
Parallel Data Processing with
Hadoop/MapReduce

CS140 Tao Yang, 2014

Overview

•What is MapReduce?

–Example with word counting

•Parallel data processing with
MapReduce

–Hadoop file system

•More application example

Motivations

• Motivations

– Large-scale data processing on clusters

– Massively parallel (hundreds or thousands of CPUs)

– Reliable execution with easy data access

• Functions

– Automatic parallelization & distribution

– Fault-tolerance

– Status and monitoring tools

– A clean abstraction for programmers

» Functional programming meets distributed computing

» A batch data processing system

Parallel Data Processing in a Cluster

• Scalability to large data volumes:

– Scan 1000 TB on 1 node @ 100 MB/s = 24 days

– Scan on 1000-node cluster = 35 minutes

• Cost-efficiency:

– Commodity nodes /network

» Cheap, but not high bandwidth, sometime unreliable

– Automatic fault-tolerance (fewer admins)

– Easy to use (fewer programmers)

Typical Hadoop Cluster

• 40 nodes/rack, 1000-4000 nodes in cluster

• 1 Gbps bandwidth in rack, 8 Gbps out of rack

• Node specs :
8-16 cores, 32 GB RAM, 8×1.5 TB disks

Aggregation switch

Rack switch

MapReduce Programming Model

• Inspired from map and reduce operations commonly
used in functional programming languages like Lisp.

• Have multiple map tasks and reduce tasks

• Users implement interface of two primary methods:

– Map: (key1, val1) → (key2, val2)

– Reduce: (key2, [val2 list]) → [val3]

Inspired by LISP Function Programming

• Two Lisp functions

• Lisp map function

– Input parameters: a function and a set of values

– This function is applied to each of the values.

Example:

– (map ‘length ‘(() (a) (ab) (abc)))

(length(()) length(a) length(ab) length(abc))

 (0 1 2 3)

Lisp Reduce Function

• Lisp reduce function

– given a binary function and a set of values.

– It combines all the values together using the binary
function.

• Example:

– use the + (add) function to reduce the list (0 1 2 3)

– (reduce #'+ '(0 1 2 3))

 6

Example: Map Processing in Hadoop

• Given a file

– A file may be divided by the system into multiple
parts (called splits or shards).

• Each record in a split is processed by a user Map
function,

– takes each record as an input

– produces key/value pairs

Processing of Reducer Tasks

• Given a set of (key, value) records produced by map tasks.

– all the intermediate values for a key are combined together
into a list and given to a reducer. Call it [val2]

– A user-defined function is applied to each list [val2] and
produces another value

k1 k2 k3

Put Map and Reduce Tasks Together

Example: Computing Word Frequency

Divide collection of
document among the class.

Each person gives count of
individual word in a

document. Repeats for
assigned quota of documents.

(Done w/o communication)

Sum up the counts from all
the documents to give final

answer.

• ”Consider the problem of counting the number of occurrences of
each word in a large collection of documents”

Example of Word Count Job (WC)

the
quick
brown

fox

the fox
ate the
mouse

how
now

brown
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1
ate,1

mouse,1

how, 1
now, 1

brown, 1
cow,1

brown, 1

brown, 1

Input Map Shuffle & Sort Reduce Output

From Matei Zaharia’s slide

Input/output specification of the WC mapreduce job

Input : a set of (key values) stored in files

 key: document ID

 value: a list of words as content of each document

Output: a set of (key values) stored in files

 key: wordID

 value: word frequency appeared in all documents

MapReduce function specification:

 map(String input_key, String input_value):

 reduce(String output_key, Iterator intermediate_values):

Pseudo-code

map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

 EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

 result = result + ParseInt(v);

Emit(output_key, AsString(result));

© Spinnaker Labs, Inc.

MapReduce WordCount.java
 Hadoop distribution: src/examples/org/apache/hadoop/examples/WordCount.java

 public static class TokenizerMapper

 extends Mapper<Object, Text, Text, IntWritable>{

 private final static IntWritable one = new IntWritable(1); // a mapreduce int class

 private Text word = new Text(); //a mapreduce String class

 public void map(Object key, Text value, Context context

) throws IOException, InterruptedException { // key is the offset of
current record in a file

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens()) { // loop for each token

 word.set(itr.nextToken()); //convert from string to token

 context.write(word, one); // emit (key,value) pairs for reducer

 }

 }

© Spinnaker Labs, Inc.

MapReduce WordCount.java

map() gets a key, value, and context

• key - "bytes from the beginning of the line?“

• value - the current line;

in the while loop, each token is a "word" from the current line

US history book

School admission records

iPADs sold in 2012

US history book

School admission records

iPADs sold in 2012

Input file
Line value tokens

US history book

© Spinnaker Labs, Inc.

Reduce code in WordCount.java

public static class IntSumReducer

 extends Reducer<Text,IntWritable,Text,IntWritable> {

 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,

 Context context

) throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 result.set(sum); //convert “int” to IntWritable

 context.write(key, result); //emit the final key-value result

 }

 }

© Spinnaker Labs, Inc.

The driver to set things up and start

// Usage: wordcount <in> <out>

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

 Job job = new Job(conf, "word count"); //mapreduce job

 job.setJarByClass(WordCount.class); //set jar file

 job.setMapperClass(TokenizerMapper.class); // set mapper class

 job.setCombinerClass(IntSumReducer.class); //set combiner class

 job.setReducerClass(IntSumReducer.class); //set reducer class

 job.setOutputKeyClass(Text.class); // output key class

 job.setOutputValueClass(IntWritable.class); //output value class

 FileInputFormat.addInputPath(job, new Path(otherArgs[0])); //job input path

 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); //job output path

 System.exit(job.waitForCompletion(true) ? 0 : 1); //exit status

 }

Systems Support for MapReduce

Applications

MapReduce

Distributed File Systems (Hadoop,
Google FS)

© Spinnaker Labs, Inc.

Distributed Filesystems

• The interface is the same as a single-machine file system

– create(), open(), read(), write(), close()

• Distribute file data to a number of machines (storage units).

– Support replication

• Support concurrent data access

– Fetch content from remote servers. Local caching

• Different implementations sit in different places on
complexity/feature scale

– Google file system and Hadoop HDFS

» Highly scalable for large data-intensive applications.

» Provides redundant storage of massive amounts of data
on cheap and unreliable computers

© Spinnaker Labs, Inc.

Assumptions of GFS/Hadoop DFS

• High component failure rates

– Inexpensive commodity components fail all the time

• “Modest” number of HUGE files

– Just a few million

– Each is 100MB or larger; multi-GB files typical

• Files are write-once, mostly appended to

– Perhaps concurrently

• Large streaming reads

• High sustained throughput favored over low latency

Hadoop Distributed File System

• Files split into 64 MB blocks

• Blocks replicated across
several datanodes (3)

• Namenode stores metadata
(file names, locations, etc)

• Files are append-only.
Optimized for large files,
sequential reads

– Read: use any copy

– Write: append to 3 replicas

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1

Shell Commands for Hadoop File System

• Mkdir, ls, cat, cp

– hadoop fs -mkdir /user/deepak/dir1

– hadoop fs -ls /user/deepak

– hadoop fs -cat /usr/deepak/file.txt

– hadoop fs -cp /user/deepak/dir1/abc.txt /user/deepak/dir2

• Copy data from the local file system to HDF

– hadoop fs -copyFromLocal <src:localFileSystem> <dest:Hdfs>

– Ex: hadoop fs –copyFromLocal /home/hduser/def.txt /user/deepak/dir1

• Copy data from HDF to local

– hadoop fs -copyToLocal <src:Hdfs> <dest:localFileSystem>

http://www.bigdataplanet.info/2013/10/All-Hadoop-Shell-Commands-you-need-Hadoop-Tutorial-Part-5.html

Hapdoop Local Linux

Hadoop DFS with MapReduce

Demons for Hadoop/Mapreduce

• Following demons must be running

(use jps to show these

Java processes)

• Hadoop

– Name node (master)

– Secondary name node

– data nodes

• Mapreduce

– Task tracker

– Job tracker

Hadoop Cluster with MapReduce

Execute MapReduce on a cluster of machines with
Hadoop DFS

29

MapReduce: Execution Details

• Input reader

– Divide input into splits, assign each split to a Map task

• Map task

– Apply the Map function to each record in the split

– Each Map function returns a list of (key, value) pairs

• Shuffle/Partition and Sort

– Shuffle distributes sorting & aggregation to many reducers

– All records for key k are directed to the same reduce processor

– Sort groups the same keys together, and prepares for aggregation

• Reduce task

– Apply the Reduce function to each key

– The result of the Reduce function is a list of (key, value) pairs

30

How to create and execute map tasks?

• The system spawns a number of mapper processes and reducer
processes

– A typical/default setting 2 mappers and 1 reducer per core.

– User can specify/change setting

• Input reader

– Input is typically a directory of files.

– Divide each input file into splits,

– Assign each split to a Map task

• Map task

– Executed by a mapper process

– Apply the user-defined map

 function to each record in the split

– Each Map function

 returns a list of (key, value) pairs

31

How to create and execute reduce tasks?

• Partition (key, value) output pairs of map tasks

Partitioning is based on hashing, and can be modified.

Key Hash Hash % 4

of -1463488791 4

course 2334184425 0

you 1116843962 2

don’t -482782459 1

know 326123353 3

32

How to create and execute reduce tasks?

• Shuffle/partition outputs of map tasks

– Sort keys and group values of the same key together.

– Direct (key, values) pairs to the partitions, and then distribute to
the right destinations.

• Reduce task

– Apply the Reduce function to the list of each key

• Multiple map tasks -> one reduce

33

Multiple map tasks and multiple reduce tasks

• When there are multiple reducers, the map tasks partition their
output, each creating one partition for each reduce task. There can be
many keys (and their associated values) in each partition, but the
records for any given key are all in a single partition

MapReduce: Fault Tolerance

• Handled via re-execution of tasks.

 Task completion committed through master

• Mappers save outputs to local disk before serving to reducers

– Allows recovery if a reducer crashes

– Allows running more reducers than # of nodes

• If a task crashes:

– Retry on another node

» OK for a map because it had no dependencies

» OK for reduce because map outputs are on disk

– If the same task repeatedly fails, fail the job or ignore that input block

– : For the fault tolerance to work, user tasks must be deterministic and side-
effect-free

2. If a node crashes:

– Relaunch its current tasks on other nodes

– Relaunch any maps the node previously ran

» Necessary because their output files were lost along with the crashed node

MapReduce: Redundant Execution

• Slow workers are source of bottleneck, may delay
completion time.

• spawn backup tasks, one to finish first wins.

• Effectively utilizes computing power, reducing job
completion time by a factor.

User Code Optimization: Combining Phase

• Run on map machines after map phase

– “Mini-reduce,” only on local map output

– E.g. job.setCombinerClass(Reduce.class);

• save bandwidth before sending data to full reduce tasks

• Requirement: commutative & associative

Combiner

replaces with:

Map output

To reducer

On one mapper machine:

To reducer

MapReduce Applications (I)

• Distributed grep (search for words)

• Map: emit a line if it matches a given
pattern

• Reduce: just copy the intermediate data to
the outputCount

• URL access frequency

• Map: process logs of web page access;
output

• Reduce: add all values for the same URL
37

MapReduce Applications (II)

• Reverse web-link graph

• Map: Input is node-outgoing links.
Output each link with the target as a key.

• Reduce: Concatenate the list of all source
nodes associated with a target.

• Inverted index

• Map: Input is words for a document.
Emit word-document pairs

• Reduce: for the same word, sort the document
IDs that contain this word; emits a pair.

Types of MapReduce Applications

• Map only parallel processing

• Count word usage for each document

• Map-reduce two-stage processing

• Count word usage for the entire document
collection

• Multiple map-reduce stages

1. Count word usage in a document set

2. Identify most frequent words in each
document, but exclude those most popular
words in the entire document set

39

MapReduce Job Chaining

• Run a sequence of map-reduce jobs

• Use job.waitForComplete()

– Define the first job including input/output directories, and
map/combiner/reduce classes.

» Run the first job with job.waitForComplete()

– Define the second job

» Run the second job with job.waitForComplete()

• Use JobClient.runJob(job)

Example

Job job = new Job(conf, "word count"); //mapreduce job

 job.setJarByClass(WordCount.class); //set jar file

 job.setMapperClass(TokenizerMapper.class); // set mapper class

 ...

 FileInputFormat.addInputPath(job, new Path(otherArgs[0])); // input path

 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); // output path

 job.waitForCompletion(true) ;

Job job1 = new Job(conf, "word count"); //mapreduce job

 job1.setJarByClass(WordCount.class); //set jar file

 job1. setMapperClass(TokenizerMapper.class); // set mapper class

 ...

 FileInputFormat.addInputPath(job1, new Path(otherArgs[1])); // input path

 FileOutputFormat.setOutputPath(job1, new Path(otherArgs[2])); // output path

 System.exit(job1.waitForCompletion(true) ? 0 : 1); //exit status

}

MapReduce Use Case: Inverted Indexing
Preliminaries

Construction of inverted lists for document
search

• Input: documents: (docid, [term, term..]),
(docid, [term, ..]), ..

• Output: (term, [docid, docid, …])

– E.g., (apple, [1, 23, 49, 127, …])

A document id is an internal document id, e.g.,
a unique integer

• Not an external document id such as a url

© 2010, Jamie Callan 42

Inverted Indexing: Data flow

This page contains

so much text

My page contains

text too

Foo

Bar

contains: Bar

My: Bar

page : Bar

text: Bar

too: Bar

contains: Foo

much: Foo

page : Foo

so : Foo

text: Foo

This : Foo
contains: Foo, Bar

much: Foo

My: Bar

page : Foo, Bar

so : Foo

text: Foo, Bar

This : Foo

too: Bar

Reduced output

Foo map output

Bar map output

Using MapReduce to Construct Inverted Indexes

• Each Map task is a document parser

– Input: A stream of documents

– Output: A stream of (term, docid) tuples

» (long, 1) (ago, 1) (and, 1) … (once, 2) (upon, 2) …

» We may create internal IDs for words.

• Shuffle sorts tuples by key and routes tuples to Reducers

• Reducers convert streams of keys into streams of inverted lists

– Input: (long, 1) (long, 127) (long, 49) (long, 23) …

– The reducer sorts the values for a key and builds an inverted list

– Output: (long, [frequency:492, docids:1, 23, 49, 127, …])

© 2010, Jamie Callan 44

Using Combine () to Reduce Communication

• Map: (docid1, content1) (t1, ilist1,1) (t2, ilist2,1) (t3, ilist3,1) …

– Each output inverted list covers just one document

• Combine locally

Sort by t

Combine: (t1 [ilist1,2 ilist1,3 ilist1,1 …]) (t1, ilist1,27)

– Each output inverted list covers a sequence of documents

• Shuffle by t

• Sort by t

(t4, ilist4,1) (t5, ilist5,3) … (t4, ilist4,2) (t4, ilist4,4) (t4, ilist4,1) …

• Reduce: (t7, [ilist7,2, ilist3,1, ilist7,4, …]) (t7, ilistfinal)

ilisti,j: the j’th inverted list fragment for term i

© 2010, Jamie Callan 45

Hadoop and Tools

• Various Linux Hadoop clusters

– Cluster +Hadoop: http://hadoop.apache.org

– Amazon EC2

• Windows and other platforms

– The NetBeans plugin simulates Hadoop

– The workflow view works on Windows

• Hadoop-based tools

– For Developing in Java, NetBeans plugin

• Pig Latin, a SQL-like high level data processing script language

• Hive, Data warehouse, SQL

• HBase, Distributed data store as a large table

46

http://hadoop.apache.org/

