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ABSTRACT
This paper presents the design, implementation, and evaluation
of TARDiS (Transactional Asynchronously Replicated Divergent
Store), a transactional key-value store explicitly designed for
weakly-consistent systems. Reasoning about these systems is hard,
as neither causal consistency nor per-object eventual convergence
allow applications to deal satisfactorily with write-write conflicts.
TARDiS instead exposes as its fundamental abstraction the set of
conflicting branches that arise in weakly-consistent systems. To
this end, TARDiS introduces a new concurrency control mech-
anism: branch-on-conflict. On the one hand, TARDiS guaran-
tees that storage will appear sequential to any thread of execu-
tion that extends a branch, keeping application logic simple. On
the other, TARDiS provides applications, when needed, with the
tools and context necessary to merge branches atomically, when
and how applications want. Since branch-on-conflict in TARDiS is
fast, weakly-consistent applications can benefit from adopting this
paradigm not only for operations issued by different sites, but also,
when appropriate, for conflicting local operations. We find that
TARDiS reduces coding complexity for these applications and that
judicious branch-on-conflict can improve their local throughput at
each site by two to eight times.

1. INTRODUCTION
This paper describes the design, implementation, and evaluation

of TARDiS, an asynchronously replicated, multi-master, transac-
tional key-value store designed for applications built above weakly-
consistent and often non-transactional systems, such as Riak [10],
MongoDB [37], or Cassandra [6]. TARDiS renounces the one-size-
fits-all abstraction of sequential storage and instead exposes appli-
cations, when appropriate, to concurrency and distribution. This
unconventional design is predicated on a simple notion: to help de-
velopers resolve the anomalies that arise in such applications, each
replica should faithfully store the full context necessary to under-
stand how the anomalies arose in the first place, but only expose
that context to applications when needed.

In light of the CAP theorem [14, 23], many wide-area services
and applications [16] choose to renounce strong consistency and fo-
cus instead on providing the ALPS properties [31] of Availability,
low Latency, Partition tolerance, and high Scalability. Distributed
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ALPS applications, however, are hard to reason about. Geographi-
cally distinct replicas can issue conflicting operations, and the read-
write and write-write conflicts that can ultimately result from these
operations may cause replicas’ states to diverge.

Many prior systems have attempted to insulate applications from
this complexity by relying on a combination of two techniques:
causal consistency [4, 9, 21, 32, 44, 47] to mitigate the effects
of read-write conflicts, and per-object eventual convergence [20,
31, 33, 34, 44, 48] to address write-write conflicts. These systems
strive to keep complexity in check by aggressively preserving the
familiar abstraction that an application’s state evolves through a
linear sequence of updates. Any perturbation to this abstraction
is nipped in the bud, either within the storage layer—by enforc-
ing per-object convergence through simple deterministic resolution
policies—or by asking the application to resolve the state of objects
with conflicting updates as soon as conflicts arise [20, 25, 48, 31].

These techniques, however, are not sufficient to uphold the ab-
straction of sequential storage in the presence of concurrent up-
dates. Worse, causal order and per-object convergence provide no
support for meaningfully resolving conflicts between concurrent se-
quences of updates that involve multiple objects: indeed, they often
destroy information that could have helped the application address
these anomalies. For example, deterministic writer-wins, a com-
mon technique to achieve convergence [31], hides write-skew from
applications (§2). Similarly, exposing multivalued objects without
context obscures cross-object semantic dependencies (§2).

Anomalies like write-skew are intrinsic to ALPS applications.
The issue is then neither how to prevent them (one can’t), nor how
to resolve them transparently (application-specific knowledge is of-
ten indispensable): rather, it is how to provide ALPS applications
with the best possible system support when merging conflicting
states.

To this end, TARDiS deliberately abandons a strictly sequential
view of storage, and instead gives applications flexibility. If all
is well, storage at each replica appears sequential; when conflicts
must be resolved, however, the intricate details of distribution be-
come available. As in Git [24], users operate on their own branch
and explicitly request (when convenient) to see concurrent mod-
ifications, using the history recorded by the underlying branching
storage to help them resolve conflicts. Unlike Git, however, branch-
ing in TARDiS does not rely on specific user commands, but occurs
implicitly, to preserve availability in the presence of conflicts, us-
ing three core mechanisms: (i) branch-on-conflict, (ii) inter-branch
isolation, and (iii) application-driven cross-object merge.

Branch-on-conflict lets TARDiS logically fork its state when-
ever it detects conflicting operations, and store the conflicting
branches explicitly. Inter-branch isolation guarantees that storage
will appear as sequential to any thread of execution that extends a
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Figure 1: Weakly-consistent Wikipedia

branch, keeping application logic simple. Finally, TARDiS leaves
the task of deciding if, when, and how divergent branches should
be merged to the application, rather than to the storage layer, which
is generally unsuited to leverage relevant semantic information.

At first glance, TARDiS’ design may appear counter-intuitive:
isn’t a simpler abstraction, such as sequential storage, easier to rea-
son about? Our view is that abstractions should indeed be made
as simple as possible—but no simpler: a simplistic abstraction
that overlooks critical context can actually make reasoning harder.
Through its richer interface, TARDiS gives applications access to
context that is essential to reasoning about concurrent updates, re-
ducing the complexity of programming ALPS applications and im-
proving their performance. It does so via the following four key
properties.
TARDiS knows history. Each TARDiS site stores a DAG that
records all branches generated during an execution, and uses a
new algorithm, DAG compression, to track the minimal infor-
mation needed to support branch merges. This context, which
traditional storage systems hastily discard, can prove invaluable
when programming ALPS applications (§7). We find, for exam-
ple, that using TARDiS rather than BerkeleyDB [38] to implement
CRDTs [42]—a library of scalable, weakly-consistent datatypes—
cuts code size by half, improves performance by four to eight times,
and reduces development time by a factor of three.
TARDiS merges branches, not objects. Prior systems that, like
TARDiS, admit parallel versions of the same object [3, 20, 34,
48] have systematically taken a strictly per-object view of multiver-
sions. With no support for enforcing the cross-object consistency
demands expressed in many application invariants, such systems
make conflict resolution more difficult and error prone. To effi-
ciently construct and maintain branches, TARDiS introduces the
notion of conflict tracking. By summarizing branches as a set of
fork points and merge points, conflict tracking significantly reduces
the metadata overhead experienced by many systems that enforce
causal consistency [8, 21].
TARDiS is expressive. Despite exposing a different abstraction,
TARDiS supports many isolation levels (serializability, snapshot
isolation, read-committed [11]) and consistency guarantees (read-
my-writes [46], causal consistency [4]). It does so with minimal
changes to applications’ code and with performance comparable
to that of BerkeleyDB, a commercially available Java database.
TARDiS achieves this flexibility by reformulating isolation and
consistency requirements as a set of pre- and post- conditions.
TARDiS improves performance of the local site. A unique fea-
ture of TARDiS is that it allows ALPS applications to apply weak-
consistency principles end-to-end, by triggering branch-on-conflict
not only for operations issued by different sites, but also for locally
conflicting operations. When so configured, TARDiS handles local
conflicts not through abort/rollback and locking, but by logically
forking the local datastore, which in our implementation is a very

fast operation. Of course, this feature is not beneficial to all appli-
cations, as producing a large number of additional branches may in-
crease merging complexity dramatically. However, we find that the
ALPS applications that TARDiS targets, where weak consistency
and merging are first-order concerns, can leverage this feature to
increase their throughput significantly: applying this technique to
Retwis [41], a commonly used Twitter-like ALPS application [39,
41, 44, 51], yields a three-fold improvement in throughput with neg-
ligible increase in complexity. TARDiS enables this speedup by
extending the copy-on-write techniques present in multiversioned
systems to support not just stale snapshots, but also branches.

2. THE GAP BETWEEN CAUSALITY AND
REALITY

In the classic example used to illustrate the virtues of causal con-
sistency, Alice gains assurance that Bob, whom she had defriended
before posting her Spring-break photos, will not be able to access
her pictures, even though Alice and Bob access the photo-sharing
application using different sites [8, 17, 31]. ALPS applications,
however, face another class of anomalies—write-write-conflicts—
that causal consistency cannot prevent, detect, or repair.

To illustrate, consider the process of updating a Wikipedia page
consisting of multiple HTML objects (Figure 1(a)). The page in
our example, about a controversial politician, Mr. Banditoni, is
frequently modified, and is thus replicated on two sites, A and B.
Assume, for simplicity, that the page consists of just three objects—
the content, references, and an image. Alice and Bruno, who re-
spectively strongly support and strongly oppose Mr. Banditoni,
concurrently modify the content section of the webpage on sites
A and B to match their political views (Figure 1(b)). Carlo reads
the content section on site A, which now favors Mr. Banditoni, and
updates the reference section accordingly by adding links to articles
that praise the politician. Similarly, Davide reads the update made
by Bruno on site B and chooses to strengthen the case made by the
content section by updating the image to a derogatory picture of Mr.
Banditoni (Figure 1(c)). Eventually, the operations reach the other
site and, although nothing in the preceding sequence of events vi-
olates causal consistency, produce the inconsistent state shown in
Figure 1(d): a content section that exhibits a write-write conflict; a
reference section in favor of Mr. Banditoni; and an image that is
against him. Worse, there is no straightforward way for the applica-
tion to detect the full extent of the inconsistency: unlike the explicit
conflict in the content sections, the discrepancy between image and
references is purely semantic, and would not trigger an automatic
resolution procedure.

To the best of our knowledge, this scenario presents an open
challenge to existing weakly-consistent systems, which exhibit at
least one of the following two properties:
(i) Syntactic conflict resolution. To maintain the abstraction of se-
quential storage, many systems use fixed, syntactic resolution poli-
cies to reconcile write-write conflicts [31]. Deterministic writer-
wins (DWW), for example, resolves write-write conflicts identi-
cally at all sites, ensuring that applications never see conflicting
writes and guaranteeing eventual convergence. In our example, this
policy would choose Bruno’s update. However, this is not suffi-
cient to restore consistency, as it ignores the relationship between
the content, references, and images of the webpage. The datas-
tore’s greedy attempt at syntactic conflict resolution is not only in-
adequate to bridge this semantic gap, but leads to losing valuable
information (here, Alice’s update).
(ii) Lack of cross-object semantics. Some systems choose to push
conflict resolution to the application [20, 48], but on a per-object
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Figure 2: TARDiS architecture

basis only. Though more flexible than a purely syntactic solution,
this approach, which reduces conflict resolution to the merging of
explicitly conflicting writes, is still overly narrow. For example, it
would not address the inconsistencies, such as the one between the
references and the image, that do not produce a write-write conflict.
Yet, the effects of a write-write conflict on an object do not end
with that object: Carlo and Davide update references and images
as they do because they have read the conflicting updates to the
original content section. Indeed, any operation that depends on one
of two conflicting updates is potentially incompatible with all the
operations that depend on the other: the shockwaves from even
a single write-write conflict may spread to affect the state of the
entire database.

There is currently no straightforward way for applications to re-
solve consistently the kind of multi-object, indirect conflicts that
our example illustrates. Transactions [31, 32], an obvious candi-
date, are powerless when the objects that directly or indirectly re-
flect a write-write conflict are updated, as in our example, by dif-
ferent users. After Bruno’s update, the application has no way to
know that Davide’s update is forthcoming: it must therefore com-
mit Bruno’s transaction, forcing Bruno’s and Davide’s updates into
separate transactions. Nor would it help to change the granularity
of the object that defines the write-write conflict—in our example,
by making that object be the entire page. It would be easy to cor-
respondingly scale up the example, using distinct pages that link
each other. Short of treating the entire database as the “object”, it is
futile to try to define away these inconsistencies by redrawing the
objects’ semantic boundaries.

3. BRIDGING THE GAP: BRANCHES
TARDiS’ design is motivated by the belief that isolating ALPS

applications from the harsh but inescapable reality of independent
conflicting writes, and from the resolution process that they re-
quire, is a well-intentioned fallacy. TARDiS instead embraces trans-
parency. By default, applications execute on a branch, and hence
perceive storage as sequential. But when anomalies arise, TARDiS
provides two novel features that simplify reconciliation.

First, it exposes applications to the resulting independent
branches, and to the states at which the branches are created (fork
points) and merged (merge points). Second, it supports atomic
merging of conflicting branches and lets applications choose when
and how to reconcile them (§3.1). These features allow TARDiS
to offer ALPS applications the opportunity to pursue, down to each
site’s local datastore, an intriguing notion: that of turning weak con-
sistency, through a bit of system-design judo, from a weakness to
an unlikely strength (§3.2).

3.1 State branching and merging
As the discussion in Section 2 has illustrated, even a single write-

write conflict has the potential to affect the entire state of a database.

In essence, conflicting operations fork the entire state of the sys-
tem, creating distinct branches, each tracking the linear evolution
of the datastore according to a separate thread of execution. The
Wikipedia example hence consists of two branches: one in support
of Banditoni, and one against him. Elevating branches to the datas-
tore’s fundamental abstraction has two complementary advantages.
First, users that operate within a given thread of execution continue
to perceive the application’s state as evolving linearly. Second,
when it becomes necessary to alert users to the existence of con-
current updates that conflict with that linear view, branches are the
natural unit of merging.

Resolving conflicts in ALPS applications often requires seman-
tic context. Replicas, however, only see a sequence of read/write
operations and are unaware of the application-level logic and invari-
ants that relate these operations [5]. Therefore, they should avoid
deterministic quick fixes, and instead give applications the informa-
tion they need to decide what is best. Branches, together with their
fork and merge points, naturally encapsulate such information: they
make it easy to identify all the objects to be considered during merg-
ing and pinpoint when and how the conflict developed. This context
can reduce the complexity and improve the efficiency of automated
merging procedures, as well as help system administrators when
user involvement is required. In our example, a Wikipedia moder-
ator presented with the two conflicting branches would be able to
reconstruct the events that led to them and handle the conflicting
sources according to Wikipedia’s guidelines [50]. Note that merg-
ing need not simply involve deleting one branch. Indeed, branching
and merging states enables merging strategies with richer semantics
than aborts or rollbacks [44].

3.2 Weak consistency end-to-end
Write-write conflicts in distributed systems are not restricted to

remote sites: conflicting operations can also happen locally. Un-
like remote conflicts, however, they are immediately detectable,
and hence they are typically handled by the datastore through lock-
ing or rollback. When considering the specific nature of ALPS
applications, however, two observations bring this common-sense
approach into question. First, desirable as it may be, the abstrac-
tion of a sequential store cannot be preserved end-to-end: at the
distributed system level, it falls apart. Second, the design complex-
ity of having to program against the possibility of remote conflicts
is already factored into ALPS applications, whose semantics often
support simple merging procedures.

These observations lead us to explore an unconventional propo-
sition: design and implement a datastore for ALPS applications
with branching as its fundamental abstraction, used to model con-
flicts end-to-end, from the level of the distributed system down to
that of local storage. This stance does not simply have an aesthetic
appeal: eliminating locks and rollbacks from the performance criti-
cal path offers the potential, through a lightweight implementation
of branching, to improve throughput at local sites.

Accordingly, TARDiS gives ALPS applications the option of
handling local conflicts through branch-on conflict, rather than syn-
cronization. Naturally, one must tread carefully: out-of-control
branching can turn reasoning about the state of the system into a
nightmare. TARDiS thus lets applications tune the degree of local
branching allowed, so they can strike the balance between perfor-
mance and complexity that best meets their requirements.

3.3 System Goals
The challenge is then to develop a datastore that can keep track

of independent execution branches, record fork and merge points,
facilitate reasoning about branches and, as appropriate, atomically



Constraint B E Description
Any

√ √
Always Satisfies

Serializability
√

Guarantees Serializability
Snapshot Iso

√
Guarantees Snapshot Isolation

Read Committed
√

Guarantees Read Committed
No Branching

√
State has no children

K-Branching
√

State has fewer than k-1 children
Parent

√
State where client last committed

Ancestor
√

Child of client’s last committed state
State Identifier

√
State ID matches the specified ID

Table 1: Begin (B) and end (E) constraints supported by TARDiS

merge them—while keeping performance and resource overheads
comparable to those of weakly-consistent systems. Such a system
should satisfy the following three requirements:

• Simple interface The datastore should expose an interface
that allows developers to navigate and manipulate branches;
that interface should minimize any increase in complexity
and need to modify legacy code.

• Good Performance The datastore should efficiently create,
track, and merge branches; its performance should match or
surpass that of a storage system that is strictly sequential and
does not keep track of history.

• Minimal Space Overhead The datastore should have a rea-
sonable memory footprint and manage efficiently the space
overhead associated with keeping multiple executions and
their fork points.

The rest of this paper presents the design of TARDiS, focusing on
how it satisfies these three requirements.

4. TARDiS ARCHITECTURE
The TARDiS transactional key-value store tracks conflicting

execution branches using three mechanisms: branch-on-conflict,
inter-branch isolation, and application-specific merge. TARDiS
uses multi-master asynchronous replication: transactions first ex-
ecute locally at a specific site, and are then asynchronously prop-
agated to all other replicas. Each replica consists of four compo-
nents: a storage layer, a consistency layer, a garbage collector unit,
and a replicator service (Figure 2).

The storage layer stores records in a disk-backed B-Tree. Cur-
rently, every site stores a full copy of the database, though TARDiS
can be extended to support data partitioning (§6.4). TARDiS is a
multiversioned system: every update operation creates a new record
version. The mapping between versions and keys is stored in an in-
memory cache for fast traversal.

The consistency layer tracks branches with the help of a directed
acyclic graph, whose vertices correspond to logical states of the
datastore: each transaction that updates a record generates a new
state. TARDiS’ logic is geared towards efficiently mapping the con-
sistency layer to the storage layer: when a transaction creates a new
state, it extends the State DAG by appending the state to its chosen
branch of execution. Any newly created record version is marked
by this state’s identifier. When a transaction executes a get opera-
tion, it uses information contained in the State DAG to determine
which object versions are visible to its branch.

TARDiS’ garbage collector unit comprises a DAG compression
submodule and a record pruning submodule. DAG compression
periodically discards intermediate states that are no longer needed,
and record pruning then removes the associated object versions.
Garbage collection allows TARDiS’ to maintain memory and stor-
age overheads that are comparable to traditional weakly-consistent
systems that do not track history.

S M return type method√
transaction begin(beginConstraint)√
transaction beginMerge(beginConstraint)√ √

void put(key, value)√
value get(key)√
value getForID(key, StateID[])√
key[] findConflictWrites(StateID[])√

forkPoints[] findForkPoints(StateID[])√ √
abort|commit commit(endConstraint)

Table 2: TARDiS API - S:single mode, M:merge mode

Finally, the replicator service propagates committed transac-
tions and applies remote transactions as appropriate.

5. USING TARDiS
To help weakly-consistent applications deal with the complexity

of resolving the conflicts they encounter, TARDiS’ API (Table 2)
addresses three competing concerns: (i) minimizing programming
complexity, (ii) simplifying reasoning about concurrent branches,
and (iii) controlling the degree of local branching.

5.1 Interface
To ease programming, TARDiS can operate in either single

mode or merge mode. In the default single mode, the programmer is
allowed to (transactionally) read from and write to a single branch.
Programming proceeds exactly as in traditional transactional sys-
tems, except that programmers must now select a branch to operate
on. Thus, porting an application to TARDiS requires only adding
a branch-selection call. Figure 3 illustrates this point by sketching
the implementation of a simple counter. The two single mode op-
erators, increment and decrement, now take as parameters
predicates that specify the properties of the desired branch (more
on these predicates below), but these operators are otherwise im-
plemented exactly as one would on sequential storage.

In merge mode, programmers can instead explicitly reconcile
conflicting branches via merge transactions, that read from multi-
ple states and write back to a single, merged state. TARDiS’ merge
mode allows users to perform cross-object resolution atomically:
this simplifies conflict resolution significantly, much like transac-
tions simplify application logic by allowing users to modify multi-
ple objects atomically.

When reconciling branches, applications will typically (i) detect
conflicting objects; (ii) identify where branches forked; and (iii) de-
termine the values of conflicting keys at this fork point (§3). To
help applications obtain the information that they need for merg-
ing, TARDiS adds three new API calls: findConflictWrites,
findForkPoints, and getForID. findConflictWrites
returns the list of objects with conflicting values across all se-
lected branches, freeing programmers from the need to implement
application-level mechanisms for tracking what has to be resolved.
findForkPoints returns, for a given set of states, the structured
set of fork points that reveals the branching structure of the corre-
sponding State DAG. For simplicity, in this paper we restrict our-
selves to the case where findForkPoints returns a single fork
point. Finally, getForID allows the application to request any
object version, freeing application programmers from the need to
track how the datastore evolves. We expect applications to call this
function primarily to obtain object values at the fork point(s), and
to use this information to resolve conflicts in an application-specific
way before writing the merged value back. Though TARDiS sup-
ports concurrent merges for full flexibility, we expect that, for sim-
plicity, most applications will restrict merging to a single site.



1 func increment(counter)
2 Tx t = begin(AncestorConstraint)
3 int value = t.get(counter)
4 t.put(counter, value + 1)
5 t.commit(SerializabilityConstraint)

7 func decrement(counter)
8 Tx t = begin(AncestorConstraint)
9 int value = t.get(counter)

10 t.put(counter, value - 1)
11 t.commit(SerializabilityConstraint)

13 func merge()
14 Tx t = beginMerge(AnyConstraint)
15 forkPoint forkPt =
16 t.findForkPoints(t.parents).first
17 int forkVal = t.getForID(counter,forkPt)
18 list<int> currentVals =
19 t.getForID(counter, t.parents)
20 int result = forkVal
21 foreach c in currentVals
22 result += (c - forkVal)
23 t.put(counter,result)
24 t.commit(SerializabilityConstraint)

Figure 3: TARDiS’ counter implementation

TARDiS helps applications reason about concurrent execution
branches and control the degree of local branching through begin
and end constraints—predicates associated with begin and com-
mit commands that specify which branch a transaction can execute
from. Intuitively, begin constraints select what states the transac-
tion can read, while end constraints specify what conditions must
hold upon commit. TARDiS supports the constraints listed in Ta-
ble 1: along with their union and intersection, they are sufficiently
flexible to express traditional database isolation levels, such as seri-
alizability and snapshot isolation [11], as well as distributed-system
guarantees such as read-my-writes [46]. For example, an applica-
tion could use the Ancestor begin constraint and the union of the
Serializability and No Branching end constraint to mimic the lo-
cal behavior of a traditional sequential storage and achieve causal
consistency globally. Similarly, applications using the Ancestor be-
gin constraint and the Snapshot Isolation end constraint would al-
ways see their own writes and maintain snapshot isolation within a
branch. Alternatively, the K-Branching constraint explicitly bounds
the degree of branching in the system, giving developers the abil-
ity to balance the performance benefit of allowing local branching
with the degree of divergence that this entails.

By default, TARDiS uses the Ancestor begin constraint and Se-
rializability end constraint. Though some applications may benefit
from multiple consistency levels [47], in most cases this default will
let programmers write almost unmodified code, without explicitly
specifying constraints.

5.2 Coding with TARDiS
TARDiS’ greater fidelity in capturing the context that leads to

conflicting operations is key to reducing the complexity of devel-
oping ALPS applications and improving their performance. This
feature is evident even in simple programs, such as the counter pre-
sented in Figure 3. In a traditional, non-branching causally consis-
tent system, counters are often implemented as two separate vector
clocks (one for increment operations, the other for decrement op-
erations) with an entry for each replica [42]. Reading the value of
a counter requires adding the values in the increment vector and
substracting those in the decrement vector. Similarly, applying a re-
mote operation requires merging the local increment and decrement
vectors with those of the incoming remote operation by taking the
maximum of each corresponding vector element. Thus, all opera-
tions, including non-conflicting reads, in effect involve a merge: the

1 func buy(customer, item, cart)
2 Tx t = client.begin(AncestorConstraint)
3 list<itemId> items = t.get(cart.items)
4 items += item.itemId
5 t.put(cart.items, items)
6 int stock = t.get(item.stock)
7 t.put(item.stock, stock-1)
8 list<cartId> carts = t.get(item.carts)
9 carts += cartId

10 t.put(item.carts, carts)
11 t.commit(SerializabilityConstraint)

13 func merge()
14 Tx t = client.beginMerge(AnyConstraint)
15 list<item> conflictItems =
16 t.findConflictWrites(t.parents)
17 forkPoint forkP =
18 t.findForkPoints(t.parents).first
19 foreach item in conflictItems
20 list<int> stockVals = new list
21 int forkPtStock = t.getForID(item.stock,forkP)
22 foreach branch in t.parents:
23 stockVals.add(t.getForID(item.stock,branch))
24 int newStock = mergeCounter(stockVals,

forkPtStock)
25 if(newStock > 0)
26 t.put(item.stock,newStock)
27 confirmItem(item.itemId, item.carts)
28 else
29 // get orders since fork point
30 set<cartId> carts = new set
31 foreach branch in t.parents:
32 carts+= t.get(item.carts)
33 carts = carts - t.getForID(item.carts,forkP)
34 carts.sortBy(valueOfCart)
35 foreach cart in carts
36 if (forkPtStock > 0)
37 // confirm item until run out
38 --forkPtStock
39 confirmItem(item.itemId, cart.cartId)
40 else
41 // apologize to other users
42 removeRelatedItems(item,cart)
43 sendApology(cart.clientId)
44 t.put(item.stock,0)
45 t.commit(SerializabilityConstraint)

Figure 4: TARDiS’ shopping cart implementation

system must reconstruct the global view from each replica’s local
view, at a cost linear in the number of replicas.

In TARDiS, instead, single mode and merge mode are cleanly
separated. In single mode (see Figure 3), increment and decre-
ment operations access a single field, just as they would in a non-
distributed scenario. Access to fork points makes merge opera-
tions both simpler and more flexible. In TARDiS, merging distinct
counter branches is easy: one can simply compute the merged value
by summing, for all branches, the difference between the value of
the counter at the fork point and the current value for the branch.
The application can then choose to merge branches periodically,
during periods of low load, or to do so more frequently, if the
counter nears boundary values.

The benefits of the TARDiS API become especially notable in
examples that involve multiple objects with richer semantics. Con-
sider the case of an online game store that sells both board games
and extension packs that are only playable after buying the cor-
responding board game. The store tracks inventory by keeping a
counter object per each item it sells, and associates each customer
with a shopping cart. Suppose Alice and Bruno have, on different
sites, both bought the last copy of a boardgame. Bruno has addi-
tionally bought an extension pack. Figure 4 gives the simplified
pseudocode of the merging process.1 On a merge, the application
iterates over the keys in conflict and detects which items have been

1For clarity of explanation, we assume two branches only.
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Figure 5: Main system datastructures

bought on different sites (lines 19-44), reconciling counter values
through the merging process discussed above (lines 22-24). When
the counter for a particular item falls below zero, as in our scenario,
the merging logic must select the shopping cart from which the
oversold items should be removed, while maintaining the invariant
that no user should buy the extension pack without the game. The
application has several options: it can choose, as does the pseu-
docode in Figure 4 (lines 30-44), to leave Bruno with both the game
and the expansion pack, and send an apology to Alice, maximizing
its overall profit. Alternatively, it can observe that Alice is a better
customer than Bruno, and choose to privilege customer loyalty.

In current systems, merging that spans conflicts across multi-
ple objects and requires application involvement is not achievable
without significant engineering effort. Through the combination of
branch-on-conflict, inter-branch isolation, and application-specific
merge, TARDiS makes it easy for applications to acquire the con-
text that led to such conflicts and empowers them with the flexibility
and expressiveness necessary to meaningfully reconcile them.

6. DESIGN AND IMPLEMENTATION
To ensure that branches are cheaply created, maintained, and

merged, TARDiS proceeds as follows. A transaction starts by iden-
tifying a most recent state that satisfies its begin constraint: this
is the state from which the transaction can read (its read state).
Likewise, upon commit, the transaction identifies a most recent
state since its read state that satisfies the end constraint (the commit
state). Since this process is identical for all transactions and inde-
pendent of concurrently executing transactions, it naturally leads
to state forking and to transactions aborting. If two concurrent
transactions select the same state from which to commit, a new
branch is created; alternatively, if no state satisfies a transaction’s
end constraint, the transaction aborts. There is thus no conceptual
difference between sequential execution and forking, and TARDiS’
design ensures that the implementation is similarly uniform. We
describe this process in further detail below, focusing on the life
of a particular transaction and relying on Figure 5 to illustrate the
TARDiS’ main datastructures.

6.1 Basic Operation

6.1.1 Begin Transaction: Read State Selection
A TARDiS transaction begins by selecting a branch. To choose

one among the most recent suitable states, the transaction conducts
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a breadth-first search through the State DAG from its leaves up,
looking for a state that satisfies the transaction’s begin constraint.
For example, given the State DAG in Figure 6(a), a newly executing
transaction (t13) would visit, in order, s8, s7, and s4 and select the
latter—the first state to satisfy the transaction’s begin constraint—
as its read state. Some constraints may require states to store ad-
ditional information beyond pointers to their parents or children:
the Parent and StateID constraints, for example, require all states
in the DAG to be uniquely identifiable. Similarly, the Serializabil-
ity and Snapshot Isolation (end) constraints demand to store, with
each state, the read and write sets of the transaction responsible
for creating it. In practice, there is often a unique state that satisfies
the begin constraint; if instead multiple states are suitable, TARDiS
simply selects one of them at random.

6.1.2 Commit Transaction: Commit State Selection
The process for committing a transaction is similar: it requires

identifying the most recent state, since the read state, that satis-
fies the end constraint. At commit, the transaction first checks
whether its read state satisfies the end constraint. If it does not,
the transaction aborts, as it read from an invalid state. Otherwise,
the transaction checks whether more recent states also satisfy the
end constraint. In effect, starting from its read state, the transac-
tion “ripples” down the DAG, stopping before the first state that no
longer satisfies the end constraint. Figure 6(b) illustrates the pro-
cess. Transaction t13 first checks that the read state s4 satisfies the
end constraint, and then ripples down through states s6 and s11 un-
til it encounters s12. As s12 does not satisfy t13’s end constraint,
t13 commits after s11, creating a new branch (Figure 6(c)).

6.1.3 Reading records
Logically, non-read-only transactions create a new database

state every time they execute. Storing each of these states as physi-
cally distinct instances is unsustainable. Write operations therefore
simply create new record versions, and TARDiS relies on system
logic to reconstruct the appropriate state for reads. This copy-on-
write approach is similar to that of most multiversioned concur-
rency control (MVCC) systems [12], but with one key difference:
TARDiS must not only provide support for stale snapshots, but also
for divergent snapshots. As in traditional MVCC systems, to read a
record a transaction must determine the most recent record version
in the key-version map. Unlike MVCC systems, however, TARDiS
must also ensure that the record version belongs to the branch it has
selected. The selected version is then read from the record B-tree
and returned.

To quickly determine whether a record version belongs to the
selected branch, TARDiS abandons traditional dependency check-
ing [21, 31, 34], which quickly becomes a bottleneck in causally



1 descendantCheck(x, y):
2 if x.id = y.id then return true
3 else if x.id > y.id then return false
4 else if x.path ̸⊆ y.path then return false
5 else return true

Figure 7: Check if state y can see records associated with state x

consistent systems [8, 21], and instead relies on fork point check-
ing. In TARDiS, a branch is summarized only by its fork points
(§3). A fork point is a tuple (i, b), indicating that the current state
is a descendant of the bth child of state i. Together, the set of fork
points for a branch denotes its fork path. A record version belongs
to the selected branch if the fork path of the state associated with
this record version is a subset of the fork path of the transaction’s
read state (see pseudocode in Figure 7). Figure 5 shows the fork
path associated with each state: one can quickly determine that s7
is on the same branch as s3, as the fork path of s3 is a subset of that
of s7. Similarly, s9 is on the same branch as both s5 and s6.

By capturing conflicts (fork points) instead of dependencies,
fork paths allow TARDiS to track concurrent branches efficiently.
The small size of fork paths (conflicts are a small percentage of the
total number of operations) not only limits memory overhead, but
makes it possible to check quickly whether two states are on the
same branch.

To guarantee that transactions select the most recent version,
TARDiS keeps a topological sort of versions in each key-version
mapping entry. Consider, for example, key C in Figure 5. The list
stored in the key-version mapping is a topological order of the true
structure of C’s record versions, as saved in the record B-tree. As
transactions iterate through the list, the first record version iden-
tified as belonging to the selected branch will necessarily be that
branch’s most recent version.

Putting this together, consider Figure 5. It shows three transac-
tions t10, t11, and t12, with respective read states s8, s7, and s9. t10
would read v2 for key A, v8 for B, v1 for C, and empty for D. Simi-
larly, t11 would read v2, v3, v1, and empty respectively for keys A
to D. Finally, t12 would read v1, v1, v9, and v9.

6.1.4 Writing values
To handle uniformly branching and non-branching scenarios,

TARDiS’s write logic ensures (i) that writes, whether conflicting
or not, never block, and (ii) that updating the appropriate record on
the correct branch is cheap.

Both aims can be very simply achieved by pushing most of
the work to reads. As long as writes preserve the topological or-
der of versions in the key-version mapping, the read logic ensures
that the appropriate version is returned. Hence, a write operation
in TARDiS simply creates a new record version storing the trans-
action’s state identifier and the pertinent data, inserts it into the
record B-tree, and appropriately updates the corresponding key-
version mapping. Since state identifiers (and thus record identifiers)
are monotonically increasing along a branch, TARDiS can cheaply
maintain a topological order as a sorted list (more precisely, as a
lock-free skip list). Thus, independently of whether conflicting
writes occurred, all a transaction needs to do to complete a write
is to insert the new version into the skip list.

Read-only Transactions Since read-only transactions cannot in-
duce conflicts, TARDiS does not add them to the State DAG. This
optimization limits unnecessary DAG growth, easing pressure on
the garbage collector.

6.2 Merge Transactions
Merge transactions in TARDiS function similarly to single

mode, but with a key difference: they select multiple read states,

and hence operate on multiple branches. In merge mode, the appli-
cation is thus directly exposed to any conflicting writes that forked
the state of the datastore.

Merge transactions must atomically reconcile all conflicting ob-
jects, writing back a single merged state. As stated previously
(§3), merging often requires providing the application with de-
tailed information about the structure of the State DAG, includ-
ing how branches diverged and the values of conflicting objects
at the branches’ fork points. This information must be made avail-
able efficiently, as a slow merge will stop applications from see-
ing up-to-date values. TARDiS thus provides an API to aid ap-
plications understand branch divergence. It consists of three op-
erations: findForkPoints, to identify the fork point(s) of a
set of branches; findConflictWrites, to list conflicting keys
across branches; and getForID, to obtain, at the specified state,
the record corresponding to a given key. TARDiS leverages the
properties of the existing storage and consistency layers to make
these operations fast. It implements findForkPoints by iden-
tifying the fork point(s) of the merge transaction’s read states. For
findConflictWrites, TARDiS similarly identifies the fork
points of the branches and computes the conflicting key list from
the write set of each intermediate state. Finally, for getForID, it
uses the key-version mapping to select the appropriate record for a
given state.

6.3 Garbage Collection
Most traditional databases store only the active frontier of

records, keeping space overhead manageable as old transactions
commit. TARDiS, on the contrary, stores by default all stale and
parallel versions or states. For performance and efficiency under
finite storage, TARDiS implements an aggressive, three-pronged
garbage collection policy that runs concurrently with regular opera-
tions: (i) users place ceilings on specific states, promising never
to use any state that precedes them as a read state; (ii) a path-
compression algorithm compresses the State DAG to remove all
states that are neither fork points nor leaf states; and (iii) a record-
promotion algorithm removes record versions that are no longer
visible because of ceilings or path compression.

Path Compression Path compression relies on one core heuris-
tic: since most merging policies only require the fork points and the
leaf states of a given execution, all intermediate states can be safely
removed from the State DAG. In effect, this reduces the DAG to
explicitly tracking the nearest conflict dependency using a three-
staged process (Figure 8).

First, a ceiling marking bottom-up pass marks all the states
above a recently placed ceiling. Marked states can no longer be se-
lected as read states, ensuring that no new transaction starts above
a ceiling (Figure 8(b)). Second, a safe to garbage-collect top-down
pass labels as safe-to-gc all marked states (i) that are not currently
selected as read states by some executing transaction and (ii) whose
ancestors are also safe to garbage collect. This pass prevents com-
mitting transactions from rippling down deleted states and ensures
that a state will only be deleted after all its ancestors have been
deleted (Figure 8(c)). Finally, a garbage collecting pass marks safe-
to-gc states that are not fork points as garbage collectable (gc-able).
Garbage-collectable states are then “promoted” by mapping their
state identifier to that of their most recent non-deleted child. All
accesses looking up a deleted state are henceforth forwarded to the
promoted state. In effect, the child node takes over the identity of
its parent as well as its own, allowing for the parent to be garbage
collected (Figure 8(d.e.f)). Consider in Figure 8 an object D that
is last modified in s1. Its state identifier is therefore 1. All transac-
tions whose read states are a descendant of s1 see D. But, when s1
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is garbage collected, any transaction that tries to read D and thus
looks up the fork path of s1 would fail. Promoting s1 to s7 en-
sures that any such transaction is redirected to s7. Once promoted,
garbage collectable states can safely be removed.

Record Promotion Next, TARDiS deletes record versions that
are no longer needed. Record versions associated with previously
deleted states are promoted to their first non-garbage-collected de-
scendants and updated to reflect their new identifier. This promo-
tion creates long chains of records with the same state identifier.
Since TARDiS’ get/put algorithm returns only the most recent vis-
ible record, none but the first of the promoted records that share
an identifier will ever be accessed: the rest can therefore be safely
discarded. A full record-promotion pass, as in path compression,
hence ensures that the only record versions maintained are those
that are either current or at a fork point.

6.4 Replication
The Replicator (§4) uses a gossip protocol [1] to asynchronously

propagate locally executing transactions. These transactions carry
a StateID constraint that specifies the state to which they should be
applied. The Replicator applies a newly received transaction if the
required parent state is present. If not, the transaction is cached to
be appended later. The StateID constraint removes the need to track
expensive dependency meta-data: it reduces dependency checking
to looking up whether the state with the corresponding id is present
in the remote DAG, which can be done in constant time.

Garbage collection is triggered by each local Replicator and can
operate either optimistically or pessimistically. When pessimistic,
TARDiS garbage collects states only after receiving unanimous
consent from all Replicators [34]. As this can cause garbage col-
lection to trail significantly during partitions, optimistic mode lets
sites garbage collect states independently. If a replica later needs
a state it garbage-collected, the replica simply retrieves the miss-
ing information from the appropriate replica. This may cause some
transactions to block. If an application erroneously places a ceil-
ing that causes states to be prematurely garbage collected, TARDiS
simply aborts the transactions that try accessing the missing states.

The current prototype of TARDiS does not support data parti-
tioning, but it can be extended to support this feature by using
an approach similar to the one taken by COPS [31]—in essence,
by executing distributed transactions within a datacenter (with the
State DAG collocated with the transaction manager) and replicating
transactions asynchronously across datacenters.

6.5 Fault Tolerance and Recovery
TARDiS guarantees consistency, atomicity, and (optionally)

durability if, at all times, the write operations of all transactions
present in the State DAG are observable by future transactions.
TARDiS maintains this invariant across failures by logging, at trans-
action commit time, the id of the corresponding commit state, its
parent state(s) ids, and the transaction’s write set keys.

Recovery During recovery, TARDiS reconstructs the State DAG
and key-version mapping by iterating chronologically over the log.
For each log entry, the recovery process (i) inserts a new state in
the DAG with matching id and adds it as a child of the states with
matching parent ids; and (ii) adds a new entry in the key-version
mapping for each key in the recorded write set. Iterating over the
log chronologically guarantees that no child is recovered before its
parents; the skip-list implementation of the key-version mapping
guarantees that the order of entries in the key-version mapping is
preserved across failures.

Asynchrous Flush To mitigate the overheads of writing to disk,
TARDiS offers the option of asynchronously flushing both record
updates and the commit log (at the cost of durability). To preserve
atomicity, TARDiS ensures that the commit log is flushed sequen-
tially and further checks, on recovery, whether each entry in the
write set has been made persistent to stable storage. If only part
of a transaction’s effect has been made persistent, the correspond-
ing state and all subsequent states are discarded. Orphaned records
(resulting from operations that belong to, or depend on, partially ap-
plied transactions) have no effect on correctness, as it is the DAG
and key-version mapping that determine what can be read. These
records are simply eventually garbage collected.

Checkpointing To reduce log size, TARDiS periodically takes
non-blocking checkpoints by (i) selecting a state id sc, (ii) flush-
ing all outstanding writes, and (iii) saving every DAG state with id
smaller than sc.

Replication To recover transactions that have committed else-
where but are lost locally, the recovery process broadcasts a vector
with the id of the latest surving state received from each Replicator.
Replicas respond by sending states and records more recent than
their corresponding entry in the vector. If these states have already
been garbage collected, it may be necessary to send the full DAG.

6.6 Implementation notes
Our prototype consists of 15K lines of Java in two configura-

tions. In TARDiS-BDB, record persistence to disk is via Berke-



leyDB with concurrency control turned off, while TARDiS-MDB
depends on MapDB [35]. We rely on Google Protobuffers v2.4.5
for message serialization and on the Netty networking library for
inter-site communication.

7. EVALUATION
TARDiS proposes branching as the fundamental abstraction to

model conflicts end-to-end. To quantify the cost and benefits of
this new abstraction with respect to both performance and com-
plexity, we first benchmark the performance of the system itself.
We then use the abstraction to program two representative ALPS
applications: CRDTs [42], a library of scalable, weakly consis-
tent datatypes (counters, sets, maps, and more); and Retwis [41], a
Twitter clone. We find that using state branching/merging cuts the
number of lines of code in half, while judicious branch-on-conflict
yields a speedup of between two and eight times.

7.1 Microbenchmarks
Our microbenchmarks answer the following questions:

(i) What are the overheads of tracking state? (§7.1.2,§7.1.5)
(ii) When does local branching improve performance? (§7.1.3)
(iii)What impact has expressiveness on performance? (§7.1.4)
(iv) How does the system scale for multiple sites? (§7.1.6)

7.1.1 Evaluation Setup
Unless otherwise stated, we run our experiments on a shared lo-

cal cluster of machines equipped with a 2.67GHz Intel Xeon CPU
X5650 with 48GB of memory and connected by a 2Gbps network.
Inter-machine ping latencies average 0.15 ms. Each experiment is
run with three dedicated server machines, three dedicated Replica-
tors and with clients spread equally among separate machines. To
the best of our ability, all runs were performed in the absence of
interfering workloads.

We compare TARDiS with both BerkeleyDB v6.2.31 Java Edi-
tion (BDB) and a custom OCC implementation (OCC) that uses
BDB as its backend. BerkeleyDB, as a widely-used, pure-Java
ACID datastore, provides a sound basis for comparison against our
TARDiS prototype. We configure BerkeleyDB so that (i) read-write
transactions are flushed to disk asynchronously; and (ii) all requests
hit the cache. Our OCC implementation is based on a modified ver-
sion of Kung et al.’s algorithm [28] that does not require read-write
transactions to be verified against read-only transactions.

Each client issues transactions consisting of six operations in a
closed loop, running for two minutes. We use a set of clients large
enough to saturate the system. Read-only transactions contain only
reads; read-write transactions contain three reads and three writes.
We consider four transaction mixes differentiated by the ratio of
read-only transactions to read-write transactions: Read-only (R-O,
100/0), Read-heavy (R-H, 75/25), Mixed (M, 25/75), and Write-
Heavy (W-H, 0/100). We report only on the read-heavy and write-
heavy workloads. We further consider two access patterns from
the YCSB benchmark [18]: uniform and Zipfian (p=0.99). We re-
port on TARDiS-BDB only: the performance of TARDiS-MDB is
similar (approximately 10% better).

7.1.2 Baseline TARDiS performance
We begin by establishing a baseline for the performance of

TARDiS: we want to determine how it compares, when local
branch-on-conflict is not enabled, against both our simple imple-
mentation of OCC and a commercial system like BDB. Transac-
tions use Ancestor as begin constraint and the union of Serializabil-
ity and No Branching as end constraint. We expect this setup to

Workload Begin Get Put Commit

RH-Uniform
TARDiS 0.6 0.6 1 0.2

BDB 0.3 0.4 1.2 0.1
OCC 0.5 0.6 1.1 3.5

WH-Uniform
TARDiS 1 1.2 1.1 1.8

BDB 0.6 0.8 2.7 0.1
OCC 0.9 1.2 1.1 6.7

WH-Zipfian
TARDiS 1 1.4 1.2 0.8

BDB 0.6 8 23 0.1
OCC 0.4 0.9 1.2 9

Table 3: Per-operation latency breakdown (×10−2ms)

be common: it guarantees that each application sees its own writes
and that the execution is serializable.

The throughput-latency graph in Figure 9 shows that, despite
tracking the full system’s history and paying the overhead of se-
lecting a read and commit state, TARDiS-BDB performs similarly
to BDB for both read-heavy and write-heavy workloads. TARDiS
incurs a 10% slowdown as its begin and commit phase are more
costly than in BDB. As contention increases, however, TARDiS-
BDB’s lock-free writes reduce the performance gap. In both cases,
our OCC implementation lags behind. For the read-heavy work-
load, OCC must verify read-only transactions, which increases
latency and reduces throughput. For the write-heavy workload,
OCC suffers from a long validation phase. Though also opti-
mistic, TARDiS’s validation phase (commit state identification) is
less costly: it requires checking only the write set of those transac-
tions that already committed as children of the selected read state.
In contrast, OCC requires checking against all concurrently com-
mitting transactions.
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Figure 9: TARDiS-BDB vs BerkeleyDB vs OCC

7.1.3 Impact of branching
TARDiS lets ALPS applications choose to branch on conflict

rather than abort. Unsurprisingly, we find that the relative bene-
fits of branching increase with contention. Results are shown in
Figure 10 (all transactions run with branch-on-conflict enabled and
with Ancestor and Serializability as, respectively, their begin and
end constraint). Table 3 provides a per-operation breakdown of
the same experiments, excluding network latency and retries. Fig-
ure 10(a) shows that, when contention is low, branching indeed
does not help: TARDiS’s performance is slightly lower than BDB’s.
By contrast, with higher contention (Figure 10(b)), TARDiS out-
performs BDB by 35%. The performance of BDB drops by half, as
transactions wait longer for locks to become available, increasing
the cost of gets and puts by a factor of almost two (Table 3 shows
that reads take 0.004ms in the R-H workload, and 0.008ms in the
W-H workload). The 37% throughput drop in TARDiS is due to
several factors. First, the lack of read-only transactions: since all
transactions now have to identify a commit state, the commit cost of
the transaction increases (from Table 3: from 0.002ms to 0.018ms).
Second, reads become more expensive, as more record versions
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Figure 10: Benefit of branching as a function of workload
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Figure 12: TARDiS Scalability

need to be checked (from 0.006ms to 0.012ms). With both low
and high contention, the throughput of OCC is bottlenecked by the
verification phase. The relative performance increase of branching
over sequential storage is most marked when requests follow a Zip-
fian workload in which a small number of objects, accessed very
frequently, experience a high degree of contention (Figure 10(c)).
In this scenario, TARDiS outperforms BDB by a factor of eight.
Whereas moving from a uniform to a Zipfian distribution causes
BDB’s performance to collapse (7x throughput decrease), TARDiS’
throughput is much less affected: the lock-free implementation of
the write skip-list ensures that writes never block, even when con-
flicting. Table 3 confirms this: the cost of writes increases only
moderately in TARDiS (from 0.011ms to 0.012ms). Similarly, the
use of fork points to efficiently summarize the DAG means that,
despite an eight-fold increase in the branching factor in the Zipfian
workload, the cost of reads only increases by 16%. In contrast,
locking causes the read and write time for BDB to increase by a
factor of ten. OCC performs comparatively better, as it ensures that
(i) at least one transaction will always commit, and (ii) readers will
not block writers. Nonetheless, its high abort rate and expensive
validation phase limit its throughput to a fifth of TARDiS’.

Branching, however, is not always beneficial. In the workload
of Figure 10(d) transactions consist of a single write accessing the
database uniformly, conflicts are rare, and locks are held for a very
short period of time: here, branching does not help, but still incurs
the cost of tracking past states. Since the current implementation
of TARDiS’ garbage collector is unable to keep up with the speed
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Figure 13: Impact of garbage collection

at which new states are generated, the increased memory pressure
grows the number of stalls induced by garbage collection, causing
TARDiS to perform 10% worse than BDB.

7.1.4 Impact of Constraint Choice
The choice of begin and end constraints involves a complex

trade-off between consistency and performance. To shed some light
on this trade-off for our current implementation, we plot in Fig-
ure 11 the throughput of TARDiS for several different constraint
choices for the same configuration (15 machines, each with seven
clients) that led TARDiS to reach the elbow in the write-heavy
throughput/latency graphs of Figures 9 and 10. We focus on the
Ancestor and Parent begin constraints because we expect them to
be the most popular. Ancestor ensures that clients will see their
own writes, along with those of any non-conflicting clients. In the
Wikipedia example, this would allow Alice to read back Carlo’s
operations, but not Davide’s or Bruno’s. Parent results in a behav-
ior very much akin to that of a local Git branch, as clients will see
their own operations only. A detailed per-operation performance
breakdown (omitted for lack of space) gives us clues for why, de-
spite commit selection being 30% cheaper in Parent (as only the
read state can satisfy it), Ancestor still outperforms Parent by 21%.
First, read state selection is 40% more expensive in Parent, as it
requires a look-up over the full DAG rather than one that only in-
volves its leaves. Second, since Parent results in more branches,
fork path checking becomes more expensive, increasing the cost of
reads by 15%. Finally, Parent prevents states from being quickly
garbage collected.

Unlike begin constraints, we find that end constraints, as long
as they do not cause transactions to abort, do not significantly af-
fect throughput or latency: throughput results for the (branching)
Serializability and Snapshot Isolation constraints are within 5% of
each other, mostly because the former, by creating twice as many
branches, increases the cost of reads by 10%. Non-branching serial-
izability and snapshot isolation both perform poorly in comparison.
Though each individual operation is cheap, they see repeated aborts
due to write-write or read-write conflicts.

7.1.5 Garbage Collection
Figures 13(a) and 13(b) report, respectively, the throughput and

number of DAG states and records generated by a single server
running TARDiS, with and without garbage collection, over a ten
minute run with Ancestor begin constraint, Serializability end con-
straint, and clients placing ceilings (§6.3) every 1000 transactions.
Without DAG compression, throughput drops dramatically after
three minutes, since old and new generation Java garbage collection
pause TARDiS constantly. With DAG compression, throughput in-
stead remains constant, as (i) states are removed from the DAG and
their underlying datastructures recycled for incoming transactions,
and (ii) record promotion/deletion keeps the key-version mapping
structure small. Compression should ideally bound the DAG size



to the product of the number of clients times the ceiling placing
interval (i.e., 30 × 1000 = 30, 000 states) but, as Figure 13(b)
shows, the DAG is 55, 000—98% fewer states than without gar-
gage collection, but still two times higher than the ideal. This mis-
match is due to record compression. Though, in principle, states
can be removed from the DAG as soon as they become garbage-
collectible, in practice the promotion table must first be flushed,
which can only happen after a full record promotion pass. Unfor-
tunately, these records are often not present in the cache and must
be read from disk, causing the record promotion threads to trail be-
hind. Likewise, the storage size in TARDiS is 15x larger than in
OCC or BDB. We are currently investigating alternative schemes
that do not have this drawback.

7.1.6 Replication
We measure the scalability of TARDiS when running in geo-

graphically distinct replicas. We use a Google Cloud Services
cluster of three machines (2.5GHz Intel Xeon E5 v2 machines
with 60GB of memory), running in three geographical zones (us-
central1-f, europe-west1-b, asia-east-1). Figure 12 shows how the
aggregated throughput scales with the number of sites. As trans-
actions are asynchronously replicated, latency is unchanged from
the single site experiments. TARDiS scales linearly with the num-
ber of sites, as its design ensures that transactions, when applied to
remote sites, do not contend with local transactions.

7.2 Applications
In porting ALPS applications to TARDiS, we answer two ques-

tions: (i) Do explicit state branching and merging simplify conflict
resolution? (ii) Can ALPS applications use local branch-on-conflict
to improve their performance?

7.2.1 Simplifying Merging: CRDTs
Convergent Replicated Data Types (CRDTs) [42] are a family

of data types that support lazy replication by including a set of se-
mantically meaningful conflict resolution functions. A variety of
CRDTs have been developed [40, 42], including counters, sets, reg-
isters, and trees. To date, they have been incorporated into cooper-
ative text editing tools [40] and in the Riak key-value store [26].

We followed the algorithms developed Shapiro et al. [42] to im-
plement, on top of both TARDiS and BDB, a subset of CRDTs
sufficient to design realistic applications. The TARDiS implemen-
tation proved easier to write and required less code, often by a fac-
tor of two or more (Figure 14(a)): the entire effort took less than
a day with TARDiS, compared to over three days with BDB. Two
features of TARDiS account for this: StateID replication and con-
flict tracking. StateID replication guarantees that operations that
execute locally on a given state will execute on the same state at
all remote sites, and therefore eliminates the need to capture and
replicate side-effects. In turn, conflict tracking makes it easy, for
each CRDT replica implemented in TARDiS, to access, through the
State DAG, a consistent view of the updates that need to be merged.
Implementations on flat storage systems like BDB, in contrast, need
to explicitly track the updates applied at each replica and make sure
that the state of the CRDTs is replicated consistently everywhere.
Consider, for example, the counter CRDT, which is modeled as two
separate increment and decrement vectors, containing an entry per
replica. On BDB, it is up to the CRDT developer to ensure that, as
new operations are applied, the global state is tracked correctly at
each replica. TARDiS instead tracks the necessary information by
design. With access to the fork point, merging becomes as easy as
adding, for each branch, the difference between the counter’s value
at the fork point and at the current state.

To guarantee eventual convergence, CRDTs implemented on se-
quential storage must mutate local state atomically and sequentially
(e.g., new vector clocks must be created atomically to guarantee
causal delivery, and updating counters requires read-modify-write
operations). Each replica must consequently be serializable, thus
limiting the throughput at each site. Branch-on-conflict removes
this limitation without sacrificing consistency. For a workload con-
sisting of 90% reads and 10% writes, with transactions configured
to use the Ancestor and Serializability constraint set and periodic
merging, TARDiS’ CRDT implementations achieve a four to eight
times speedup over their sequential counterparts (Figure 14(b)).
Three factors contribute to this speedup. First, each individual op-
eration is simpler: for instance, reading or updating a counter no
longer involves manipulating a vector, but simply requires reading
or writing an integer. Second, operations are no longer serialized,
but fork on conflict, and are later merged back. Finally, merges can
be batched. Traditional CRDTs require a merge for every remote
operation received; in TARDiS, merges need only take place period-
ically, as operations are consistently recorded in separate branches.
These effects are displayed in Figure 14(d). It shows, for a CRDT
counter implemented in TARDiS, BDB, and OCC, the percentage
of useful work, measured as the time spent executing committed
transactions (i.e., excluding time spent waiting on locks, aborted
transactions, and merge transactions): useful work in TARDiS is at
0.96, while for BDB and OCC almost half the time is wasted.

7.2.2 Pushing weak consistency down: Retwis
To understand the performance implications of building ALPS

applications in TARDiS, we implemented Retwis [41], a popular
Twitter clone [39, 44, 51]. Retwis users can create accounts (cre-
ateAccount), follow users (followUser), post new content (post),
and read their own timeline (readOwnTimeline), which includes
their own tweets and those of the users they follow. In our im-
plementation, readOwnTimeline returns the 50 most recent posts.
Contention primarily arises when a user posts new content, as the
Retwis implementation must ensure that the tweet becomes visi-
ble to all the user’s followers. Retwis, like many ALPS appli-
cations, has relatively weak consistency requirements: as long as
posts are not incorrectly attributed and are presented in causal or-
der, users can tolerate small delays in seeing posts. Porting Retwis
on TARDiS was straightforward. We simply extended each transac-
tional call to take the Ancestor begin constraint and Serializability
end constraint, and implemented a separate conflict resolver that pe-
riodically merges conflicting branches by resolving duplicate user
ids and merging timelines (preserving the order of posts).

Figure 14(c) shows the throughput of Retwis on TARDiS, BDB,
and OCC, for three workloads: read-only (100% reads), read-heavy
(85% reads, 5% follows, and 10% posts), and post-heavy (65%
reads, 5% follows, and 30% posts). Branching does not benefit
the read-only workload, but it significantly softens the performance
blow caused by contention in the remaining two workloads. An
analysis of the per-transaction behavior (omitted for lack of space)
reveals that the throughput of readOwnTimeline operations drops
by 70% for OCC in the read-heavy workload, as posts cause these
transactions to abort, and by 80% in BDB, as write operations block
both reads and other writes (causing in turn read operations to block
for longer). These effects are amplified in the post-heavy workload.
Moving to Figure 14(d), we see that TARDiS, by branching and
merging asychronously, is able to maintain a much higher fraction
of useful work than OCC and BDB for both of these worklods be-
cause, unlike waiting on locks, merging does not prevent the system
from making progress. The small drop in TARDiS’ throughput is
due to the need to identify commit states for posts. Thus, for ALPS
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applications, executing conflicting transactions optimistically and
reconciling them later can improve scalability within a site, much
like weak consistency improves scalability across sites.

8. RELATED WORK
Avoiding Conflicts The core challenge in geo-replication is han-

dling conflicts at different sites. One option is to preemptively en-
sure that conflicts do not happen, either through strong synchroniza-
tion [2, 13, 19] or through scheduling transactions to avoid conflicts
(using static analysis [53] or upon admission [49]). TARDiS explic-
itly targets applications whose availability or latency constraints
preclude this option.

Weakening Consistency Systems designed for ALPS applica-
tions trade-off strong consistency for performance and provide
weaker guarantees such as causal consistency [4, 20], timeline con-
sistency [17], parallel snapshot isolation [44], and non-monotonic
snapshot isolation [7]. Others have sought to give applications
the flexibility of adapting the consistency level required as a func-
tion of the operation (Pileus [47], Red-Blue Consistency [29],
MDCC [27]) or the object (Continuous Consistency Model [52],
CRDTs [42], Escrow Transactions [43]). TARDiS instead allows
for general conflict resolution strategies defined by the application.

Resolving Conflicts When conflicts are allowed, most systems
resolve conflicting executions by projecting them onto sequential
storage. COPS [31] adopts a first-writer-wins policy; Ficus [25],
Dynamo [20], and Bayou all leave resolution up to the users; and
operational transforms [45] leverage specific textual properties. Un-
like in TARDiS, these resolution functions are per-object and do not
allow programmers to see and resolve the entire state atomically.

Branching Conflicts in a distributed system introduce implicit
branching that must be reconciled when conflicts are detected. A
number of systems expose this branching: version control systems
(Git) allow users to operate on different branches; the Olive [3]
file-system allows users to create/and fork snapshots efficiently;
and ORI [36] tracks possibly divergent histories across multiple
devices. They contrast with TARDiS as their branching is explicit
(git branch) rather than implicit: explicit branching requires syn-
chronization, which is precisely what ALPS applications want to
avoid. Some causally consistent systems also allow for concur-
rent writes to be exposed to the users (Ficus [25], Dynamo [20]).
This is a limited notion of branching, which forks individual ob-
jects rather than a state. These systems, as a result, provide nei-
ther conflict tracking nor branches, and increase complexity for the
application by systematically exposing it to multiple values. By
contrast, in TARDiS programmers only deal with multivalued ob-
jects if they explicitly request it in merge mode. In the Byzan-
tine context, SUNDR [30] and FAUST [15] develop fork consis-
tency/linearizability to isolate clients that see different values in a
faulty server, and Depot [34] extends SUNDR’s model to support

fork-joining. Depot does not, however, expose the abstraction of
branches, and provides no support for cross-object atomic merges,
unlike TARDiS. Finally, Sporc [22] does provide atomic joining of
forks, but only for the restricted case of collaborative text applica-
tions, and uses operational transformation to resolve conflicts.

9. CONCLUSIONS AND FUTURE WORK
This paper introduced TARDiS, a novel transactional key-value

store designed to support weakly-consistent systems. By explicitly
tracking concurrent branches and exposing them, when needed, to
applications, TARDiS simplifies conflict resolution. By giving ap-
plications the option of applying weak consistency principles end-
to-end, TARDiS can significantly improve the performance of the
local site.

TARDiS nonetheless lacks several features. First and foremost,
its replicas do not support distributed transactions: we are currently
investigating how to add this feature to the system. More gener-
ally, we believe that TARDiS’ ability to efficiently distinguish be-
tween concurrent threads of execution makes it a strong candidate
for concurrency control systems based on speculation. We hope to
investigate whether speculation can alleviate many of the through-
put issues in wide-area strongly consistent systems.
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