31

CHAPTER VI

UNIFORM PROCESSOR SYSTEMS

4.1 Introduction

A uniform processor system [15] is one in which

the processors P P_.,.v., Pm have relative speeds

1" 72 v

Sy s2,...',sm respectively. It is assumed that the
speeds have been normalized such that s; =1 and s; > 1
for 2 < i < m. The problem of scheduling n independent

tasks (Jl, J2,...,Jn) with execution times (t t

R TIARRY
tn) on m uniform processors to obtain a échedule with
the optimal (least) finish time is known to be NP-Com-
plete [3,15]. Hence, it appears unlikely that there is
any polynomial time bounded algorithm to generate such
schedules. For preemptive scheduling, however, optimal
finish time algorithms can be obtained in polynomial
time [16, 30]. Horowitz and Sahni [15] showed that for
any m, polynomial time algorithms exist to obtain
schedules with a finish time arbitrarily close to the
optimal finish time. The complexity of these algorithms
was, however, exponential in m. The purpose of this

Chapter is to study the finish time properties of LPT

schedules with respect to the optimal finish time.

" Definition 4.1.1

An LPT (Largest Processing Time) schedule is a

32

schedule obtained by assignding tasks to processors in
order of nonincreasing processing times. When a task is
being considered for assignment to a processor, it is
assigned to that processor on which its finishing time
will be earliest. Ties are broken by assigning the task

to the processor with least index. @

One may easily verify that for identical processor
systems, this definition is equivalent to that of [4],
p. 100. Graham [13] studied LPT schedules for the
special case of identical processors, i.e., s; = 1,

1 <i<m If E is the finish time of the LPT schedule
and f* the optimal finish time, then Graham's result is
that f/f* < % - %ﬁ and that this bound is the best
possible bound. In sectionv4.2 we extend his work to
the general case of uniform processors. While the bound
we obtain is best possible for m = 2, it appears that
it is not so for m > 2. In view of this, we turn our
attention to another special case of uniform processors
i.e., si =1, 1 <i <m and sm = s > 1. This case has

previously been studied by J.W.S. Liu and C.L. Liu [29].

Using a priority assignment according to lengths of
2 (m-1+s)
S+2
£/£* < E:%iﬁ for s > 2, where £ is the finish time of

tasks, they show that £/f* < for s < 2 and

the priority schedule.

Similar bounds for list schedules are also obtain

33

ed by them. We are able to show that for m > 3

E/f* < 3/2 - 1/(2m) and that this bound is the best
possible for m = 3. For m > 3 we conjecture that
B/ex < a/3.

Before presenting our results we develop the
necessary notation and basic results. If S is the set
of tasks being scheduled, then it will sometimes be
necessary to distinguish between finish times of
different setsvof tasks. To do this S will appear as a
superscript along with E or £* as in £5 and £*5. If the
number of processors is important, then this number
will appear as a subscript as in fm' fﬁs etc. We shall
refer to the sets of tasks (jobs) by their task
execution time. Thus we speak of a set, S, of tasks
(tl >ty > ...ztn) meaning thé execution time of task
Js is ty and t; > ti+l’ 1 < i < n. The m processors
Pl’ PZ""'Pm arebassumed ordered such that sl = 1 and
1< si < si+l' 2 < i < m. The following result from [4,
p. 102] is made use of:

Lemma 4.1.1 If for anym S = (t; > t, 3...Z_tn) is

the smallest set of tasks for which f£/f* > k then tn

determines the finish time f (i.e. task n has the

latest completition time).

Proof Appears in [4] p. 102. @

34

4.2 Basic Results

In this section, we prove two important lemmas
that are used throughout the Chapter (Lemmas 4.2;2 and
4.2.3). We also derive the bound 2m/(m+l) for the ratio
%/f* for the general m-processor system. Examples are
shown for which %/f* approaches 3/2 as m » .

We be€gin with the following lemma, informally, it
states that if either the LPT or optimal schedule of an
(m+1) ~-processor system has an idle processor, then the
ratio E/f* for this schedule is no worse that E/f*

For m processors.

" Lemma 4.2.1 For m > 1, let g(m, 52,...,sm) be such
that .fm/f; i_g(m, 52,...,sm). Consider any (m+l)—pr9
cessor system with job set S = (ti > t2 >l tn) and
processor speeds 1 = Sy < s, <oeeX sm+l' If a proces

sor is idle in either the LPT or optimal schedule of S,

=S S
h f * < .o .
t en’ +l/fm+1 < g(m, 83/82' , S /s)

Proof Suppose in the LPT schedule of S a processor
P; is idle. Then it must be the case that in the opti
mal schedule, Pi is also idle. Otherwise, f§+l <
th/si fm+l> t,/s; and fs+l/fm+l = 1. So we need
only consider the case when P is idle in the optimal
schedule. If Pi is idle then clearly Pl is also

idle or can be made idle without increasing £* by

scheduling the jobs on Py onto Pi . Consider the

35

m-processor system with job set S and processor

speeds 1 = 52/52 < s3/sé <...< sm+l/s2 . Then by

assumption, for this system, %i/f%si g(m,s3/sz,...,
‘ £S £S *S. = %S
sm+l/s2). Moreover, fm+l < Sme and fm+l szfm .

£S %S
It follows that fm+l/fm+l < g(m, s3/52,...,sm+l/sz).a
The next lemma gives an estimate of %/f* for the

case when f is determined by the job with the small-

est execution time.

Lemma 4.2.2 Consider an m-processor system with job

set S = (tl > t2 >.0.> tn) and speeds . Sl’ sz,...,sm.

A

If in the LPT schedule of S, the finish time £ is

determined by tn, (i.e., if task n has the latest com-
(m-1)tn

pletition time) then Af/f* <1+ of * ’

where

Q ='ZSi .

" Proof Let the LPT schedule be as shown in Fig. 4.2.1 ,
where Pk determines the finish time. Each Ti is

the sum (possibly 0) of execution times of jobs schedul

. L > —
ed on P, prior to t,'s assignment, Tl+...+Tm —tl+...
tn—l * R

. 1 1

Pl L}
1
P2 . \
e atngy
Px N | t
Tm' '
Pn R

Fig. 4.2.1

36

Since task n determines the finish time,

- " Tistn _ 2 :
£ = (Tk + tn)/s and S > f for 1 # k. Hence ,
i
%s- - T. < t and so E LI s. - Y T, < (m~- 1)t_.
i i 2 *n ‘ ik i ik i — n*

This, together with f£s, = Tp + t, yields
fo < Ti + mtn
ti + (m - l)tn.
Since f£f* > t./Q , we get f/f* <1 + m-Dth @
- i . = £ 0

Using Lemmas 4.2.1 and 4.2.2, we can now derive a

bound for the m processor system.

Theorem 4.2.1 For an m-processor system, £/£*% < ~3%.

- m-

Proof For m = 1, the theorem obviously holds. Now

suppose the theorem holds for 1,2,...,m—1 processors

)

but fails for m-processors. Let S = (tl >ty 2.2 t,

be the smallest set of jobs which gives a bound
A 2m o
* > 22, 1.
fm/fm 1 Then by Lemma 4.1.1, tn determines the
finish time. There are two cases to consider. Both

lead to a contradiction.

Case 1 n >m+ 1. Then by Lemma 4.2.2,

(m-1)t,

£f /f* < 1 +
IV "M em Qf*

(m"'l) tn

| A

xte.
i
o] o)

37

(m-1) t —_— e :
‘<1+_“.E=1+M<1+M=2_I.n_
- ntp ' n - m+l m+l
a contradiction.
"Case 2 n <m . Then in the optimal schedule, either

= m — m+l

each processor has exactly one job or a processor is
idle. In the first case, Eﬁ/ fﬁ = 1, since no
processor can be idle in the LPT schedule (see proof of

FS/£%S £S S
Lemma 4.2.1). For the second case fm/fﬁ < fm_l/fﬁ*l_l

g’Z(mrl),< 2m

by Lemma 4.2.1. Either case leads to a

_contadiction. @

" Corollary 4.2.1 For an m-processor system, %/f* < 2 .

The bound of Theorem 4.2.1 is probably not a tight
bound. However, we can show that there are examples

approaching the bound 1.5 as m + « . a

" Theorem 2.2 For every m > 2, there is an example of an

' m~processor system and a set of jobs S for which

N
fs/f*S = ¢, where c¢ 1is a positive root of the

equation 2s® - s™l - - s-2=0.

Proof The example we shall construct has job set

S=(t >t >..>t >t) (where m is the number
1 - 2 - m~ mnmtl
of processors) and processor speeds 1 = Sy <.eee X S

The ti's and si's will satisfy the following prop-

erties (see Fig. 4.2.2):

. t R S
S+ Pl T \ m+l% Pl »tm—;b \
S P2 w1 Py — m2
P 3 1 £,
P __ 1 \
s Pmtll, . m-1 —
) P _ En 'gtm+l y
LPT schedule Optimal schedule
Fig. 4.2.2
2o _ Ep + tm+l
(4.2.1) £ =t + t 4 and f* = -
(4.2.2)‘ th = tper = t ,
(4.2.3) T S
2. t + = 2t = for 1 < < -1
. + 2 t.
(4.2.4) fm * fmil _ 2t i gy 1<i<m-l

S S m Sm_ i

Then %/f* =

SRR ®
|
n
.

(4.2.4) we can derive the equation for sm

(4.2.3) we get:

(4.2.5) t; =

i 2tsp_ 341 — t = t(2sp44 -

(From 4.2.4) we have-

(4.2.6) Smti = 2tsm_i

(4.2.5) and (4.2.6) yields
2Spm—1 + Sm

(4.2.7) sp_441 T 5 for

Using (4.2.7) repeatedly for

get:

From properties (4.2.1) -

. From

1) .

38

39

2Sm__l + Sy

2 (ZSm—Z + Sm

25m—2 + Sm + Sm

2s 3+S

Hence

s = (since s; = 1)

ox

(4.2.8) 2sm - gm~1 - gm-2 - .~ g -2=20.
m m m m

The polynomial on the left hand side of (4.2.8)

“has one sign change and so from Descartes rule it also

has one positive real root. The root must clearly be
> 1 as otherwise the right hand side is < 0.

Let ¢ be a positive root of equation (4.2.8). We
can construct an example of an m-processor system with
%/f* = ¢ by setting s =c and computing Sp,...,Sp-1 .
in terms of ¢ wusing (4.2.7). (Of course, s; = l.)

Then by letting th = Bl = t, we can determine the

40

values of tl' t2,...,t

=1 in terms Qf t using (4.2:4).

Corollary 4.2.2 There exist uniform processor systems

and job sets S for which £/f* = 1.5 .

- Proof From Theorem 4.2.1 we know that there are jobs

sets, S , for which f/f* = ¢ where ¢ 1is a positive

root of (4.2.8). Let s be a root. Rearranging terms,
we get:
2s™ - 1 = r st
0<i<m
_ s®-1
s—-1

or 28™1 _ 3sm - g +2=0.

Since s > 1, for m > » we have s = 3/2 as

a root. a

Example 4.2.1

(a) m= 2 :
2

Then we have 252 - S, - 2 =0 , where we
. _ 1+/17 _ — s =
find Sy = 2 . Of course, s; = 1. Let t2 = t3— 1.
From equation (4.2.4), we find t, = &t sq = 8 .
- S2 1+/T7
One easily verifies that g/£x = l+;I: .

(b) m= 3 :

The equation to use is 23% - s%.—s3 -2 =0.

S3 = 1.384 is an approximate root of this equation.

41

Using equation (4.2.7), we find Sy = ——>%— =1.,223

and sy = 1. Let tg= t, =t = 1. Using equation

(4.2.4), £ind t, = 2£ . s, = 1.767 and t; = 2% . 5,
53 53

= 1.445. Again we can check that £/f* is approximate
ly 1.384.
(c) Some other roots of (4.2.8) are 1.493 for

m=10 and 1.499 for m = 20. @

4.3 special Case (1, 1,...,1 , s)

In this section we study the special case in which
all but one of the m > 1 processors has a speed of 1.

The mEE-processor Pm has a speed s > 1. The main

result of this section is stated below as Theorem 4.3.1.

" Theorem 4.3.1 For m > 2 the ratio £/£% has the

following bounds:

(1) f£/f%* < (1 + /IT)/4 for m = 2
(ii) f£/f* < 3/2 - 1/(2m) for m > 2 .

Proof (i) is proved in Lemma 4.3.2. (ii) follows from
Lemmas 4.3.1 - 4.3.6 and the fact that the bound is a
monotone increasing function in m. 8

Before proving the theorem we derive a general

bound for £f/f* in terms of m and s .

Lemma 4.3.1 For an m-processor system with s, = 1 for

. i~ 2 (m-1+s)
= * £\n-_7T5) .
1 < i <mand Sn s , f/f* < 1795

42

Proof If m =1, the lemma is obviously true since

%/f* = 1. Now assume that the lemma holds for 1,2,..

4

m-1 processors but fail for m (m > 2). For this m ,

Let S = (ti > t '>..;z_tn) be the smallest set of

—_— 2_..
. . a "2 {(m-1+s)
* Lt L Y
jobs for which £f/f* > 1375 -

is idle in either the LPT or optimal schedule of S.

Suppose a processor

Then £S/f*S < £S5 /558, < 2(m-2+s) _ 2(m-1+s)
m m = m=ltmmi o= m-2+42s m-1+2s
Lemma 4.2.1 .

So we may assume that no processor is idle in
either the LPT or optimal schedule of S . We consider

two cases, both leading to a contradiction.

Case 1 The LPT schedule is as shown in Fig. 4.3.1 ,
where each T: represents the sum of execution times

of jobs scheduled on P; prior to the assignment of

t T + T +eoeot+ T = t + t +...+ t . B
n' "1 2 m 1 2 n-1 ° Y

assumption, no processor is idle. Hence T; > 0 for

2 <i<m. Since the first m - 1 processors have

speed 1, we may assume that Ti > Tl and 1 < i < m-1.

Now if 'I‘l =0 , then f = tn . But f£* > tn since by

assumption no processor is idle in the optimal schedule.

Then f/f* = 1. 8o we may also assume that Tl > tn’

Then

J;'E/f*‘g__ : Ty * tn . S (m-1+s) {Ty + tp)
(ZT; + t,)/(m-1+s) — (m-1)Ty + Tp +‘tn

43

o
H
N
v}
e |
N

=)
=

Fig. 4.3.1 Fig. 4.3.2
Now, since tn determines the finish time,

+ t or T_ > sT

> Ty n o 1 + (s—l)tn . Then

(m=1+4s) (T1+tp)

£/£%

I A

(m-1+s) (T1+tp)
(m-l)Tl -+ S(Tl+tn)

m—l+s'
+ (m-1)Tq
Tl+tn

. _ . T
_m-1+s gince the minimum 1

g 4 M1 Ty1+tn
2

A

with the constrain Tl > tn

occurs when T, =t .
1 n

2(m-1+s) : .
—————— , a contradiction.

* <
Hence, £f/f* < o125

' Case 2 Suppose the LPT schedule is as shown in Fig.

4.3.2, where we again assume that T, > T, > tn . We
may also assume that Th > 0 ; otherwise f/f* =1

since £ = tn/s .

Tm + tn
——
(ZTi+tn)/(m—l+s)

Then £/£* <

Ty + t
(m-1+s) (—oa—2)

T (m-1)Ty + T, + oty

Since tn is scheduled on P v T, + t, 2

We have two subcase:

(a) We can find a T such that t_ < T < Ty and

n _—
Tm + t
T + tp = %—= . Then
f/f* < 2

(m-1)T + Tm+tn
(m-1+s) (T+ty)
(m-1) T+s (T7+t,)

__(m-1+s)
- + {m~1)T
T + tn)
< (m-1+s) _ 2(m-1+s)
= =1 T m-142s
s + s

Again, we get a contradiction.

44

(b) If (a) is not possible, we let T = tn . Then
Tm + tn
T+ t, =2t > —g—— or Ty < (2s-1)t, . Then
Tm + tn
~ (m-1+s) (S)
*
E/8% S DTy + T+t
< (m-1+s : Tm + tp
- s (m-1)ty, + Ty + tp
_ (m-l+s) """ 1
. 5 ’ (m-l)tn
1 +

45

co@zlysy L
-2 (m=-1) tp
1+
(2s-1)t, + t,
= 2(m-1ts) , a contradiction.
" m~-1+2s :

The bound for m = 2 follows from the following lemma.

" Lemma 4.3.2 For an m processor system with s;j=1 ,

(3-m) + /(3-m) 2+16 (m-1)

1l <i<m and sp =5 , f/f* < 2

m.

Moreover, for m = 2 , the bound is tight.

" Proof Let k > 1 be the desired bound for f/f* .

Let Q = Zsi = m-1+s . First we show that if
s i Z%L%:%L , then f/f* < k . Suppose not. Let

S = (ty >ty >...> tn) be the smallest set of jobs for

which f/f* > k . Then tn determines the finish time

(m—l) tn

and by Lemma 4.2.2, £/f%* < 1 + NEE

Hence

£% < —ETE:IT . It follows that the number of jobs on

each processor in the optimal schedule of S is less

é?;ii? < 2 . But then this case, E/f* =1 .

This contradicts the assumption that S produces a

20(k-1)
]

than

, then £/f* <k .
- 20(k-1)
m-1 '

‘bound > k . Thus if
This, in turn, implies that if Q < (m-1) +
then f/f* < k or that

then E/f* < k . Now by

" 2(m-1+s) _ 0 2 (m=1+s)
m-1+2s - 2(m-1+s)-(m-1)

46

=20 . It follows that if 29 < k , then
20— (m—-1) 20- (m-1) —

£/f%* <k or
(m-1)k

. . St ek ~ *
(4.3.2) if Q > 2 (k-1) then f£/f* < k

To satisfy (4.3.1) and (4.3.2) simultaneously, we must

(m-1)2 (m-1)k ,
have n—2k+1 = 2(k-1) r from which we get

k = (3-m) + /{3—m)2'+ 16 (m-1) In this case %/f* < k

4
for all Q .
For the case m =2 , we have k = l—izlll

which is tight since we have seen an example for which
the bound is achieved.

In arriving at the proof of the theorem for m > 2,
it is necessary to prove four lemmas. To begin with,
we show that if for any set of jobs, S , an optimal
schedule has more than one job on any of the procesSors
P

1r Py seees P__1 then £°/£%5 < 3/2 - 1/(2m).

Lemma 4.3.3 For any set of jobs, S , either

(1) processors Pq-P_._ 4 have at most one job
scheduled on each in every optimal schedule

or (ii) £5/£x8 < 3/2 - 1/(2m) .

Proof Suppose (ii) is not true for some set of jobs.

Let 8§ = (tl > t2 Seead> tn) be the smallest set of

jobs for which fi/f;s > 3/2 - 1/(2m) . From Lemma

4.2.2 we get

47

< —_— -
f/fn 21 sy ex 0 /2 7 /G0
or
(m-1) tn N m-1
(m—l+s)f$ 2m
or
m~1l+s
tn 2m fé
*
> (1/2) £

I.e., f; < 2tn which, in turn, means that none of the
processors P;-P _, can have more than one job
scheduled on them in an optimal schedule. a

Next, we prove that if s > m-1 then £/f* < 4/3.

N w

Lermma 4.3.4 If s > m-1 then £/f* < 4/3 <

_ 1
2m
for m > 2 .

- Proof Lemma 4.3.1 gives

A~ 2 (m-1+s8)
/8% < i+ 2s

The right hand side of the above inequality is a

decreasing function of s . Hence, for s > m-1 we
obtain
% £+ < 4dm-4
= 4/3
< 3/2 - 1/(2m) m>2 . @

As a result of Lemmas 4.3.3 and 4.3.4 the only
counter examples to Theorem 4.3.1 are sets of jobs, S,
for which the optimal schedules have at most one job on

each of P, - P

1 and the speed, s , of Pm is <m-1.

m-1

48

The next two lemmas show that for this kind of an
optimal and s < m~1 the bound of theorem 4.3.1 cannot

be violated.

" Temma 4.3.5 Let S = (ti > t2 >eee> tn) be the

smallest set of jobs for which £/f* > 3/2 - 1/(2m) .

If in the LPT schedule, £ty is the only job scheduled

on one of the processors, Pl’ Poreens Pm—l and if in

an optimal schedule tj is the only job scheduled on

one of the processors, Pl, P2,..., P then, either

m-1

; S /%S *
(1) fm/fm < fm—l/fm—l
oxr .

(i1) t5 < t5

"PrOof From Lemma 4.1.1 it follows that th determines

fS

the finish time If anyone of the processors
Pl’ P2 ey Pm is idle in an optimal solution (i.e.
no jobs have been scheduled on it) then f£ = fﬁ—l .
2S . 28 %S ,.4S . 25 «S

But, £ < £ 4 and so f_/fx" < f..1/tx_y - We may
therefore assume that no processor is idle in any
optimal solution. Hence, f%s > tn . If i =n then
Eg = tn (as ti is the only job on some processor

£S /e%S :
Pl’ P2,..., Pm—l) and fm/fm <1. Therefore i # n.

Now, we have

£+S = maxft , £+5°1t3hy
m 3 m-1

s-{ts}
£271 J

|v

49
> £xS={t;} ... as t, >t

but, £5 =>f§:£ti} ... as 1 #n

Hh
n
~N
Hh
*
0"
A

< Egi{ti}/fﬁgi{ti}

7 *
fm-l/ 'fm—l @

A

" Lemma 4.3.6 When s < m-1 and an optimal schedule for

any set of jobs S has at most one job on each of

Processors Pl—Pm_l then fm/f% < 3/2 - 1/(2m) .

" Proof Let S =_(tl >ty 2.2 tn) be the smallest set
of jobs and m the least m > 2 for which the lemma

is not true. From Lemma 4.3.1 we obtain

A m—l tn ~
f/£* < + -—. B i * > - .
/f* < 1 —is I+ y assumption £/f 3/2 1/ (2m)
Therefore,
" (m-1) tn
+ - — > 2 - 1/(2
m-1+s f* 3/ / (2m)
or
C2m
* < - e & - .
£ n-l+s tn (4.3.3)

If 4, is the number of jobs on P in an optimal

m
'schedule then, f* > #mtn/s . Substituting this
inequality into (4.3.3) yields:
" 2sm
#m < n-its ee. (4.3.4)

The right hand side of the inequality (4.3.4) is an
increasing function of s . Since s < m-1 (4.3.4)

yields the following bound on #j

50

2(m-1)m _
< Tmel)

The optimal schedule has at most one job on each of

Pl—P

m-1 - Hence, n < 2m-2.

The remainder of the proof shows that if n < 2m-2
then Lemma 4.3.5 can be used to show that
Eﬁ/fﬁs i-gi—l/f$§l thus contradicting the assumption
that this was the least m for which the lemma was
false . (The contradiction comes about as 3/2 - 1/(2m)
is monotone increasing in m and the faét that when
m = 3 this bound is 4/3 which is greater than the
. known bound for m = 2 .) Clearly, we may assume that
each processorvhas at least one job scheduled on it in
every optimal schedule.

Let k be the smallest index (i.e. largest job)

on any of the processors P,-P in an optimal

m-1
schedule. Then, the schedule obtained by assigning job
tk+i—l to processor Pi » 1 <i<m and the'remain -
ing jobs to processor P has a finish time no greater
than the optimal finish time f&s . Such a schedule
shall be denoted by OPT, . Clearly, 1 < k < n-m+2 .
Since, n < 2m - 2 at least one of the processors
P;-P._, has exactly one job scheduled on it (every
processor must have at least one job on it as otherwise

, by the definition of LPT £ < t;, but £* > t). Let

the index of this job be i . Then, t;

i must be the

largest job amongst jobs scheduled on P

51

1" Pp-1 in the

LPT schedule (this again follows from the definition

of LPT). But, s < m-1 implies
cannot schedule all of the first
when s < m-1 . For all k > 1,

index j=k+m-2>m-1 on

t, > t

i 2ty as LPT

m-1 Jjobs on P
m
OPTy,. has a job with

P and this is the

m-1
only job on Pp_7 . By the ordering on the jobs,
'tjii.tm—l . So, t; > tj Lemma 4.3.5 now implies
that fs/f*s < f JE£* ; a contradiction. &
m m — m1 m-1

Having shown that f/f* is indeed bounded as in
Theorem 4.3.1, the next question is: Héw good is the
bound. From the previous section we know that the
bound for m = 2 is tight. Lemma 4.3.7 shows that the
bound is also tight for m = 3 and that for all m > 3
it is possible to have an f/f*- arbitrarily close to
4/3. Lemma 4.3.8 shows that for m =4 and 5 there
is no set of jobs S for which E/f* > 4/3. This
shows that the bound of 3/2 - 1/(2m) 1is not a tight
bound for all values of m and leads us to conjecture
that for m > 3 the bound is in fact 4/3 . Note the
closeness of this bound of 4/3 +to the bound 4/3-1/(3m)
obtained by Graham [13] for the case of s =1 (i.e.

m identical processors) .

Lemma 4.3.7 For m > 3 and any € > 0, there is a

set of jobs, S , and a speed s > 1 for which

52

F/E% > 473 - ¢ .

Proof For any m > 3 consider the set of jobs t., =1.5

1
t2 = 1.5, tj =1, 3<j<mt2 and s =2 + e' with
g' very close to zero . The LPT schedule has jobs tl’
ty and thap ©On0 P, with £ = 4/(2 + ¢') . One
optimal schedule is shown in figure 3.3 . f£* = 1.5
H f/f* = -+ 4 ! .
ence, / 3o /3 as €' =+ 0 a
t t; = 1.5
Pl 3 Pl 1
p - tg p ta=1.5
2 2 :
, : : ;
1 N R B P tmrtpid b
m m
s=2 + ¢' s=2 + ¢
LPT Optimal

Figure 4.3.3 LPT and Optimal Schedules

for Lemma 4.3.7

" Lemma 4.3.8 For m=4 and 5 , g/f* < 4/3

- Proof We prove only the case m = 4 . The proof for

m=05 is very similar and does not use any new tech -

>niques. The proof for m = 4 1is by cases on the

possible values of n and s . In what follows, we
assume that the smallest set of jobs for which %/f*
>'4/3 is of size n and then arrive at a contradic -

tion for all values of n .

53

case a s > 3 . Substituting in Lemma 4.3.1 we obtain,

for s >3 and m=4 , f/f% < 3ts 6 - 4/3
- — 1l.5+s T 4.5

case b n < 4 there is either only one job on each of
the four processors are idle in the optimal schedule .
In the first case %/f* =1 , in the second %4/fz <

£4/£% < 4/3 .

case ¢ n =5 In both the LPT and optimal schedule
there is job ti schedule alone on one of P_-P

173
Lemma 4.3.5 applies and £4/f2 < £3/f§ < 4/3 .

cased n=6 1.5 ¢ s <3 Lemma 4.2.2 yields £/f*

3t
< 1 + 731—%5; . By the assumption on the set of jobs
- s
A 3tn 9
f/f* > 4/3 . So, —— > 1/3 or f* <3z t
/ / Groyex Y s
< 2tn . The number of jobs on P, -P, is thus

restricted to 1 and the number on P, is restricted to
"< 4 . The total number of jobs, n , must be < 7 .

When n =2m - 2 = 6 , the proof of Lemma 4.3.6 applies

as the optimal has at most one job on each of P{-P,

and s < m-1 . Hence, f4/fz < %3/f§ < 4/3 . s < 1.5:

(1) tl £ P4 in optimal. There must be at least 2

jobs on P4 as otherwisg we may interchange the job on
with t

P 1 without increasing the finish time. So, at

4
least two processors in the optimal schedule have only
one job each. We may assume these jobs to be tl and

té . Since s < 2 , t2 is in Pl and alone in the LPT

54

schedule. Lemma 4.3.5 now applies and f/£x < 4/3 .

(ii) tl € P4

4.3.5 again applies.

and té Z P4 in optimal. Lemma

(1ii) tl £ P4 and t2 € P4

either Lemma 4.3.5 applies ox £ = (tl+t6)/s

in optimal. Now.

J

) S.'\"* .

case e n =7 : 1.5 < s < 3 From case d we know that
~in the optimal each of P,~-P5 has exactly one job
scheduled on it while there are 4 jobs scheduled on Py .
We examine all the possibilities.

(1) If t; ¢ Py in the bptimal then the optimal

may be assumed to be:

Py t3
Py : ' t2.
Py o ts

P, _tartsiteety

In the LPT schedule jobs tsy and ty
cannof be alone on Py , Py or Py as, then
Lemma 4.3.5 would apply and %4/fz < %3/f§ .
Also, if t7 is the only job on P4 in the
LPT schedule, then % < (tl + t7)/s while
£ > £) . S0, E/£% < (t] + ty)/(st)) <

2/s < 4/3 . This takes care of all possible

LPT schedules with 7 jobs.

55

(1i) t] € Py in the optimal and t, Z Py . This
is very similar to (i). Unless in the LPT
schedule t; is the only job scheduled on
Py , Lemma 4.3.5 applies and E/f* < 4/3
If ty is the only job on P, then
£ < (k) + t4)/s while f£* > (£1 + tg + tg +
t7)/s > £ .

The only remaining possibility is :

(iii) tl £ P4 and t2 £ P4 in optimal. ‘Now '
f < (tl + oty + ot + t7)/s yfor gll possible
LPT schedules, while £* > (t1 + t2 +t6+t7)/s.

s < 1.5: (i) if ty Z Py and t, £ Py in

optimal then f£* > t, + t; case d

3%5 th => no more than two jobs on each

£* <
of Pl - P3 . But, f < t2 + t7 as there
are only 7 jobs.

ty + t7}

optimal => f* > maX{tl, since,

f<t, +t, f/f%¥ < s and so s must be
> 4/3 if f£/f* 1is to be > 4/3 .

4/3 <« s <« 1.5:

If ty is alone or with ty only on P,
in the LPT schedule then £ < (tl + t7)/s
< 3f*/(2s) < 9f*/8
So, t; must be paired with a job other

than t7 . Hence, f <« t3 + t7

(iii)

56
if t4 £ Py in optimal then f£* >

ty + t7

[V -

if ty e Py in optimal then f*

(t2 + t3)/s

=> tg < s/2f% = f < (;' + %—)f* <
1.25f% . (t4 < £f*/2 as with s < 1.5
the number of jobs on P, must be
less than 3)

t] e Py in the optimal

If t4 is alone in the optimal then
f/f* is no worse than for identical
processors. SO, E/E* < 4/3 (see
[131) .

If ty is alone in the LPT schedule
or coupled only with t5 then

E_<_ (tl + t7)/s < £f* . So, % must

be < t3 + t7 .

If tye Py in optimal then f£* >

(tl + t2)/s > 2t2/s but £ < t3 + t7
< (§ + FIE* < 1.258% .

If ty £ Py in optimal then t, is
alone on Py . 1In the LPT, since ,
ty is not alone on P, , t, must be
alone on Py . So, Lemma 4.3.5 applies

and f£/f* < 4/3 .

57

case £ n = 8

If s > 1.5 then case d requires at most 1 job on

each of P.-P, in optimal and at most 4 Jjobs on P

173 4
So, n <7 .
e < 1.5
(i) If t; ¢ P4 in optimal then since there can

be at most 2 jobs on each processor, £* >
ty + tg . Using the technique of case d we
‘get for £/f% > 4/3 , f£* < 3%5 tg < (9/4)tg
or tg > (4/9)f* . Hence, *tp < (5/9)f* . If
ty is the only job on P, iﬁ the LPT
schedule or t4 and tg are the only jobs
on P4 then E < (tl + t8)/s < £* . Hence,

~

f <ty + tg- <2ty < .(10/9) £* .
- (ii) ty e Py in optimal.
£* > (tq + tg) /s and so for f/f* > 4/3
there must be a job other than t; and tg
on Py in the LPT schedule. This implies
£ <ty + tg < £F if t, £ Py in optimal.
Assume now that both t; and t; are on
Py in the optimal. Then £* > (tl + tz)s >
2t2/s => t, < s/2f* . This, together with
the knowledge that tg < £*/2 and £ < ty+

tg results in £ i.(g 4 %)f* < 1.25f£% .

58

case g n > 8 Substittuting this into Lemma 4.2.2

yields

m-1

f/fx < 1 +'T{‘il + (3/9) = 4/3 .

This takes care of all the possibilities and so

for f£4/ff < 4/3 .

Conjecture %/f* < 4/3 for m > 3 and sj =1,

1 < i< m and Sn > 1 .

CHAPTER V

OPEN SHOP

5.1 " Introduction

A shop consists of m > 1 processors (or
machines). Each of these processors performs a differ-
ent task. There are n > 1 Jjobs. Each job i has
m tasks. The processing time for task Jj of job i
is

tj i Task j of job 1 is to be processed on
I

processor j , 1 < j < m. A schedule for a processor

j is a sequence of tuples (Ri, Sy v fz), 1 <i<r.
i i

The 21 are job indexes, Sy is the start time of

i
job 4 and fz. is the finish time. Job. ﬁi is
i
processed continuously on processor j from Sy . to
i
fz. . The tuples in the schédule are ordered such
i
that s, < £, < s, , 1 <i<r. There may be
i i i+l

more than one tuple per job and it is assumed that

L. # L. , 1 < i <r. It is also required that each
i i+l -

job i spends exactly t, ., total time on processor
r

j. A schedule for a m-shop is a set of m processor

schedules. One for each processor in the shop. 1In

addition, these m processor schedules must be such

59

60

that no job is to be processed simultaneously on two or
more processors. A shop schedule will be abbreviated

to schedule in future references. The finish time of a

schedule is the latest completion time of the individual
processor schedules and represents the time at which

all tasks have been completed. An optimal finish time

(OFT) schedule is one which has the least finish time

amongst all schedules. A non-preemptive schedule is

one in which the individual processor schedules has at

most one tuple (i , s fi) for each job 1 to be

il
scheduled. For any processor, J, this allows for

= 0 and also requires that f. - s = A

ty,4 i i =%,

schedule in which no restriction is placed on the num-

ber of tuples per job per processor is preemptive. Note

that all non-preemptive schedules are also preemptive
while the reverse is not true.

Open shop schedules differ from flow shop and job
shop [5,7] schedules in that in an open shop, no res-
trictions are placed on the order in which the tasks
for any job are to be processed. In this Chapter we
shall investigate OFT schedules for the open shop. It
is clear that when m = 1, OFT schedules can be
trivially obtained. We shall therefore restrict our-
selves to the case m > 1 . First, in section 5.2 we
show that preemptive and nonpreemptive OFT schedules

can be obtained in linear time when m = 2 . This

61

contrasts with Johnson's O(n log n) algorithm [7, p89]
for the 2 processor flow shop. When m > 2 OFT
preemptive schedules can still be obtained in polyno -
mial time (section 5.3).

For nonpreemptive scheduling, however, finding OFT
schedules when m > 2 is NP-Complete. These results
may be compared to similar results obtained for flow
shop and job shop OFT scheduling. In [11] and in Chap
ter VI it is shown that finding nonpreemptive OFT
schedules for the flow shop when m > 2 and the job
shop when m > 1 are NP-Complete. 1In Chapter VI it
is also shown that finding preemptive OFT schedules for
the 3 processor flow shop and 2 processor job shop are
NP-Complete. Thus, as far as the complexity of finish
time scheduling is concerned, open shops are easier to

schedule when a preemptive schedule is desired.

5.2 OFT Scheduling for m = 2

In this section, a linear time algorithm to obtain

a nonpreemptive and preemptive OFT schedule for the

_case of two processors is presented. For notational

simplicity, we denote t_ ., , the task time on proces-
1,1

sor 1, by a and t, ; by b;, 1 <i <n. Infor -
i rd -
mally, the algorithm proceeds by dividing - the jobs

into two groups A and B. The jobs in A have a; > bi

while those in B have aj < bi . The schedule is

62

build from the "middle" with jobs from A being added on
at the right while those from B are added on at the
left. The schedule from the jobs in A is such that
there is no idle time on processor 1 (except at the
end) and for each job in A, it is possible to start its
execution on processor 2 immediately following its
completion on processor 1. The part of the schedule
made up with jobs in B is such that the only idle time
on processor 2 is at the beginning. In addition, the
processing of a job on processor 1 can be started such
that its processing on processor 2 can bé carried out
immediately after completion on processor 1l. Finally,
some finishing touches involving only the first and
last jobs in the schedule are made. This guarantees an

optimal schedule.

l. Algorithm OPENSHOP
// This algorithm finds a minimum finish time non-
preemptive schedule for the open shop problem
with task times (ai : bi)’ 1 <i<n
Initialize variables: ag;by represent a dummy
job
T; = sum of task times

assigned to processor

i, 1<ic<a2.

10
11
12

13

63

2 = index of leftmost job in
the schedule

r = index of rightmost job in
the schedule.

S; = sequence for processor i
1L <i<2//

T, < T, ay «by &+ r <0 ;S < null

// schedule the n jobs //

“for i« 1 ton do

if a. > b, then [if a. > b then
—_— i = 7i = = i - "r

[// put r on right, || means
string concatenation //
S<«s || r;r<«i]
else [// put i on right//
s+« s || i11

else [if b. > a_ then
==t ="i =%

[// put & on left //
S« 2 || 8 2+« 1i]

else

[// put i on left //
s« i|] s1]
end //now start finishing touch //
delete all occurrances of job 0 from S
if Ty - ag < Ty - b then [8y « 8 || r [| %;

sp « 2 || s [] r]

64

14 else [53«2 || s || x;
Sy «xr || 2] 5]

// an optimal schedule is obtained by processing

jobs on processor i in the order specified by

S 1l < i < 2. The exact schedule may be det-

il
ermined using Theorem 5.2.1 //
15 = return

16 end of OPENSHOPr @

Example 5.2.1 Consider the open shop problem with 6

- jobs having task times as below:

Job 1 2 3 4 5 6

Processor

Initially, & =r 0 and S = g. The following
table gives the values of S, r, & at the end of each

iteration of the for loop 3-12.

End of
S r 2
iteration
1 0 1 0
2 00 1 2
3 200 1 3
4 4200 1 3
5 42001 5 3
6 420016 5 3

After deleting the 0's from S we have S = 4216, r = 5,

65

=3, T] =39 and T, =40. Since T - ay > T, - by

we get §; = 342165 and S, = 534216. Processing by

these permutations gives the Gantt chart:

3 4 11 21 27 39
processor 1 | @3 |24 a2 ay 1 26 ag
processor 2 b5 b3 b4 by by bg

7 15 17 26 32 40

The following 2 lemmas will be useful in proving the

correctness of algorithm OPENSHOP.

such that a; > bi r 1 <1 <n and let D be the per-
mutation obtained after deleting the 0's from S in
line 12 of algorithm OPENSHOP and concatenating r to
the right. The‘jobs 1-n may be scheduled in the order
D such that:

(1) there is no idle time on processor 1 except
following the completion of the last task on this pro-
cessor | | |

(ii) For every job i, its processor 1 task is
completed before the start of ité processor 2 task

(iii) for last job r, the difference, A ,
between the completion time of task 1 and the start

time of task 2 is zero.

Proof The proof is by induction on n. The lemma is

clearly true for n = 1. Assume that the lemma is true

66

for 1 < n < k. We shall show that it is also true for
n = k. Let the k jobs be Jq Jé,...,Jk and let '
be the value of r at the beginning

of the iteration of the "for" loop of lines 3-11 when

i = n. From the algorithm it is clear that the per -
mutation, D' , obtained at line 12 when the k-1 jobs
Jq, J2,..., Jr-1 are to be scheduled is of the form
D"r'. Moreover, D ='D"r'k or D = D"kr'. From the
induction hypotheéis, it follows that tha jobs J;, Jy,
ceer I can be scheduled according to the permuta-
tion D"r' so as to satisfy (i) - (iii) of the lemma.
I.e., these k-1 jobs may be scheduled as in figure
5.2.1 . Let i be the job immediately preceding r'
in D'. In case k =2, let i =0 with ag = bO =0.

£
K— Qi —ok-av 4

7///,///// ////\\\\///e.

‘ : ‘ Koiddle
Figure 5.2.1 Scheduling by D' = D"r

\\\
w

indicate task processing. Last job

is r'. A'i 0 .

If 2 > br' then D = D'k and it is clear the
job k can be added on to the schedule of figure 5.2.1

at the right end, so that (i) - (iii) of the lemma hold.

If A < br' then D = D"kr'. ©Now, job x' is

k

67

moved ap units to the right so that a, can be
accomodated between 1 and 1r' satisfying (i). Let

fl be the finish time of aj and fi > fl be the

finish time of b;. The finish time of ay is then
fl + ap < fl + a as a

r' ' > br' . By (iii) the start

time of br' has to be fl + ay +ar.. Also, we know,
from the induction hypothesis, that £, ta. - £y =

A' > 0. I.e. £f5 + a,: > f, . The earliest that by
may be scheduled is max{fl + ap . f2} < £, + I

This implies that there is enough time between the start
time of br' and the earliest start time of b, to

complete the processing of b, . @

"Lemma 5.2.2 Let the set of jobs being scheduled be

such that a; < bi » 1 <i<n and let C be the
permutation obtained after deleting the 0's from S
in line 12 of algorithm OPENSHOP and concatenating &
to the left. The jobs may be scheduled in the order
C such that: E
(i) there is no idle time on processor 2 except
at the beginning
(ii) for every task i, its processor 1 task is
completed before the start of its processor
2 task.

(iii) for the first job, & , the difference, A

between the completion time of task 1 and

68

the start time of task 2 is zero.

Proof The proof is similar to that of Lemma 5.2.1.

Lemma 5.2.3 Let (a;, bi) be the processing times for

job i on processors 1 and 2 respectively,
1 <i<n. Let f* be the finish time of an optimal

finish time preemptive schedule. Then, f£* < max{max{

‘ n n
a; + by}, T,, T,} where T, = iai and T, = ib- .

" Proof Obvious. B

We are now ready to prove the correctness of

algorithm OPENSHOP.

" Theorem 5.2.1 Algorithm OPENSHOP generates optimal

finish time schedules.

- Proof Let Jy, Jg,..., J, be the set of jobs being

scheduled. Let A be the subset with aj > b; and

B be the remaining jobs. It is easy to verify that
the theorem is true when either A or B is empty.
So, assume A and B to be nonempty sets. Let E

be the permutation obtained after deleting the 0's from
2|]s||r in line 12. Then E = CD where C consists

solely of jobs in B and D consists solely of jobs

in A . From Lemmas 5.1.1 and 5.1.2, it follows that

69

the jobs in A and B may be scheduled in the orders
D and ¢ to obtain Schedules as in figure 5.2.2. 1p
the schedules of figure 5.2.2; the processor 1 tasks
for C and the processor 2 tasks for D have to be
scheduled such that all the idle time appears either at

the end or at the beginning.

'idle :time on

N/ AR
i NN

| | ' idle’time onl!
0
0 a, a, v P, Bl 82

Figure 5.2.2 Partial schedules obtained for sets

B and A Tespectively.

o]

n
Let Tl = 7 a; and T2 = 7 bi + The schedule for
1

f—

the entire set of jobs is obtainegd by merging the two
schedules of figure 5.2.2 together so that either
(a) The blocks on Pl meet first. This happens
when (ay - 0y) < By -
or (b) The blocks on p2 meet first., Thisg happens
when (ay - ap) > By .

Let us consider these two cases separately,

case a a, -] < By
This happens when Ty ~ ag > Ty - b, . In this
case, line 14 of the algorithm results in the tasks

on P1 being processeqd in the order cp while those on

70

P2 are processed in the order rCD' where D' is D
with r deleted. The section do - dz of figure
5.2.2 (a) is now shifted right until it meets with

B1 - Bp of figure 5.2.2 (b). Task b, is moved to
the leffmost point. The finish time of the schedule

obtained becomes maX{ar + by, Ty,T5} which by Lemma

5.2.3 is optimal.

case b o, - o] > By
This happens when Ty - ag < T, - br‘ In this

'case, line 13 of the algorithm results in the tasks on
Pl being processed in the order C'Df{ where C' is C
with & deleted. Tasks on P2 are processed in the
order CD. The schedule is obtained by processing
tasks on P2 with no idle time starting at time 0.
Tasks on Pl are processed with no idle time (except at
the end) in the order C'D. Task a, is started as
early as possible following C'D. The finish time is
seen to be maX{a£ +‘b£, Ty, T2} which by Lemma 5.2.3
is optimal.

This completes the proof. @

Corollary 5.2.1 Algorithm OPENSHOP generates optimal

preemptive schedules for m = 2.

Proof Follows immediately from the proof of Theorem

5.2.1 . B

