithm. This algorithm is very similar to
algorithm KS. It has only m+l < n+l bins and does not
keep track of the values of MAX. and MIN, . Instead the
approximation MAXi 2MINi =~ (1 - .5)/m is used. Before

obtaining bounds on the algorithm we state it formally

to point out the differences from algorithm KS.

Algorithm APPROX KS (n, K*__, K- K, m
: ' : — - mmax T max max

+

" // Find approximations to Kax’

K K using only

;ax’ max
m+1l bins. Variables have same meanings as in algorithm
KS //
"Step 1 // initialize bins //
for i . 0 tomdo
NUM; < 0
end

~Step 2 // input and count number of sample points in

each bin //
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“for i «1 to n do
f <« F(X); j <« [£*m] ; //compute bin for
X //
NUMj+ NUMj + 1
‘end
" 'Step 3 // process each bin finding approximate values
for maximum positive and negative deviates from F(X) //
DP <« 0; DN < O0;
if NUMy > 0 then [ DP <« NUMy/n ]
j « NuM, '
“for i<« 1 tom do
if NUM; > 0 then [ z <« (i-.5)/m - j/n
. if z « DN then [DN <« z]
j o<« 3+ NUM;
z < j/n - (i - .5)/m

if z < DP then [DP <« z]

end

Step 4 // Compute K;ax' K-~ , K //
Kf,x © vn * DP

A .-

K < v/n * DN

max

~ . /\+ A

K <~ max { K , K }
max max max
return

" end APPROX KS @
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Theorem 3.3.1 The following relations hold between the

. e - > .
approximate values Kmax’ Kmax and Rax @S given by
algorithm APPROX KS and the exact values Kt K~ and

max’ “max
Knax 9given by algorithm KS:

(1) |Kpax = Kt .| < /0 /(2m)
(ii) |£;ax -k~ | < /A /(2m)
" max
and  (iii) |R .. - K _ | < /& /(2m)

Proof (i) follows from the observation that for any

bin, i, if 2 = I NUM, if X is a Sample point such
0<j<i

that [F(X) * m|] = i and if there are k sample points
< X then K*(X) - K+(bin i)
=/ (k/n - F(X)) - /a0 (&n - (i-.5)/m)
= vyn ((k=-2)/n + (i-.5)/m -F(X))
< Y0 /(2m).

The proofs for (ii) and (iii) are similar. @

is O(n) and the space required is n+c for m < n and c

a constant.

" Proof Follows the pattern of the proofs for Lemmas

3.2.1 and 3.2.2.8

3.4 Empirical Results

In order to determine the relative performance of

our algorithms on practical sample sizes, we programmed
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algorithms KS, APPROX KS and algorithm K in FORTRAN

and ran several tests on the Cyber 74. The sorting
method used for algorithm K was heapsort. Three‘distri—
bution functions: normal, exponential and uniform were
tried so as to reflect the differences in the computing
times for F(X). Table 3.4.1 presents the results obtain
ed for various sample sizes. The times are the mean
computing times over several experiments. As can be
seen from this table, algorithm K required from about 2
to 3 times the time required by our algorithms. This
difference will, of course, become larger’for larger
sample sizés. Algorithm APPROX KS took roughly the same
time as algorithm KS but used considerably less storage.
The observed difference between the exact and approx -
imate values of the test statistics was about half the
theoretical maximum of Theorem 3.3.1.

We have presented linear time algorithms for the
Kolmogorov-Smirnov and Lilliefors tests. While these
algorithms are faster than those of [6], [22], [27] and
[32], one should note that this speed up is obtained by
avoidiné a sort of the sample. If the sample is already
known to be sorted or has to be sorted for some other

+ - -
reason, then the wvalues of Kma K and Kmax can be

x’" Tmax
computed more efficiently by a direct application of
(3.1.2). Thus, we recommend the use of algorithm KS

when the sample is not sorted to begin with, nor has to
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be sorted for other perpose. Algorithm APPROX KS is
recommended in cases where n is large, storage small

. . + -
and the acceptance/rejection values of Kmax’ Kmax and
Knax are themselves known only approximately (i.e. only

a few digits of significance is desired). The value of

m to use can be determined using Theorem 3.3.1.
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