Static Binary Rewriting

Jon Howell
Microsoft Research

* Tools you'll need installed:

 gcc/ make / gdb
* readelf
* bvi

Let’s rewrite a binary.

- Here's a “Hello, world” program.

* make

- We got it as a compiled binary. We
want to change its behavior. What
can we do?

What does it do?

S strace build/hello

execve("build/hello", ["build/hello"], [/* 39 vars */]) = 0
uname ({sys="Linux", node="ds-zoog", ...}) =0

brk(0) = 0x97b1000
brk(0x97blcd0) = 0x97blcdO

set thread area({entry number:-1 -> 6, base addr:0x97b1830,
1limit:1048575, seg 32bit:1, contents:0, read exec only:0,

limit in pages:1, seg not present:0, useable:1}) = 0
brk(0x97d2cd0) = 0x97d2cd0
brk(0x97d3000) = 0x97d3000
fstat64(1l, {st mode=S IFCHR|0620, st rdev=makedev(136, 36
)r ---3}) =0

mmap2 (NULL, 4096, PROT READ|PROT WRITE, MAP PRIVATE|

MAP ANONYMOUS, -1, 0) = 0xb77ee000

write(l, "Hello, world!\n", 14) = 14

exit group(0) = ?

How do we get there?

$ gdb build/hello

(gdb) break write

Breakpoint 1 at 0x8051570

(gdb) run

Starting program:
/home/jonh/zoog/toolchains/linux elf/binary rewriting class/build/
hello

Breakpoint 1, 0x08051570 in write ()

(gdb) where

#0 0x08051570 in write ()

#1 0x080670cl in IO new file write ()

#2 0x08066dac in new do write ()

#3 0x0806706d in IO new do write ()

#4 0x08067a98 in IO new file overflow ()

#5 0x08048e71 in puts ()

#6 0x08048245 in main (argc=1l, argv=0xbffff404) at hello.c:5

How do we get there?

(gdb) disass /r
0x08051570 <write+0>: 65 83 3d Oc 00 00 00 00 cmpl $0x0,%gs:0xc

0x08051578 <write+8>: 75 21 jne 0x805159b <write+43>
0x0805157a <__wri+0>: 53 push %ebx

0x0805157b < wri+l>: 8b 54 24 10 mov 0x10(%esp), sedx
0x0805157f < wri+5>: 8b 4c 24 Oc mov 0xc(%esp), %ecx
0x08051583 < wri+9>: 8b 5c 24 08 mov 0x8(%esp), %ebx
0x08051587 <_wri+13>: b8 04 00 00 00 mov $0x4, %eax

0x0805158c < wri+l8>: cd 80 int $0x80

0x0805158e < wri+20>: 5b pop %ebx

<
0x0805158f < wri+21>: 3d 01 f0 ff ff cmp SOxfffff001,%eax

0x08051594 <_wri+26>: 0f 83 06 20 00 00 jae 0x80535a0 <_ syscall error>
0x0805159a < wri+32>: c3 ret

rewriting

- Let’s rewrite that int Ox80 to call our

own modified write function.

° man 2 write
e Create writeizzle.c

* link into app.
(hello_cheating by linking)

man 2 write

WRITE (2) Linux Programmer's Manual WRITE (2)

NAME
write - write to a file descriptor

SYNOPSIS
#include <unistd.h>

ssize t write(int £fd, const void *buf, size t count);

DESCRIPTION

write() writes up to count bytes from the buffer pointed buf to the
file referred to by the file descriptor £d.

an alternative write

int writeizzle(int fd, const void *buf, size t count)

{
char newbuf[800];

char *in = (char*)buf;

char *out = newbuf;

bool wasalpha = false;

while ((in-(char*)buf) < count)

{
if (isalpha(*in)) {
wasalpha = true;
}
else
{
if (wasalpha)
{
strcpy(out, "izzle");
out += 5;
wasalpha = false;
}
}
*out++ = *in++;
}
*out = '\0';

int len = strlen(newbuf);

syscall(__ NR write, 1, newbuf, len);
return count;

__write()

{
Blah Writeizzle()
Blah {
Blah Foo
s P o p 10 all Foo
Blah Foo
Blah Foo
Blah }
Blah

return

- Now how do we call it?
- Let’s go back to disass /r

- Darn! The int 0x80 is only 2 bytes long!
A Jmp is 5 bytes long!

- S0, we'll overwrite two instructions, and just
be sure to replace both of their effects:
the mov just before the int, and the int.

__write()

{

Blah Writeizzle()

Blah {
R\ Foo
~HALARR D all Foo

Blah Foo

Blah Foo

Blah }

Blah

return

- Two more problems:

 Need to put the stomped
Instruction somewhere

« Calling convention mismatch

__write()

fg|ah Trampoline() Writeizzle()
Blah call { | {
=R\ Stomped_lnstf Foo
call

+RLIRE s push args Foo
Blah call Foo
Blah pop args Foo
Blah } 'V }
Blah
} return

return

- Concrete steps:

- Find the __ write int 0x80; put the call
code there.

- Find writeizzle (look up its symbol)

- Find empty space, put “trampoline”
code there (to call writeizzle)

Finding symbols

. readelf --syms build/hello_cheating by linking
. Doing this programmatically:

- Right way: use elf.h and walk through ELF data structure, but | don’t
want to spend time in there.

- Fast, flaky way: grep!
. Darn, these symbols are virtual addresses, not file offsets.
- use readelf -program-headers to learn virtual-to-physical mapping.

- this really is easier to do the right way; see
rewriter_virtual_to_offset()

Scanning write

- Use libdis to disassemble and find int 0x80

- see rewriter_scan_write()

- Patch over the two-instruction sequence with
a call to the empty space

- seerewriter_patch_write()

- Generate a trampoline sequence that calls
our replacement function

- seerewriter_create_trampoline()

Why does it work?

. gdb build/hello_rewritten
. break _write

. where

. disass _ write

_ notice call <empty space>; nop; nop

. Sl... Into empty space

. disass empty space

_ notice replaced mov; push args; call writeizzle; pop args

. Si... into writeizzle

_ notice debugger sees args in the right place

. fini

- we get our output

. disass

_ we’re back in the empty space pop epilogue

. Si...

_and back in write. Done!

Why binary rewriting?

Instrument or modify a binary
ATOM rewriter: instrumentation of real, commercial applications

Fast translation:

. 68030->PPC
. PPC->x86
. Xx86->Alpha
. X86->ARM...
Verify a security property
. vx32, NaCl

Interpose on existing applications at POSIX level without source
code

	Slide 1
	Slide 2
	Let’s rewrite a binary.
	What does it do?
	How do we get there?
	Slide 6
	rewriting
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Finding symbols
	Scanning __write
	Why does it work?
	Why binary rewriting?

