71

Lemma 5.2.4 The time complexity of algorithm OPENSHOP

is 0(n)

Proof The "for" loop of lines 3-11, is iterated n
times. Each iteration takes a fixed amount of time.
The remainder of the algorithm takes a constant amount

of time. Hence the complexity is O(n). @

-

5.3 Preemptive OFT Scheduling m > 2

We now show that optimal preemptive schedules can
be found in polynomial time when m > 2. To begin with,
we present a fairly simple algorithm to db this. This
algorithm reduces the problem to tﬁat of finding
maximal matchings in bipartite graphs [14]. Refine -
ments of this basic procedure then lead to a more
efficient algorithm.

Given a set of n. jobs with task times tj,i ’

1 <i<n and 1 < Jj <m for a m processor open shop

y we define the following quantities:

T. = L ts 5 ... total time needed
J s J./1
1<i<n
on processor Jj,
1 <3j<m
L; = ; tj,i «+«. length of job i,
1<j<m

1 <3i<n

From a simple extension of Lemma 5.2.3 to m pro-

cessors, we know that every preemptive schedule must
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have a finish time that is at least

o = max {75, L;} (5.3.1)

1,7

We will in fact show that the optimal preemptive
schedule always has a<finish time of a . From the
~given open shop problem we construct a bipartite graph
with 2(n+m) vertices. n + m of these are labeled
Jis J2s.«+s Jpyy to represent the n  jobs together
with m fictitious jobs that we shall introduce. The
remaining vertices are labeled My, Mp,--+, Mpinm
to represent the m processors together with n
fictitious processors. The bipartite graph, G, will
contain undirected weighted edges between J and M
type vertices. The weight, w(Ji, Mj), of an edge
(J;, Mj) will represent the amount of processing time
job i requires on processor j. The weight of a hode
+ p(J;) =L; or P(Mj) = T,

J
weights of the edges incident to this node. To begin

; 1is the sum of the

with, the following edges with nonzero weight are

included in G:

1 <i<n, '<3j<m} (5.3.2)

Now, a set of edges, E2(G), connecting‘ Jl, J2,..., Jn

‘ c e i ' that
to Mm+l’ Mm+2’ ’ Mm+n are added in such a way

p(J;) = a, 1 < i <n.
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By(@) = (3, Myyy) and w(Iy, Mys) = o - Ly |

@ -L; #0, 1 < i <n) (5.3.3)

A set of edges, E3(G), is included to connect Ml’ M2,
ceer My to Jp 47y Tp42recer Jh+m in such a way that
P (M) =a, l<j<m.

E3(C) = {(Jyyy, My) and w(I 4, My) = 5 |
o - Tj #0 , 1 <3j<m} (5.3.4)

Finally, edges connecting Jn+1s In4rev+r JIpyn O

Mm+l' Mptore«-r My, are added to make the Weight of
each of these vertices o . This set of edges, E, s
is of size at most n+m as each (Ji, Mj) edge

introduced brings the weight of either J; or Mj to

o . One may easily verify that E4 can be so construc

tedl.

The bipartite graph G(X,Y,E) is then ({Jy, J,,
ceerTnemts My, Mo, oo, M}, EJ U E; UE3 UE,). X is
the set of vertices representing jobs, while Y is the
set representing processors.

We illustrate this construction with an example.

Example 5.3.1 Let m=3 and n = 4. The task times

are defined by the matrix:
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processor 1 10 20 0 0 30
2 10 0 20 0 30
3 10 0 0 20 30
L 30 20 20 20

»+ o = 30. The bipartite'graph obtained using the

above construction is

10

J O O M
1 20 1
J2 " =
0
. . N
LO -
20 "'IIIIIII..‘~
20
10

0
J3 ""'l'liiii!!!llll!lllll...“‘ My
Jg O “ 0 M,
J5 0 O M5
10
20 '
J7 M7
The edge set E3 is empty as Tj'= p(Mj) =a ,

l1<j<m @

Before proceeding with the description of the
Preemptive OFT algorithm, let us review Some terminology
regarding matchings in graphs. The following definition

and propositions are reproduced from [14].
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Definition 5.3.1 Let G = (X UY, E) be a bipartite

graph with vertex set X UY and edge set E . (If
(i,3j) 1is an edge in E then either i e X and jey
or ieY and j e X.) A set ICE is a matching if
no vertex v g X L)Y_ is incident with more than one

edge in I. A matching of maximum cardinality is

called a maximum matching. A matching is called a com-

- plete matching of X into Y if the cardinality

(size) of ‘I equals the number of vertices in X.

" Definition 5.3.2 Let I be a matching. A vertex v

is free relative to I -if it is incident with no eage
in I . A path (without repeated vertices) P = (vl,vz)
(V2,v3)...(v2k_l,v2k) is called an augmenting path if
its end points v, and v, are both free, and its

edges are alternately in E - I and in I. @

- Proposition 5.3.1 I is a maximum matching iff there is

no augmenting path relative to I . @

Note that when a matching I is augmented by an
augmenting path P the resulting matching I' is
(1 JUP) -~ (T UP) and is of cardinality 1 + cardinal-
ity (I) . Also note that the matching I' still
matches all vertices that were in the matching I (two

new vertices vy and Vox are however added on.)
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Proposition 5.3.2 If G = ({XxU Y}, E) is a bipartite

‘graph, |E| = e, |X| =n anda |y]| =_m; n >m then an

augmenting path relative to I starting at some free

vertex v can be found in time O(min{m?,e}).

Keeping these facts about bipartite graphs and
matchings in mind, let us resume the description of the
preemptive OFT algorithm. Having constructed the bipar

tite graph G from the open shop problem as described

earlier, we obtain a complete matching of X =‘{Jl, Jo,

ey Jn+m} into Y~=-{Ml' Moresey Mn+m} . Let this

matching be e, €prevvs€pyn - Let r = min H{w(e;) }.
1<i<n+m

The jobs incident to the edges €1s €9yeee sy, are
scheduled on their respective processors for a time
period of r and the weight of the edges €17 €pr--e€ 0
is decreased by r . This results in the deletion of
at least one edge (i.e. the weight of at least one edge
becomes zero). By scheduling a job on its respective
processor we mean that if (Ji,Mj) is one of the edges
in the match then job i is processed on processor j
for r wunits of time. If j > m then job i is not
processed in that interval. If i > n then processor
j 1s idle in that time interval. This process is re-

peated until all edges are deleted. Assuming that at

each iteration, a matching of size n+m can be found,
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all n+m processors are kept busy at all times (either

processing real or fictitious jobs). The total proces-
n-+m : i
sing time needed is )X p(Mi) = (n+m)o . Hence the
1 _ .
finish time of the schedule is (n+m)oa/(n+m) = o and

the schedule is optimal. Since each time a complete
matching is found, one edge is deleted, complete mat -
chings have to be found at most O(nm) times (note
that the number of edges in G is at most O(ﬁm)).
Hence the maximum number of preemptions pPer processor
is O(nm). The first match can be found in time O (nm
(n+m) - 3) [14]. Subsequent matches requife finding
augmenting paths, each of which can be determined in
time O(nm) (Propositions 5.3.2 with e = O(nm)).
Since a total of O(nm) such paths may be needed, the

total computing time for the process becomes O(n2m2).

Example 5.3.2 ©Let us try out the informal computatio-
nal process described above on the bipartite graph of
example 5.3.1. The following complete matchings are

obtained (this is not a unique set of matchings) :

a)  L(T1My) 0 (T5, M), (T30Mg) 4 (T4 ,M5) , (T5,My) , (T, M),
(d7,M7)} , r =10

b) " {(J1,M1), (I, M5), (T3,My) , (T4,M3), (T5,My) , (Tg, M),
(J7,M7)} , r =10

C)  {(3,M3),(T5, M), (T3, Mp) , (T4, M), (T5,My), (Jg,Ms) ,
(3,,M)} , r =10
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This yields the following schedule:

10 10 10
Ml J2 J1l J2
‘M2 J1 J3 J3
M3 J4 J4 Jl
M4 J5 - J5 J5
M5 J6 J2 J6
M6 J3 J6 J7
M7 J7 J7 J4

Deleting the fictitious jobs and processors, the

following preemptive schedule is obtained:

10 . 10 10
M1 J2 J1 g2
M2 J1 J3 J3
M3 Ja J4 J1

The schedule requires only 1 preemption i.e. on Ml.
Since the edge set E3 was empty, there is no idle
time on any of the processors. In general, however,
this will not be the case and the deletion of the fic-
titious jobs will leave some idle time on the processors.
The success of the algorithm rests in the}existenc;'
of a complete matching at each iteration. The next 3

lemmas prove that a complete match always exists. The

vertices of the graph are divided into two disjoint
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sets X = {Jy, Jys..., J and Y = {My, My,...,

n+m}

Mpym} -

" Lemma 5.3.1 At each iteration, the weight of every

vertex in the bipartite graph is equal.

Proof By construction, this is certainlyltrue for the
first iteration, i.e. p(Mi) = p(Ji) =0 , 1 <i < n+m.
After a complete match is found, the weight of n+m
edges decreases by r . The 2(n+m) vertices of G

are each incident to exactly one edge in the matching.
Hence, the weight of each vertex decreases by r. Conse
quently, all vertices have the same weight at all

times. @

" Lemma 5.3.2 In a bipartite graph a complete matching

of vertex set Y into vertex set X exists if and
only if |A| < |R(A)] for every subset A of Y,
where R(A) denotes the set of vertices in X that

are adjacent to the vertices in A .

" Proof See Liu [28], p. 282 Theorem 11.1 . @&

" Lemma 5.3.3 The conditions of Lemma 5.3.2 are valid

for every bipartite graph with vertices of equal weight.

" Proof Let d be the weight of a vertex. Let A be
any subset of Y . Then, the sum of the weights of

vertices in A is «a|A| . The corresponding sum for
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R(A) 1is «a|R(A)| . Since this sum includes all edges
incident to A , we have dIAI'i a|R(A)| and so

IAI'_{ |IR(A)|, as o > o. 8

Our algorithm to obtain an optimal preemptive
schedule is based upon a refinement of the informal
computational procedure described above. The bipartite
~graph constructed consists of the two vertex sets X =

9, Tgreeen T4y

edge set is E; UE; (cf. eq(5.3.2) and (5.3.4)). I.e.

} and Y ='{Ml; Moyeoe, Mm} . The

the fictitious processors of the earlier construction
are dispensed with. Now, we look for complete matchings
of Y into X. While before, any complete match of Y
into X was acceptable, now we have to be careful

about the matching that is chosen. To see this, note
that if initially the matching {(T,,M9), (T3/Mp) , (T4, M3) }
is chosen for the job set of example 5.3.1 then there

is novcomplete matching at the next iteration and con-
sequently no schedule with finish time o can be ob-
tained following this choice of a matching. To assist
in proper choice of a complete matching we make use of
an additional vector S called the slack vector. For
every job i , its slack time is defined to be the
difference between the amount of time remaining in the
schedule and the amount of processing left for that

job. 1In the slack time for a job becomes zero then it
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is essential that the job be processed continuously up

to the completion of the schedule at o as otherwise the
schedule lenght will be > o . When the slack time for
a job becomes zero, the jéb is said to have become cri-

tical.

Example 5.3.3 Consider the 3 processor open shop

problem with 4 jobs and the following task times:

job
1 2 3 4 T
processo
1 10 . 8 5 3 26
2 6 7 9 9 | 31
3 7 8 3 3 21
L 23 23 17 15 | o = max{T;,Ly}
i,J
= 31

Addition of the jobs Jg, Jé and J7 introduces

3 more columns into the above table 5 0 0
0 0 0
0 0 10

Initially, the slack times are o - L, and we have
S=(8, 8, 4, 6, 26, 31, 21). No job is critical. @
We first state the algorithm and then prove its
correctness. For convenience, the vector S in algo -
rithm P instead of representing slack times actually
represents the latest time a job may start so that

its processing may be complete by @ . Thus
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SLACK(i) = S; - current time. A job therefore becomes

critical when §S; = current time.

Algorithm P
// Obtain an optimal preemptive schedule for the

m processor open shop with n jobs and proces

sing time

ti,j' 1 <i<n, 1<3<m//

// compute lenght, d , of optimal schedule //

n
1 T. <« I t; 3, 1< 3j<m
Jie 07 -0
m
.2 Ly <« Z t. ., 1 < 1 <n
i 521 j,i - =
3 a <« mag'{Tj,Li}
i,

// create fictitious jobs and compute slack

vector //
4 tj,n+j < o - Tj p 1 <3j<m
5 S; *« d - L; 1l <i<n
6 Sn+j * Tj ’ 1<3j<m
7 n<n-+m
// compute initial complete matching of Y = {My,
My,evey Myl into X = {Jy, Jy,..., Tpuglt-
This match is obtained as a set, I, of edges
(j,1i) matching Mj to Ji //
8 I « INITIAL MATCHING ; TIME < 0 //current
time //
9 " repeat

10 % + index of job not in matching having least
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12

13

14

15

16

17

18

19

//
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slack time
(p,q) < task and job in matching with least
remaining processing time.
A < min{t , S - TIME} // max time for
P/g %
for which I can be

used //

schedule I for A time units //

~if A > 0 then [ print (A,I);

//

t . . %

j,i tj,i - A for (j,i)eI

S; « 8; + A for all jobs ieI
TIME <« TIME + A'
if TIME = o then stop]
delete from I all pairs (i,]j) such that
£3,1 =0 o
complete matching I including all critical

jobs //

if there is a critical job not in I then

[.delete from I all pairs . (j,1i)
such that 1 'is noncritical
repeat

let Jy be a critical job

not in T

augment I using an augmen
ting path starting at Jg

not in I
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20 reintroduce into I all pairs
(j,i) thet were deleted in
line 15 and such that Mj
is still free

// complete the match //

21 ‘ ygilg'size of I # m do

22 let Mj be a processor not in the matching
I

23 augment I wusing an augmenting path

starting at Mj

24 "end
25 forever
26 " end of algorithm p @B

In order to piove the correctness of algorithm P
we have to show the following:

(i) There exists an initial complete matching in
line 8. |

(ii) The matching I can be augmented so as to
include the critical job Jg in line 18

(iii) Augmenting to a complete match including all
critical jobs can always be carried out as required in
lines 21-24. |

The following three lemmas show that these three
requirements can always be met. a is as defined in

line 3 of the algorithm.
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Lemma 5.3.4 There exists a complete matching of Y

into X in line 8.

- Proof Let A be any subset of vertices in Y. The
weight of each vertex in A is o . The weight of any
vertex in X 1is < a by definition of o . Since the
weight of R(A) > weight of A, it follows that

a|A] < a|R(n)] and so |A] < |R(A)] . The result now

follows from Lemma 5.3.2 . @

T.emma 5.3.5 In line 18 there exists an augmenting path

relative to I starting at Jj

Proof Consider the bipartite graph, G' , formed by
the vertices X' and Y where X' consists of all
vertices representing jobs in the matchihg I and the
vertex Jp, . All edges connecting X' and Y in the
original graph are included in G' . By the deletion
of line 15 it follows that all vertices in X' are
critical. Hence, their weight is o - t if t 1is the
value of TIME when the loop of lines 16-19 is being
executed. Since o - t is the total remaining time on
all the processors, the weight of vertices in Y in the
‘graph G' is <o - t . Using the same argument as in
Lemma 5.3.4, it follows that there is a complete match

of X' into Y . Hence I is not a maximum matching

in G' . Hence there is an augmenting path relative to
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I beginning at Jg .

Lemma 5.3.6 There is always an augmenting path rela -

tive to I beginning at Mj in line 23.

- Proof At any time t , the bipartite graph formed by
vertices X = {Jy, J2""'Jn+m} .and Y"='{Mi[Mi is
in the matching I}'{Mj} have the following properties:

(a) The weight of vertices in Y' 1is o -t
and (b) the weight of vertices in X is < d - t

(as no vertex can have a slack time < 0 ,
see lines 11-13).
Hence, the conditions of the proof of Lemma 5.3.4 hold
and there is é complete matching of Y' into X. By
proposition 5.3.1 there must be an augmenting path
relative to I beginning at the free vertex Mj .

Note that the complete matching obtained at the
end of the "while" loop 21-24 must contain.all the cri
tical jobs as the initial matching I contained all of
them and augmenting paths only add on vertices to an
existing matching.

Since all processors are kept busy at all times
and the total amount of processing is ma , the finish
time of the schedule generated by algorithm P is «
This schedule is therefore optimal. @

All that remains now is to analyze the complexity

of algorithm P. 1In carrying out this analysis we shall



87

need a bound on the number of jobs that can become cri-
tical. This bound is provided by the next lemma.

Lemma 5.3.8 itself analyzes the algorithm.

Lemma 5.3.7 The number of critical jobs at any time is

< m .

- Proof Since all processors are kept busy at all times,
it follows that at any time +t the total amount of
processing remaining is m(d—t). If at time t there
are more than m critical jobs then the processing
remaining for all these critical jobs Z'(m+l)(u—t) >
m(d—t). A contradiction. Since, once a job becomes
critical, it stays critical till the end of the sched-
ule, the total number of jobs that can become critical

is also < m. @~

Lemma 5.3.8 The asymptotic time complexity of algorithm

P is O(min{e,m?}(m+e) + em log n) where n -is the
number of jobs, m the number of processors and e

the number of nonzero tasks. e is assumed > max{n,m}.

Proof Lines 1-7 take time O(e) i1f the task times are

" maintained using linked lists (see Knuth [7]). Line 8
can be carried out in time O(em-?) (see Hopcroft and
Karp I5]). 1If the slack times are set up as a balanced
search tree (Knuth [7]) then each execution of line 10

takes time O(m log n). At each iteration of the 're-
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peat forever' loop (line 9-25) either a critical job is
created or a task is completed (see lines 10-13).

Hence, by lemma 5.3.7, the maximum number of iterations
of this loop is e + m = 0O(e). The total contribution
of line 10 is therefofe O(em log n). The contribution
from lines 11-12 and 14 is O(em). 1In line 13 the
change in S; requires deletion and insertion of m va-
lues from the.balanced search tree. This requires a
time of O(m log n). The total contribution of line 13
is therefore O(em log n). Line 15 has the same con-
tribution. The total computing time for algorithm P is
therefore O(em log n + total from lines 16-24). Over
the entire algorithm the loop of lines 16-19 is iterated
at most m times. By proposition 5.3.2 an augmenting
path can be found in time O(mih{e,mz}). The total

time for this loop is therefore O(min{e,m?}m + m logn) .
The maximum number of augmenting paths needed in the
loop of lines 21-24 is m + e (as one path is needed
each time a critical job is found). The computing time

of algorithm P then becomes O(min{e,m?} (m+e) +em logn).

5.4 Complexity of Nonpreemptive Scheduling for m > 2

Having presented a very efficient algorithm to ob-
tain a OFT schedule for m = 2 (pre and nonpreemptive)
and a reasonable efficient algorithm to obtain a OFT

preemptive schedule for all m > 2, the next question
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that arises isg: Is there a similar efficient algorithm
for the case of nonpreemptive schedules when m > 2 .
We answer this question by showing that this problem is
NP-Complete [21] even when we restrict ourselves to the
case when the job set consists of only one job with 3
nonzero task times while all other jobs have only 1
nonzero task time. This, then, implies that obtaining
a polynomial time algorithm for m > 2 is as difficult
as doing the same for all the other NP-Complete prob -

lems. An even stronger result can be obtained when

'm > 3. Since NP-Complete problems are normally stated

as language recognition problems, we restate the OFT

problem as such a problem.

- LOFT: Given an open shop with m > 2 processors and a

set of n jobs with processing times tj,i' 1 <j<m,
1 < i <n there is a nonpreemptive schedule with fin -

ish time < 1 . @

In proving LOFT NP-Complete, we shall make use of
the Partition problem defined in section 2.1 and shown

NP-Complete in [21].

Theorem 5.4.1 ILOFT with m = 3, one job having 3

tasks with nonzero processing times and the remaining
jobs having only 1 task with nonzero processing time is

NP-Complete.
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Proof It is easy to show that LOFT can be recognozed
in nondeterministic polynomiél time by a Turing machine.
The Turing machine just guesses the optimal permutation
on each of the processors and verifies that the finish
time is < T .

The remainder of the proof is presented in lemma 5.4.1.

- Lemma 5.4.1 If LOFT is polynomial solvable, then so

also is PARTITION.

Proof From the partition problem S = {ay, a5,..., ap}t
construct the following open shop problem, 0S, with
3n+l jobs, m = 3 machines and all jobs with one non-

zero task except for one with 3 tasks

t1,i = a3 , t2,i = t3,i =0 for 1 < i <n

for n+l < i < 2n

(-1-
[\
-
-
|
o
H
+
f—t
-
i
ﬁ-
S
e
Il
o

t3,i = ai', tl,i = t2,i = 0 for 2n+l < i < 3n

€1,3n+1 = t2,3n+1 = £3,3p41 = T/2
where T = ? a; and T = 3T/2

We now show that the above open shop problem has a
schedule with finish time < 3T/2 iff S has a parti-
tion.

a) If S has a partition wu then there is a
schedule with finish time 3T/2.

One such schedule is shown in figure 5.4.1.



91

T/2 T 3T/2
Pl {tl’i[ieu} t1,3n+1 {tl’ilieu}
P2 € 3n+1 | (€2,1/0 * 1 < 1 < 2nJ
P3 ft3,il2n + 1T <1 < 3n} | &5 55

Figure 5.4.1

b) If S has no partition then all schedules for
0S must have a finish time > 37/2.

This is shown by contradiction. Assume that there
is a schedule for O0S with finish time < 3T/2. Since
this schedule job 3n+l1 must be being processed at all
times. Since the schedule is nonpreemptive, there must
be a processor j such that tj,3n+l begins at time

T/2 and finishes at time T. For this processor, there

is a set of jobs with tj,i s (J=1)n + 1 < i < jn and
jn
X t. ; =T, Since S has no partition, it

(5-1)n+1 77

follows that all the T/2 units of time preceding
tj,3n+l on processor j cannot be used. Hence more
than T/2 are needed after time T to complete the
remaining tasks. Hence the finish time must be > 3T/2.
This contradicts our assumption regarding the schedule.
There is therefore no schedule with finish time "< 1 =
3T/2 when S has no partition. '

When m > 3 the proof of Lemma 5.4.1 can be
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strengthened to the case when each job has atmost 2

tasks.

" Temma 5.4.2 If LOFT is polynomial solvable for m > 3

then so also is PARTITION.

- Proof (using only 2 tasks per job)

From the partition problem § =‘{al, dp,---, aplt
the following open shop problem, 0S, with n+2 jobs,
m = 4 machines and all jobs having at most 2 nonzero

tasks 1s constructed:

tl,i = s/n,» t2,i =a;, t3 . =t, . =0;1<1i<n

T/2+¢

Il

t1,n+1 = T/2, €2 n+1 = ta,n+1 = 0r t3,n41

E1,ne2 = T/20 Ep nie2 = B3040 T 0 By nyp T T/24¢

n
where T = I a T =T+ ¢ and 0 < g < 1.
1

We show that the above open shop problem has a
schedule with finish time < T+ ¢ iff S has a par-
tition.

a) If S has a partition wu then there is a
schedule with finish time T + e. Figure 5.4.2 presents
such a schedule.

b) If S has no partition then all schedules for
0S must have a finish time > T + e .

This is shown by contradiction. Assume that there

is a schedule for 0S with finish time < T + e. Since
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T/2

f,i]
£ n+1 i <n} £ ,n+2

. ’

t3,n+1

t4,n+l

T/2 + € T + ¢

Figﬁre 5.4.2

jobs n+l and n+2 need a total time T + € they
must be scheduled all the time and this will leave
processor 1 free in the tiﬁe interval [T/Z,T/2+e] .
This is just enough time to process the n tasks

tl;i' 1 < i < n. This means that all tasks ta, i

that start their processing before time T/2 must ter-
~minate before time T/2 + & as otherwise for some job
j tl,j and t2,j would be processed at the same time.
Let u be the set of jobs that complete processing on

processor 2 before time T/2 + e. Then I t,

< T/2
ies

yi

< T/2 + ¢ as the aj are integer. This implies that
> T/2 1is left for processing after time T/2. If the
schedule is to finish at time T 4+ e it must be the

case that ) t2,i = T/2. I.e. S has a partition.
ieu

This contradicts the assumption. Hence when S has
no partition there is no schedule with finish time

< 1T=T+¢. B



CHAPTER VI
FLOW SHOP AND JOB SHOP SCHEDULES

6.1 Introduction

In this Chapter/we shall investigate optimal sched
ules for the following shop models:

a) Flow Shop

There are n > 1 Jjobs to be scheduled on m > 1
processors with the restriction that for every job i ,

the processing of task Jj + 1 cannot begin until the

processing of task j is complete, 1 < j < m.

b) ~Job Shop

There are n > 1 Jjobs to be scheduled on m > 1
processors with the restriction that the tasks for each
job are ordered. The processing of a task cannot begin
until the processing of all tasks preceding it have
been completed. Several tasks may be specified for an
individual processor. The notation tj;i,k will be
used to indicate the kth task of job i . This task is
to be processed on processor Jj . a

For any schedule, S, we define the finish time,
£5;(8) of job 1 to be the earliest time at which all

tasks of job i have been completed. The mean flow

time, mft(s), is defined to be the guantity If;(S).

An optimal mean flow time (OMFT) schedule is a schedule

94
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which has the least mft amongstvall possible schedules
for the job set.

Several strategies for obtaining OFT (as defined
in Chapter V) and OMFT schedules for flow shops and job
shops have been advanced (see for example 5] and [7]).
Branch and bound strategies for these prdblems are in-
vestigated in J18] and [24]. Despité all the research
effort devoted to these problems there are no known
efficient algorithms. In [2] and [11] it is shown that
these problems are NP-Complete when one is restricted
to nonpreemptive schedules. In section 6.2 we extend
the NP-Completeness results of [2] and [11] for OFT
nonpreemptive schedules.. A more restricted version of
the OFT nonpreemptive flow shop problem is also shown
to be NP-Complete. 1In section 6.3 we obtain bounds
comparing optimal and arbitrary active schedules for
the flow shops and job shops. In this sectibn we also
present heuristics that result in schedules with a mft
and finish time better than the worst active schedules.
Finally, a comparison is made between the finish times
"of preemptive and nonpreemptive schedules.

Since NP-Complete problems are normally stated as
language recognition problems, we restate the OFT
problem as such:

" FOFT: Given an m processor n Jjob flow shop problem
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with task times r 1 23 <m and 1< 1i<n

3,4
does it have a schedule with finish time < T ?

When it is necessary to distinguish hetween
preemptive and nonpreemptive schedules we shall prefix

FOFT with the type of schedule being considered .

JOFT: This is the same as FOFT except for a job shop.

6.2 Compiexity of Preemptive and Nonpreemptive Sched-

“uling

6.2.1 Flow shop

OFT nonpreemptive schedules for the two processor
(m = 2) flow shop can be obtained in O(n log n) time
using Johnson's algorithm [7, p. 83]. For the case
m = 2 one can easily show that an OFT preemptive
schedule has the same finish time as an OFT nonpreemp-
tive schedule. Hence, Johnson's algorithm also gives
an OFT preemptive schedule. In this section we shall
show that when m > 2 finding OFT preemptive and non-
preemptive flow shop schedules is NP-Complete. This is

true even when the jobs are restricted to have at most

two nonzero tasks each. This then gives us the simplest

case of the flow shop problem that is both NP-Complete
and for which no polynomial algorithm is known (note
that when jobs have only 1 task per job, OFT schedules

may be trivially obtained).
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Theorem 6.2.1 FOFT with m = 3 and no job having more

than two nonzero tasks is NP-Complete.

Proof The proof is preéented as two lemmas. In Lemma
6.2.1 it is shown that Partition a Preemptive FOFT.
Lemma 6.2.2 shows that if P = NP then Preemptive FOFT
is recognizable in polynomial time. The same proof

also shows that nonpreemptive FOFT is also NP-Complete.

-
" Lemma 6.2.1 Partition o Preemptive FOFT with m = 3
and at most two nonzero tasks per job.
- Proof From the partition problem s = {ap, 89y« ,apn}

construct the following preemptive flow shop problem,
FS, with n+2 Jjobs, m = 3 machines and at most 2

tasks per job:

n
where T = L aj and T = 2T
1

We now show that the abové flow shop problem has a
preemptive schedule with finish time " < 2T iff S has
a partition.

(a) If S has a partition u then there is a
nonpreemptive schedule with finish time 2T ., One such

schedule is shown in figure 6.2.1 .
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t2,n+2 t2,n+1
s ! ' {t3,i[l€u} t3,n+2 {t3’i|lﬁu}
0 T/2 T 3T/2 2T

figure 6.2.1
(b) If S has no partition then all preemptive
schedules for FS must have a finish time > 2T. This
can be shown by contradiction. Assume that there is a
preemptive schedule for FS with finish time < 2T.
We make the following observations regarding this sched
ule: (i) task t1,n+1 must finish by time T (as t2,n+l
=_T‘and cannot start until tl,n+l finishes)
(ii) task t3,n+2 cannot start before T wunits
of time have elapsed as t2,n+2 = T.
Observation (i) implies that only T/2 of the
first T time units are free on machine one. Let V

be the set of indices of tasks completed on machine 1

by time T (excluding task t1,n+1)- Then Z oty
iev

< T/2 as S has no partition. Hence .E t3,; > T/2.
‘ 1gV

The processing of jobs not included in V cannot
commence on machine 3 until after time = T since
their machine 1 processing is not completed until
after T. This together with observation (ii) implies

that the total amount of processing left for machine
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3 at time T is t3,n+2 + t3,i > T ., The schedule

X
igv

lenght must therefore be > 2T

Corollary 6.2.1 Partition d Monpreemptive FOFT with

m = 3 and at most two nonzero tasks per job.

" Proof The construction of Lemma 6.2.1 yields a flow

shop problem that has a nonpreemptive schedule with
finish time 1 iff the corresponding partition problem

has a partition. @

Lemma 6.2.2 If P = NP then preemptive FOFT is poly-

nomial recognizable.

Proof One may easily construct a nondeterministic
Turing machine that guesses a preemptive schedule and
verifies that it is of lenght < 1t . 1In order for this
Turing machine to be polynomial complexity, we must
show that every flow shop problem has an optimal preem-
ptive schedule with a polynomial number of preemptions.
We show this by construction. Let R be an optimal
preemptive schedule for a m précessor n job flow
shop problem. If on any processor, Jj, there is a
job, k, such that between its preemption and next
resumption on that processor, no task ty 1 i#k is
completed then this preemption for job k can be elimi

nated without affecting the schedules for the other
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processors. I.e. if the schedule for processor i has
a subsequence (f3=k, s7, fq) (Ré, Sor £o) oo Ry
Sy_1, fro1) (p=k, 8., f) i #k, 2 <i<r and
none of the tasks on j for jobs L5, %3,..., 43
finishes in this intefval, then the schedule may be
modified to (f7=k,sy, £1+h) (Ly, s, + A, £ + A)
(Ry-1s Sp-1*+ 4, £y) where A = £, - s, > 0. Repeating
this preemption elimination process one will eventually
obtain a preemptive schedule with.the same finish time
as R and having at most n?
Hence, there is an optimal preemptive schedule with at

most n4m preemptions. @

6.2.2 Job Shop

The preceding results trivially imply that a
severely restricted form of the job shop problem for
m > 2 is NP-Complete. For the job shop with m = 2,
however, no polynomial time algorithm is known. In
[7, p. 105] an O(n log n) algorithm to obtain OFT
nonpreemptive schedules when m = 2 and the jobs are
restricted to have at mosf two nonzero tasks is pre -
sented. For this case, OFT preemptive schedules may be
similarly obtained. For the nonpreemptive case, it is
known [2,11] that when m = 2 and the job mix consists
of n-1 jobs with one nonzero task each and an additiog

al job with three nonzero tasks then the problem is

preemptions per processor.
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NP-Complete. We extend this result to the case of
preemptive schedules. We show that finding OFT preemp-
tive schedules when m = 2 is NP-Complete even when
the job mix contains only two jobs with three nonzero

tasks. The proof is presented in the form of two

lemmas.

TLemma 6.2.3 Partition a Preemptive JOFT

Proof From the partition problem S = {aj, az,..., ay’

construct the following job shop problem JS, with
n+2 jobs, m = 2 processors and all jobs with 2 non

zero tasks except for two jobs with 3 nonzero tasks.

Job 1 -n: tp 3,1 =ty,5,2=a; for 1 <ic<n
Job n+l : tl,n+l,l = t2,n+l,2 = T/2

t1,n+1,3 = 37T

Job n+2 : t2,n+2,l = 37
t1,n+2,2 = t2,n+2,3 = T/2
n

where T = J a: and T = 57
1

1

We now show that the above job shop problem JS
has a preemptive schedule with finish time < 5T iff S
has a partition. |

a) If S has a partition u then there is a
schedule with finish time 5T. One such schedule is

shown in figure 6.2.2
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T/2 T L 9T/2 5T

Figure 6.2.2

b) If S has no partition then all schedules for
JS must have a finish time > 57.

This is shown by contradiction. Assume that there
is a schedule for JS with finish time < 5T .

Observe 1) on procesgsor 2, task té,n+l,2 must
be completed before time 2T and t2,n+2,1 before 4T.
Therefore, before 4T only T/2 units are free for jobs
1 - n and

ii) on processor 1: t3 p41,3 cannot
start until T and tl,n+2,2 cannot start until 3T.

Hence, processor 1 is committed to processing
tl,n+l,3 and tl,n+2,2 after time T. Since these
two tasks together require 7T/2 units, at most T/2
units are free after time T for jobs 1-n. This in
turn implies that there are at least T/2 units of
free time on processor 1 before time T. Let U be
the set of indices of jobs being processed in the time
interval [0,T] on processor 1. Let u = {i]i¢U and
i < n}. Since the schedule has a finish time of 5T,

there can be no idle time on either of the processors.
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Hence, z t1,1,2 < T/2. But, the only jobs that can
ieu

start on processor 1 are those for which t2,i 1 has
4

conpleted. Hence, L t2,i,l = I t1,1,2 > T/2 must
ieu ieu

be completed by T on processor 2. By (i) this
processor has at most T/2 units free before T.

Consequently z t2,i,l = T/2. This contradicts the
ieu

assumption that § has no partition. @

Corollary 6.2.2 Partition o Nonpreemptive JOFT.

" Proof Same as above. A simpler proof of this corollary

may be found in [2,11]. @

Lemma 6.2.4 If P = NP then JOFT is polynomial

recognizable.

Proof Similar to that for Lemma 6.2.2. Note that the
bound on the number of preemptions will now be n2g
where £ 1is the maximum number of nonzero tasks for

any job. @@

6.3 Approximate Solutions

Since the problems of finding OFT and OMFT sched-
ules for flow shops and job shops is NP~-Complete (see
[11] for NP-Completeness of OMFT) we turn our attention
to obtaining schedules whose performance approximates

that of optimal schedules. To begin with, we derive a
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bound for the ratio of worst and best schedules for the
two performance measures being considered. We then pre
sent approximation algorithms that generate schedules
with a worst case bound smaller than this. In examining
‘worst" schedules, we restrict ourselves to active sched

ules. An active schedule is a schedule in which at all

times from start to finish some processor is busy (i.e.
it is processing a task). For a given set of jobs and
a schedule S we denote by f(S) the finish time of S

and by mft(S) the mean flow time of S.

Lemma 6.3.1 Let S* be an OMFT schedule for an m

processor n job flow (or job) shop problem. ILet S
be any active schedule for this problem. Then,

mft (S) /mft (s*) < n.

- Proof For each job i define ©L; to be the sum of

n
its task times. Let 7T = % Li. Without loss of gener

ality we may assume that the jobs have been indexed so
that Lj; > Ly > ... > L,. Let the order in which jobs

finish in S be iy, iz,...,'in and let fij be the

finish time of job i. in S. Then,

n .
e mft(8) = T £, <
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For S* we know that fi‘3~L-

i and so mft (S*) > ZLi=T.

Hence, mft (S)/mft (S*) f_ n. @

Since rather crude approximations were used to
obtain this bound, it is surprising that Johnson's OFT
algorithm on 2 processors schieves this bound. I.e.
there are OFT schedules S such that mft(S)/mft(S*)=n.
The next example gives an instance of a job mix for

which this happens.

Example 6.3.1 Consider the 2 processor, n job flow

shop problem with task times tl,i =e¢,l<i<n,
tp,1) =k and tp 3 =26, 2<i<n. §<e <<k/n?
One may easily verify that Johnson's algorithm generate
the permutation scheduvule s = (1,2,...,n). The mean
flow time of this schedule is

mft(S) = (k + €) + (k + e + §) +...+ (k + ¢ +(n-1)9)

= n(k + ) + n(n-1)§/2

An OMFT schedule, S*, for this job set is obtain
ed by using the permutation 2,3,...,n,1 . The mean
flow time of this schedule (figure 6.3.1) is:

mft (S*) (e + 8) + (2e¢ + 68) +...+ ((n-1)e + 8) +

Il

(neg + k)

= n(n+l)e/2 + nd + k
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_nk + €) + n(n-1)6/2

Q% =
Hence mft(S)/mft (S*) n(n + 1)e/2 + né + k

As e approached zero this bound becomes

mft(s*) - "k ~— R
ATA Al s seN] e e
VA NWIN N
v, Sl S 78] SH L. RN k N
7000000 S RN
f(S) = ¢ + (n-1)8 + k £f(8) = n(e) + Kk
(a) OFT schedule from (b) OMFT schedule

Johnson's algorithm
Figure 6.3.1

Note that this example also shows that the bound of n
holds for OFT schedules even for the job‘shop and also
when preemptive schedules afe allowed.

A simple heuristic that results in schedules with
a mft which in the worst case is closer to the optimal
than the bound of Lemma 6.3.1 is obtained by processing
jobs in order of nondecreasing Li (Li = sum of task
times for job 1i). This heuristic will be referred to

as SPT (see [7], p. 76).

Lemma 6.3.2 Let S* be an OMFT schedule for an m

processor n ’job flow (or job) shop problem. Let S
be a SPT schedule for this problem. Then, mft(S)/mft

(s*) < m.

Proof Let L; Dbe the sum of the task times for job i.
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Without loss of generality we assume that Ly 5

< L. Let £, be the finish time of job i using the

< L, <...

i
SPT schedule S. Then, fi < I Lj and so
1
n n i
1 i=1 j=1
Let (il, i2,..., in) be the order in which jobs
finish in the OMFT schedule S* ., For S* we have,
k k
f. > ¥ Ly /m > I Las/m
lk - j=l l] j:]_ J
n k
and so mft(S*) > I r L./m
k=1 j=1 >

Consequently, mft(S)/mft(s*) <m . @

" Example 6.3.2 Consider the 2 processor, 2n job shop

problem with task times t1,1 = k, ty 4 = €3 for
1 <i<n and tl,i = €9, t2,i=k for n+l < i < 2n,
where € < g9 << k/nz. One may easily verify that SPT
algorithm generates the permutation schedule s = (1, 2,
eeey; 2n). The mean flow time of this schedule is:
mft(s) = (k + e3) + (2k + g7) +...+ (nk + €q) +

((n + 1)k + €9) +...+ (2nk + €5)

2n

i ik + neq + ne,

An OMFT schedule, S*, for this job set is ob -
tained by using the permutation (n + 1, 1, n+2, 2,...,

n+ i, i,..., 2n, n). The mean flow time of this
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schedule (fig. 6.3.2) is
mft(S) = (k + 82) -+ (k -+ €2 + €l) + se. *

(nk + nsz) + (nk + ne, + ¢

2 1)
n ‘n
25 ik + 2 I iey + nep

il

2n nej. 4+ ne
“3 4% 4 MEL + ney
Hence mft(S)/mft(s*) = ik — 2

2% ik + 2 ¥ i
1 x 1e2 + nel

As €7 and e, approach zero this bound becomes

mft(S) _ (2n) (2n+1) 2
mft (s*) -~ 2n(n+l) B
LN LY O N P Glkiel --- €] %
el - -- &l |8 |- 1 Kilell --- &l W (e
(a) SPT Schedule (b) OMPFT Schedule

Figure 6.3.2
This may be extended to any arbitrary m by using
the following job set:
tl,i =k ; ty 1 = €1 oo f s = el»for 1l <i<n
t1,i = €2; t2,i = k ~e. tp, i = ey for n+l<i<Zn
) : - .

tl .= 3; t, .= ...t . =k (m-1l)n+l<i<mn
rl ' - -

Where €; < g5,9 for 1 < i <m and g << k/n2.
This exéﬁple show that the bound of Lemma 6.3.2 is best
possible. @

Let us now turn our attention to the finish time



109

properties of active schedule.

" Lemma 6.3.3 Let S8* Dbe an OFT schedule for a m > 2

processor n job flow (or job) shop problem. Let S

be any active schedule for this problem. Then ,

£(S)/£(S%) < m

" Proof Let T be the sum of task times for all n jobs. .

Then, clearly, for any active schedule s, f£(8) < T.
Also, for any schedule, S* , we trivially have
£(S*) > T/m. So, f£(S)/f(5*) <mn. @

Once again, as in the case of Lemma 6;3.1 , the
proof technique would seem to indicate that any "rea-
sonable" heuristic would result in schedules with a
worst case bound less than m. This unfortunately is
not the case. We define by LPf the heuristic: schedule
jobs in order of nondecreasing L;. For LPT schedules
the bound of Lemma 6.3.3 is tight. Note that this
heuristic is similar to the one used by Graham [13] to
schedule identical processors and in Chapter IV for
scheduling on uniform processors. In both these earlier
applications of the heuristic, LPT schedules had a
worst case finish time at most a "small" constant times
the optimal finish time. This is no longer the case

for flow shop and job shop schedules.

" Example 6.3.3 Consider the m processor m job flow shop




with task times ti,i =k, 1 <1i<m and ty,1i = €44
l<i<m, 1<3j<m and 1i#3J . €y > €549 s

1 <is<m and €y << k. Li =k + (m—l)ei and so

Li > Li+l’ 1 < i< m. The LPT schedule, S, 1is the

permutation schedule obtained by processing jobs in the
order (1,2,...,n) on all processors. The finish time
of S (figure 3.3(a)) is
m-1
i=1
An optimal schedule, S* , is shown in figure 3.3(b).
The finish time of S&* 1is:

f(s*) =
i

N~

zai + k + (m—l)el

Hence, £(S)/f(8*) = m for e; << k. @

L HH qlesle| K
& K Eesl qisll x e
s BER sI S| « e|e
d ld || x K UQ' el |«
(a) LPT Schedule (b) OFT Schedule

Figure 6.3.3 Schedules for example

6.3.3 when m = 4.
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The worst case bound of m for active schedules
in a flow shop can be reduced to [m/2] by using the
following heuristic: Divide the m processors into
ﬁh/iT ~groups,each group containing at most two prov~
cessors. The processors in group 1 are the 2ith
and 2i+lst ones. Johnson's O(n log n) algorithm is
used to ohtain optimal finish time schedules for each
of these [m/2] groups of machines. These /2] opti
mal schedules are then concatenated to obtain a sched-
ule for the original m processor flow shop. More

formally, the algorithm H is:

"Algorithm H
// Obtain a schedule for the n job m processor
flow shop. The task times are tj,i r L <3 <m
and 1 < i <n //
for j=1 to |m/2] do
R(j) < permutation corresponding to
optimal schedule for the two
processors 23j-1,23 with task
times tk;i' 2j-1 < k < 237 and
1 <i<n
“end
Cif m is odd then R(Fﬁ/i}) < permutation 1,2,...n
// the schedule for the m processor flow shop prob

lem is: process jobs on processor 1 using the
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permutation R(|(i+1/2]).//

“end of algorithm H

Since an optimal two processor flow shop schedule
can be obtained in time O(n log n), the total time

needed by algorithm H is O(mn log n).

Lemma 6.3.4 Let § be a schedule generated by algo -

rithm H and let S* be an OFT schedule. Then,

£(s)/£(s%) < [m/2] .

Proof Let the lenght of each of the schedules R(i) ,
1 <i f_rh/éw obtained in algorithm H be denoted by
f(R(i)). Since each such schedule is optimal for its
processor pair, it follows that £(S*) > max{f(R(i))}.
In the worst case, the schedule, S , generated by
algorithm H will have a finish time £(8) < Zf(R(1)) <

[m/2] max{f(R(i))}. Consequently, £(S)/f(S*) < m/2] .
a

" Example 6.3.4 Using algorithm H on the n job flow shop

problem with m = 3 and task times:

tl’i=€, t2,i:k’ t3,l=0, 1l < 3i<n

and t3 =¢e', t = ', t = (n-1)k;e < g' < k
/N 2,n 3,n

yields R(1)

il

R(2) = 1,2,...,n. This gives the
schedule, s, of figure 6.3.4(a) which has a finish
time of e + e' + 2k(n-1). Figure 6.3.4(b) shows an
optimal schedule S*. f£f(S*) = 2¢' + k(n-1) and

f(S)/E(s*) = 2 = [3/2]. @
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(n-1)k

(a) Schedule S for algorithm H.

€ [ e L €
e'l k k ... k
=1k

(b) Optimal schediile S*
Figure 6.3.4

We close this section with a comparison of OFT
preemptive and nonpreemptiVe schedules. If S; snd S;
are OFT preemptive and nonpreemptive schedules respec -
tively, then from the proof of Lemma 6.3.4 it follows
that f(Sﬁ)/f(S;)'i Fh/iT.{ The next exémple shows that

this is a tight bound when m = 3 and m = 4,

" Example 6.3.5 Consider the 3 processor flow shop with

3 jobs and task times:

tl,i =k ’ t2,i = €€ , t3,i = k i= 1,2
and tl,3 =0, t2,3 = 3k , t3,3 = 0
The OFT preemptivé schedule S; has f(S;) = 3k +2¢

while the OFT nonpreemptive schedule S; has

fCSE) =5k + ¢, f(S;)/f(S;) = 5/3 for e<< k.
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£2,3 |d ¥2,3 e[ t2,3 € ¢ t2,3

k k k

* *

(a) Sp (b) . s

Figure 6.3.5
Generalizing this to n-1 Jjobs with
1,05kt =8, t3 5=k, 1<icnl

and 1 job with tl,n = t3,n = 0 and t2,n = nk we get
f(S;)/f(Sg) = 2 - 1/n which approximates fh/iT for
large n a

For the case of a job shop, we conclude from the
proof of Lemma 6.3.3 that f(Sﬁ)/f(Sg) < m. The next

example shows that this is a tight bound for m = 2.

- Example 6.3.6 The two processor job shop problem with

two jobs and task times:

G100k ty 305, t 4,35k
rand tp 2.1 = 2k € << k

* * 1 1 * * =

has Sp and s* as in figure 6.3.6. f(Sn)/f(Sp)
(3k + e)/(2k + €) = 3/2 for e << k. Generalizing to
n-1 jobs with

t1,i,1 kst 30,8 3=k, 1 <i<n

and 1 job with t2,n,l = nk we get
* * = - a
f(Sn)/f(Sp) 2. l/n .
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Figure
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2k

(b)




CHAPTER VIT
P-COMPLETE APPROXIMATE PROBLEMS

7.1  Introduction

Many P-Complete problems, especially the optimiza-
tion problems,are of practical significahce. Often, as
in the case of the Knapsack problem [36], approximate
solutions (i.e. feasible solutions that are guaranteed
to be 'reasonably' close to the optimal) would be
acceptable so long as they can be obtained 'quickly'
(e.g. by an O(nk) algorithm for small k). Johnson
[19] and Sahni [36] have studied some P-~Complete prob-
lems with respect to obtaining 'good' (i.e. polynomial)
approximate algorithms.

Additional results on approximation algorithms for
P-Complete problems can be found in [3, 10, 13, 15, 17,
33, 34]. Some of these algorithms obtain e-approximate
solutions only for cerain values of ¢ (i.e., € >k
for some k). ‘For example, Graham's heuristic to
sequence jobs on m identical processors is e—approximate

“for e > (1/3)(L - 1/m). Other approximation algorithms
[15, 17, 34, 36] obtéin g—-approximations for any ¢ > 0.
An example is the O(n/g2 n log n) algorithm of Ibarra
and Kim [17] for the 0/1 Knapéack problem, General
techniques for obtaining e-approximate solutions for all

116
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e are presented by Sahni [34] and Horowitz and Sahni
[15]1. The techniques are applicable to certain types
of P-Complete problems.

In this Chapter we shall look. at.some "natural”
P-Complete problems and show that the corresponding
approximation problem are also P-Complete. While one
can easily construct "non-natural" problems with this
property (for example: max : £(G) where £(G) = 2/(1-¢)
if graph G has a clique of size > k and £(G) = 1 other
wise. If G has a clique of size > k then all
e—-approximate solutions have f(G) > 1. If G has no
such clique then £(G) = 1. Hence the approximation
problem is P-Complete for all ¢ ; it is interesting
that this should be true for naturally occurring prob -
lems. Garey and Johnson [10] show that obtaining
g—-approximate solutions to the chromatic number problem
is P-Complete for all ¢ < 1. The probhlems we shall
consider are: travelling salesperson; cycle covers;
0/1 integer programming; multicommodity network flows;
quadratic assignment; general partition; k-MinCluster
and generalized assignment. For these problems it will
be shown that the e-approximation problem is ?—Complete
for all values of & . (One should note that in the
case of a maximization problem € 1is restricted to

0 < e <1 as all feasible solutions are l-approximate.)
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While the e-approximation problem for the general travel-
ling salesperson problem is P-Complete for all ¢
Rosenkrantz and Stearns [33] have éhown that when the
edge weights satisfy the triangular inequality then

. ,

ge—-approximate solutions may be obtained in polynomial

time for certain values of ¢ .

7.2 P-Complete Approximate Problems

In this section we look at some P-Complete problems
and show that they have a polynomial time approximate
algorithm iff P = NP. This would then imply that if
P # NP, then any polynomial time approximation algori-
thm for these problems, heuristic or otherwise, must
produce arbitrarily bad approximations on some inputs.
The problems we look at are:

(1) Travelling Salesperson: Given an undirected
(directed) complete graph G(N,A) and a weighting func
tion w : A > Z find an optimal tour (i.e. an optimal
hamiltonian cycle). The optimality criteria we shall
consider are: |
(a) Minimize tour lenght (i.e. find the shortest
hamiltonian cycle)

(b) Minimize mean arrival time at vertices. The
arrival time is measured relative to a start vertex il

and the weights are’interpreted as the time needed to

'go from vertex i to vertex Jj. If iy, dip,..., ine

iﬁ+l = i; is a tour (i.e. hamiltonian cycle) then the
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mean arrival time is measured by

n+l k n
(1/n) % I w(is,ip) = (I/n) T (tl=)w(is,is.q)
k=2 5=1 1K j=1 377+

The objective is to find a tour iy, iy,..., iy, i;

n
that minimizes I (n+l-3) w(i.,i. l) (seel7], p.56).
j=l J Jt '

(c) Minimize variance of arrival times. If il, ig,0e.

ey iy, ip41 = i1 is a tour starting at iy then the

arrival time, Y, at vertex ip is

k-1
Y = 2

J

1 W(ij’lj"l‘l) ’ 1 <k _<- n+l

The mean arrival time Y (as defined in (b) above) is

n+1

1
T Yy, = —
= k n

v=2
n 2 J

I3

(n+1-3) w(is,i441)

k 1

We wish to obtain a tour that minimizes the quantity
: n+1 _ 2
o= (1/m) I (¥j -Y)
j=2

+

(ii) Undirected Edge Disjoint Cycle Cover: Given
an undirected graph G(N,a) find the minimum number of
edge disjoint cycles needed to cover all the vertices
of N (i.e. minimum number of cycles such that each
vertex of G is on at least one cycle).

(iii) Directed Edge Disjoint Cycle Cover: Same
as (ii) except that G is now a directed graph.

(iv) TUndirected Vertex Disjoint Cycle Cover:

This problem is the same as (ii) except that now, the
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cycles are constrained to be vertex disjoint.

(v) Directed Vertex Disjoint Cycle Covers: Same
as (iv) except that G 1is now a directed graph;

(vi) 0-1 Integer Programming with one constfaint.

(vii) Multicommodity Network Flows: We are given
a transportation network [6] with source s; and
sink S5. - The arcs of the network are labeled corres -
ponding to the commodities that can be transported
along them. Such a network is said to have a flow f
iff f wunits of each commodity can be transported from
source to sink. The problem here is to méximize f.

(viii) Quadratic Assignment ([12], p. 18):

n m
minimize £(x) = T b} Cl,jdk,le,kxj,z
i,3=1 k,8=1
i#3 k#2
m
subject to (a) L x5 <1, 1 <i<n
k=1 T'T 7 -7
n
(b) L Xy =1, 1 <k <m
i=1 !

and (c) X; o = 0,1 for all 1 , k
14

where i, and dk,,Q, >0, 1 <i,j <n,

1 <k,2<m
One situation in which a problem arises is that of
optimally locating n plants, 1<k <n, at m,
1l < i <m, possible sites. Thus, Xi = 1 iff plant
k is to be located at site i

. Condition (a) states

that at most 1 plant can be located at any particular

site. Condition (b) requires that every plant be
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assigned to exactly 1 site. If i3 represents the
cost of transporting 1 unit of goods from site i to
site j and dk,z is the amount of goods to be trans-
ported from plant k to plantv %  then f(x) represents
the cost of transporting all the goods between plants.
(ix) k-General Partition [31l] : We are given a
connected undirected graph G(N,A), an edge weighting
function f£: A > Z, a vertex weighting function w:N -2

a positive number W and an integer k > 2. The prob-

lem is to obtain k disjoint sets 81, S2,+.+4 S such

that:
k
(a) U
(b)SnS-Qi for i # j
(c) x w(j) < W for 1 <i <k
Jisi
and (d) r -z f(u,v) is maximized
- i=1 {u,vl}er
u,veSi

Partitioning problems of this type are encountered in
the assignment of logic blocks to circuits cards in
computer hardware design and ih the assignment of com-
puter information to physical blocks df storage [31].

(x) k-MinCluster: This is the document clustering
problem with the minimization criteria (see Chapter II).
Given an undirected graph G(N,A), én integer k > 3,

a weighting function w: A - Z find k disjoint sets

Sl r 82 s ey Sk SU.Ch that
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S{ =N ; Sin“'=¢ for i # j

o

[}
=] J
k
and r I w(u,v) is minimized
i=1 {u,v}eA
u,veSi
(xi) Generalized Assignment [38]:
minimize % I cCcs + X
ieI jegd ) 1]
subject to ‘Z i, xi,j S_bi for all ieI
jed
I X5 5 =1 for all 3 ¢ J
. I
1eT
x, . =0,1
i,J
In this formulation I = (1,2,...,m) is a set of
agent indices, J = (1,2,...,n) 1is a set of task

indices, c.
4 llj

task j, <

is the cost when agent i is assigned
i,3 is the resource required by agent i
to perform task. j and bi 50 is the amount of re -
source available to agent 1. The decision variable is
1 if agent i is assigned to task j , 0 otherwise.
This problem arises in the following situations:
assigning software development tasks to programmers,
assigning jobs to computer networks, scheduling varia -
"ble lenght television commercials etc.

In order to prove some of our results we shall use
the following known P-Complete problems:

a) Hamiltonian Cycle: Given an undirected (direc
ted) graph G(,A) does it have a cycle containing

each vertex exactly once, [21].
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b) Multicommodity Flows: Given the transporta -
tion network of (vii) above does it have a flow of
£f =1 1[35].

c) k-Graph Colorability: Given an undirected
graph G(N,A) and a positive integer k do there exist

k
disjoint subsets S;, S,,..., S, such that \UJ s, =N
, i=1 *

and if {i,j}eA then vertices i and 3j are in

different sets [21].

" Theorem 7.3.1 The c-approximation problem for (i)-(xi)

above is P-Complete.

- Proof For each of the problems (i) - (xi), it is
easy to see that if P = NP then the e-approximation
problem is polynomially solvable (as the exact solutions
would then be obtainable in polynomial time). Conse -
quently, we concern ourselves only with showing that if
there is a polynomial time approximation algorithm for
any of the problems listed above then P = NP. Our
approach is to separate feasible_solutions to a given
problem in such a way that from a knowledge of the
approximate solution one can solve exactly a known
P-Complete problem.

(i) (a) Hamiltonian Cycle o g-approximate Travel-
ling Salesperson (Minimum length criteria).

Let G(N,A) be any graph. Construct the graph
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Gy(V,E) such that V =N and E = {(u,v)]|u,veV}. De-
fine the weighting function w : E » Z to be
. 1 1if (u,v)ear
wiu,v} =
k otherwise .

Let n = |N| . For k > 1, the Travelling Sales -
person problem on Gy has a solution of length n iff
G has a Hamiltonian cycle. Otherwise, all solutions
to Gy have length "> k + n - 1. If we choose k >
(1 + e)n then, the only solutions approximating a solu
tion with value n (if there was a Hamiltonian_cycle in
Gl) also have length n. Consequently, if the E-approx-
imate solution has length < (1 + e)n then it must be
of length n. If it has length > (1 + g)n then G
has no Hamiltonian cycle.

(i) (b) Hamiltonian Cycle 0. e~approximate Travel—
ling Salesperson (minimum mean arrival time criteria)

We construct Gl(V,E) as in (1) (a) above. Let
the starting'vertex il = 1l. It is easy to see that
Gl has a tour with mean arrival time < (n + 1)/2 iff
G has a Hamiltonian cycle. If G has no Hamiltonian
cycle then all tours in Gq have mean arrival time
>k/n + (n - 1)/2. Choosing k > (1 + €)n(n + 1)/2
separates sufficiently these two solutions. The only
solutions approximating n(n + 1)/2 also have value

n(n + 1)/2. Consequently, if the e-approximate solu -

tion has value < (1 + €)(n + 1)/2 then it must be of
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value (n + 1)/2 and G has a Hamiltonian cycle. If
the value is > (1 + ¢) (n + 1)/2, G has no Hamiltonian
cycle.
(1) (¢) Hamiltonian Cycle dAe-approximate Travel -
ling Salesperson (minimum variance criteria)
From the undirected graph G(N,A) we obtain the
undirected graph Gl(Nl,Al) with:
Ny =N Ulo,8,v,8}
2 =a Ul(r,0), (a,8), (8,7), (v,6)}
VI, 2) | (r,2z) e A}

]

where r is some arbitrary vertex in N. This cons -

truction is shown in figure 7.3.1.

O e

/ .
e _ -
\(:}_"-- ;_ﬁCIE;-—-;_

Figure 7.3.1 Construction of Gy from G. Broken lines
in Gy are not in G.

From the construction, it is evident that Gl has a
Hamiltonian cycle iff G has such a cycle. From the
graph Gy ge obtain the travelling salesperson problem
Gy (Ny,Ay) with N, = Ny, Ay = {(i,3)]i#5, i,jeN,} and
weighting function w : Ay =+ Z defined by

1 if (u,v)eAl

w(u,v) =
k if (u,v);z’Al
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Lemma 7.3.1 obtains lower bounds on the variance

(o) of an optimal tour for G, .

'Lemma'713;i For k > /(I + e)(n)(n - 1)(n + 1) /3 and

e > 0 the complete graph G, has a tour, with starting

vertex B , with a variance o i (n—-1) (n+1) /12 iff Gy

has a Hamiltonian cycle. If Gy has no Hamiltonian

cycle theh the optimal tour for G, has

o > (1+e) (n-1) (n+1)/12 , n = INél .

'2399£> If G, has a Hamiltonian cycle then this cycle
is a valid tour in Gé . All edges on this tour have
weight 1 and:

mean arrival time = ¥ = (n+1)/2
v n 9
o= (1/n) Z (i - Y)
1
n ‘
= (1/n) I (i)2 - Y2
1

’2n2'+’3n +1 (n + 1)2
6 4 ‘

= (n - 1) (n + 1)/12
If Gl has no Hamiltonian cycle then every tour
in G2 must include at least one edge with weight =k.
Let the optimal tour be B=il, i2,..., in,in+l = g,

We have three cases:

~case 1 w(B,i,) =1, w(ij,i-+l) = k for some j, 1<j<n .

J g
For this case we have Y2 = 1 and Yn+l > k + n-1.
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If ¥>k/2+ 1 then |yy - Y| >k/2. If Y <k/2+1

then |Y -~ Y| > k/2.

n+l

In either case we have:

o > (k/2)%/n = k?/(4n) >

12

for k > y({(1+e)n(n-1) (n+1) /3
Case 2 w(B,i;) = k and all other edges have weight=1
Since all other edges on the tour have weight 1
it follows that i = o or in =y as (a,8) and

(y,8) are the only two edges in A, incident to B

and having weight 1. Without loss of generality we may

assume i, = o . Since Yy 1is a vertex on the tour,

the tour enters vy via some edge (u,y) and leaves
via another edge (y,v) u #v and v # B. Also,
u# B8 as w(B,iz) =k %bl. Ffom the construction of
Gy it is clear that the only edées in Ay incident to
vy with weight 1 are (B8,y) and (Y,S). (y,8) is the
only edge satisfying the requirements on u and v.
Hence, the second edge on the tour incident to y must
have weight = k. Hence, there is no tour in G, with
w(B,i,) =k and all other edges having a weight of 1.
Case 3 W(B,iz) = k and w(ij,ij+l) = k for some j,
1 <3j<n.

Now, Y, =k and ¥,y > 2k + n - 2

If ¥ > 3k/2 then |y, - ¥| > k/2

- T > k/2

al

If < 3k/2 then |Y



128

Hence, o > (l+g¢) (n-1) (n+l)/12 (see case 1)

This takes care of all possibilities when Gy has

no Hamiltonian cycle.

The reduction of (i) (c) now follows from arguments

similar to those of (i) (a) and (b).

(ii)~(v) The proofs for (ii)-(v) are similar. We
outline the proof for (iv).

(iv] TUndirected Hamiltonian Cycle o ge—approximate
Disjoint Cycle Cover

Given an Undirected graph G(N,A) construct k
copies Gi(Ni,Ai) of this graph. Pick a vertex v e N.
Let ul, u2,..., u? be the vertices adjacent to v in

G (i.e. (ul,v)ea 1 < i <d). Define Iy (V4.E5)  to

. k
be the graph with V., = () N. and
i=1 1
K 3 e
Ej = }:{ A; \){(ul , vi+l)|l < i < k} L){(uk ¢ V1)l

Clearly, if G has a Hamiltonian Cycle then, for some

I, Hj has a cycle cover containing exactly one cycle

(as for some j (v,uJ) are adjacent in the Hamilton-
ian cycle and using the images of the edges of this

cycle in the subgraphs G; (except for the images of

the edge (v,ul)), together with the edges '{(ui V)

i+l
|1 < i< k}‘L){(uﬁ ,vl)} one obtains a Hamiltonian
cycle for Ej). If G has no Hamiltonian cycle, then

the subgraphs G; each require at least two disjoint
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cycles to cover their nodes. Consequently, the disjoint
cycle cover for j contains at least k+1 cycles ,
1l < j<k. For any e , one may choose a suitable ‘k
such that from the approﬁimate solutions to Hj ,
l?f‘j‘i_k one can decide whether or not G has a
Haﬁiltonian cycle (i.e; choose k > (1 + ¢)).

Note that the above proof also works for the case
of edge disjoint cycle covers.

(vi) Just consider the reduction:

Sum of Subsets qo e-approximate 0-1 Integer Program
ming.

i.e. min 1 + k(m - Zwiéi)

subject to Iw.5, <m

1 1
§: =0, 1

i

(The minimum = 1 iff there is a subset with sum =m
otherwise the minimum is > 1 + k)

(vii) Multicommodity flows a e-approximate Multi-
commodity Flows.

In [35] it was shown that multicommodity flows
with £ =1 was P-Complete. Given a multicommodity
network N as in [35] we construct k copies of it
and put them in parallel. Another network with a flow

f =1 1is also coupled to the network as in figure

7.3.2
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C,
: t network with
C
i  flow = 1
1
) C‘.
Source \ Cu N [~ Sink

Voo G : K copres

N z N /
< }—"

Figure 7.3.2

Clearly, the multicommodity network of figure 7.3.1
has a flow of k + 1 1iff N has a flow.of 1. If N
does not have a flow of 1 then the maximum flow in
the network of figure 7.3.1 is 1. Hence the approx -
imation problem for multicommodity flows is P-Complete.

(viii) Hamiltonian Cycle ‘0 e-approximate Quadra -
tic Assignment

Let G(N,A) be an undirected graph with m = |N].
The following Quadratic Assignment Problem (QAP) is

constructed from G:

C, . = 1 ifi=3j+ 1 and i <m
or if i=m and j =1

0 otherwise

1 if (k,%)eA

w otherwise for'lik,zsm
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The total cost, £(y), of an assignment, ¥y , of

n
plants to locations is iElCi'j dY(i)Y(j) ’

when vy (i) 1s the index of the plant assigned to loc-

j=1i mod m+l

ation i. If G has a Hamiltonian cycle iy,ip, ...

ceay, 1 il then the assignment vy(3j) = ij has a cost

n!
f(y) = m. In case G has no Hamiltonian cycle then at

least one of the values must be

dy(i),y(i mod m +1)
w and so the cost becomes > m + w - 1 . Choosing

w > (1L + e)lm results in optimal solutions with a value
of m if G has a Hamiltonian cycle and value >(l+e)m
if G has no Hamiltonian cycle. Thus, from an e-approx

imate solution, it can be determined whether or not G

has a Hamiltonian cycle.

(ix) k-Partition o e-approximate k~General
Partition

We prove this for k = 2. The proof is similar
for other values of k. From the 2-partition problem
the following 2 General Partition problem is construc-

ted: ( see also figure 7.3.3)

nyi i n+2 Figure 7.3.3: Numbers

in vertices represent
vertex weights, and
on edges edges weights
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N = {1,2,...,n+2}
A={(i,5)] Y <i<n, J=n+1} U {(n+1,n+2)}
f(u,v) = (x if (u,v) e A and 1 <u <n
1 (u,v) = n +1 , n+ 2)

aj 1< j<n n
w(j) = Y where T = I aj

T/2 j>n + 1 1
Wa=T

Clearly, there is a solution of value > (nr)/2
iff the multiset f{al, as,..., a,} has a partition.
If there is no partition of this multiset, then the
solution value is 1. A suitable choice for r yields

the desired result.

(x) f-Chromatic Number a g-approximate #2-MinClust
er.

Let G(,A) be an undirected graph. We may
assume £ > 3. The following £-MinCluster problem

Gy (N7 ,A) is constructed:

Nl = N
Ay = {(u,v) | w #v and wu,veN;}
w(u,v) = 1 if (u,v) ¢ A-

k otherwise
If G is #%-colorable then the 2-MinCluster problem has
a solution with value < n2. If G 1is not & colorable
then the minimum solution value is i k. Choosing

k> (1 + g)n2 yields the desired result.
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(xi) 2-Partition d e—approximate Generalized
Assignment.
From the partition problem § = {aj, aj,..., ayt

construct the following generalized assignment problem

GS.,
cl,i =Cp,i = 1, cB,iAz k for 1 < i<n
rl,i = r2,i =T3 i = aj for 1 <i<n
by =by =1T/2 , by =T
where T = L a;
Clearly there is a solution of value n iff the
multiset '{al, Agrenns an} has a partition. If there

is no partition of this multiset, then the solution
value > k. Choosing k > (1 + e)n yields the desired

result.

This completes the proof of the theorem. @
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