
CS177: Computer Security UC Santa Barbara
Prof. Stefano Tessaro Fall 2018

Homework 2
Posted: Wednesday, October 10, 2018 – 11:59pm

Due: Friday, October 19, 2018 – 11:59pm (gradescope)

General rule (reminder!): Justify all answers in detail. Do not use sources other than the
classroom slides to solve any of the task.

Task 1 – When IVs Collide (6 points)

Consider the following 32-byte randomized counter-mode ciphertexts (based on AES),
produced using the same secret key (which is however unknown to you):

C1 = FFBC1ADC607ACDDEAE7D837FA8123A3AE9F1B9C17D3281EE529B2FCD8ABBCA4D
C2 = FFBC1ADC607ACDDEAE7D837FA8123A3AF9F1B9C17D3281EE529B2FCD8ABBCA4D

a) [Points: 2] Which information can you infer about the plaintexts encrypted by both
ciphertexts? Why does this not contradict semantic security?

b) [Points: 2] Suggest a scenario where learning the information from a) can be problem-
atic.

c) [Points: 2] Imagine we use randomized counter-mode encryption with Triple DES
(3DES) instead of AES: the block length is now only 64 bits = 8 bytes. Why can this be
a problem, independently of how secure 3DES actually is?1

Task 2 – CBC Integrity (4 points)

Consider the following 32-byte CBC ciphertext (based on AES) using PKCS#7 padding,
produced with a secret key unknown to you.

FFBC1ADC607ACDDEAE7D837FA8123A3A9CFDD83A9CD55F15A8CD7F8CFA32A67B

We also learnt the ciphertext encrypts a plaintext of length 8 bytes.

a) [Points: 2] Suggest a modification of the above ciphertext which will certainly decrypt
to a valid plaintext.

b) [Points: 2] Suggest a modification of the above ciphertext which will likely not decrypt
to a valid plaintext.

1There are no serious attacks against 3DES (unlike plain DES), so the block cipher security itself is not a
problem.

1



h" h" h"
IV"

M1" M2" Ml"

H(M)"

Figure 1: Diagram of a hash function construction following the Merkle-Damgård (MD)
paradigm using the compression function h.

Task 3 – Integrity and MACs (6 points)

Hash functions like MD5, SHA-1, and SHA-256 are built from a (very efficient) compression
function h : {0, 1}n×{0, 1}b → {0, 1}n. To compute H(M), first, the message M is padded
into b-bit blocks M1, . . . ,M` as in Task 2. Then, the hash function outputs H(M) = H`,
where (for a given fixed initialization value IV )

H0 = IV , Hi = h(Hi−1,Mi) for all i = 1, . . . , ` .

This construction approach is known as the Merkle-Damgård (MD) paradigm, and is
illustrated in Figure 1.

We now build a message-authentication code MACK(M) = H(K ‖ M) from a hash
function H , where the key K is a b-bit string, and M ∈ {0, 1}∗ is an arbitrarily long mes-
sage. (Here, ‖ denotes string concatenation.)

a) [Points: 4] Show that MAC does not satisfy unforgeability if H follows the MD paradigm,
i.e., given (M,T = MACK(M)) for an unknown secret key K and a known message M ,
show that it is possible to efficiently find M ′ 6= M and T ′ such that MACK(M ′) = T ′.

Hint: Show first that (regardless of what h is) one can always compute from H(M)
(using h) the hash H(M ′) for a message M ′ related to (yet different from) M .

b) [Points: 2] Why is this attack not possible with HMAC?

Task 4 – Encrypt-and-MAC (6 points)

We consider Encrypt-and-Mac (E&M) as defined in class. In particular, data is encrypted
using counter-mode encryption with AES, and then, to get the final ciphertext, we append
to the counter-mode ciphertext a MAC of the data using HMAC with SHA-256.
Imagine that you intercept the following two ciphertexts C1 and C2, using the same secret

2



key for both (which is however unknown to you):

C1 = 43371380524753188fd571d8622ae61f64ccb551d9b348119adbc4

10cbdef77cf180f7529d0da0c6f0a4fdb28a3d56e2105c7eb4b13b8c

4cd9001523ba1e55dc2cd5608e84c093cd21d1126ddac1e7b2a5e9

C2 = 853b56f79857359cad582eb6e6cb1a23b9a08d1c32e8638da80671

44b9d781795a0a79496ca15ffe8865408aa83194df66d87eb4b13b

8c4cd9001523ba1e55dc2cd5608e84c093cd21d1126ddac1e7b2a5e9

a) [Points: 2] What can you infer about the plaintexts encrypted by the two ciphertexts
above? Justify your answer!

b) [Points: 2] Can E&M ever be semantically secure? Explain your answer!

c) [Points: 2] Does E&M satisfy integrity?

Task 5 – Padding-Oracle Attacks (18 points)

In class, we have seen an example of a padding-oracle attack which recovers one plaintext
byte from a ciphertext encrypted with CBC encryption using PKCS#7 padding. The attack
only needs to make so-called validity checks, each telling us only whether the padding
inside the encryption is correct or not. We want now to elaborate on this attack.

a) [Points: 2] Consider the scenario from the class slide, where we want to recover the
last byte of the last plaintext block (which may or may not be validly padded). Show
that in general there may be two values X1 and X2 such that xoring X1 ⊕ 0x01 and
X2 ⊕ 0x01 to the last byte of the second-last block leads to correct decryption.

Hint: What if the second-to-last byte of the last (plaintext) block has value 0x02 and
the last one has value 0x08?

b) [Points: 2] In case both X1 and X2 lead to decryption, show that with one additional
validity check we can determine which one of the two is the actual value.

c) [Points: 4] Explain how to extend the padding-oracle attack presented in class to
recover the entire message M given its CBC encryption C. How many validity checks
does your attack need?

d) [Points: 10] We now want to implement the padding oracle attack from c) against
CBC. To this end, we provide oracle.py2 which contains a function PadOracle
which takes as argument a string (whose length must be a multiple of 16 bytes) and
checks whether it encrypts a correctly padded message, for a hard-coded fixed key. In
particular, it returns either True or False to indicate whether the padding is valid or
not.

Extend oracle.py into a Python program that decrypts any given ciphertext (in a file
whose name is passed as an argument) encrypted under the hard-coded key by only
using calls to PadOracle.

2from https://www.cs.ucsb.edu/˜tessaro/cs177/hw/oracle.py

3

https://www.cs.ucsb.edu/~tessaro/cs177/hw/oracle.py


Note in particular the following:

- oracle.py is meant to work with Python 2.7 on the CSIL cluster. So try to stick
with that.

- You can test your implementation on two sample ciphertexts encrypted with the
hard-coded key, available at https://www.cs.ucsb.edu/˜tessaro/cs177/
hw/1.ctxt and https://www.cs.ucsb.edu/˜tessaro/cs177/hw/2.ctxt.
Their correct decryption will result in English plaintexts with clearly recognizable
structure.

- Only edit oracle.py in the designated area in the file (check out the comments).
If run on a valid ciphertext, the latter will be in the variable ctext.

- The key is visible in oracle.py, but you should stick to the rules and not decrypt
directly using it, but only indirectly using PadOracle.

- We will post further instructions and clarifications on Piazza whenever neces-
sary, so check this out regularly. In particular, we will give some further hints on
manipulating strings.

4

https://www.cs.ucsb.edu/~tessaro/cs177/hw/1.ctxt
https://www.cs.ucsb.edu/~tessaro/cs177/hw/1.ctxt
https://www.cs.ucsb.edu/~tessaro/cs177/hw/2.ctxt

