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Overview 

•What is MapReduce? 

–Example with word counting 

•Parallel data processing with 
MapReduce 

–Hadoop file system 

•More application example 



Motivations 

• Motivations  

– Large-scale data processing on clusters 

– Massively parallel (hundreds or thousands of CPUs) 

– Reliable execution with easy data access 

• Functions 

– Automatic parallelization & distribution 

– Fault-tolerance 

– Status and monitoring tools 

– A clean abstraction for programmers 

» Functional programming meets distributed computing 

» A batch data processing system 

 



Parallel Data Processing in a Cluster 

• Scalability to large data volumes: 

– Scan 1000 TB on 1 node @ 100 MB/s = 24 days 

– Scan on 1000-node cluster = 35 minutes 

 

• Cost-efficiency: 

– Commodity nodes /network  

» Cheap, but not high bandwidth, sometime unreliable 

– Automatic fault-tolerance (fewer admins) 

– Easy to use (fewer programmers) 



Typical Hadoop Cluster 

• 40 nodes/rack, 1000-4000 nodes in cluster 

• 1 Gbps bandwidth in rack, 8 Gbps out of rack 

• Node specs : 
8-16 cores, 32 GB RAM, 8×1.5 TB disks 

Aggregation switch 

Rack switch 



MapReduce Programming Model 

   

• Inspired from map and reduce operations commonly 
used in functional programming languages like Lisp. 

 

• Have multiple map tasks and reduce tasks 

 

• Users implement interface of two primary methods: 

– Map: (key1, val1) → (key2, val2) 

– Reduce: (key2, [val2 list]) → [val3] 

 

   

 

 



Inspired by LISP Function Programming 

 

• Two Lisp functions 

• Lisp map function 

– Input parameters:  a function and a set of values 

– This function is applied to each of the values. 

Example: 

– (map ‘length ‘(() (a) (ab) (abc))) 

(length(()) length(a) length(ab) length(abc)) 

  (0 1 2 3) 
 



Lisp Reduce Function 

 

• Lisp  reduce function 

– given a binary function and a set of values.  

– It combines all the values together using the binary 
function.  

• Example: 

– use the + (add) function to reduce the list (0 1 2 3) 

–  (reduce    #'+   '(0 1 2 3))  

  6 

 

   

 



Example: Map Processing in Hadoop 

   

• Given a file  

– A file may be divided  by the system into multiple 
parts (called splits or shards). 

• Each record in a split is processed by a  user Map 
function, 

– takes each record as an input 

– produces  key/value pairs 

 

 

 

 



Processing of Reducer Tasks 

   

• Given a set of (key, value) records produced by map tasks. 

– all the intermediate values for a key are combined together 
into a list and given to a reducer. Call it [val2] 

– A user-defined function is applied to each list  [val2]   and 
produces another value 

 

 

 

 

 

 

 

 

k1 k2 k3 



Put Map and Reduce Tasks Together 

   

 

 

 

 

 

 



Example: Computing Word Frequency  

Divide collection of 
document among the class. 

Each person gives count of 
individual word in a 

document. Repeats for 
assigned quota of documents. 

(Done w/o communication ) 

Sum up the counts from all 
the documents to give final 

answer. 

   

• ”Consider the problem of counting the number of occurrences of 
each word in a large collection of documents” 

 

 

 

 

 

 

 

 



Example of Word Count Job (WC) 

the 
quick 
brown 

fox 

the fox 
ate the 
mouse 

how 
now 

brown 
cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 
fox, 2 
how, 1 
now, 1 
the, 3 

ate, 1 
cow, 1 

mouse, 1 
quick, 1 

the, 1 
brown, 1 

fox, 1 

quick, 1 

the, 1 
fox, 1 
the, 1 
ate,1 

mouse,1 

how, 1 
now, 1 

brown, 1 
cow,1 

brown, 1 

brown, 1 

Input Map Shuffle & Sort Reduce Output 

From Matei Zaharia’s slide 

 



Input/output specification of the WC mapreduce job 

Input : a set of (key values) stored in files 

  key:  document ID 

  value:   a list of words as content of each document 

 

Output:  a set of (key values) stored in files 

   key:  wordID 

   value: word frequency appeared in all documents 

 

MapReduce function specification: 

 map(String input_key, String input_value):  

     reduce(String output_key, Iterator intermediate_values):  

 

 



Pseudo-code 

map(String input_key, String input_value):  

// input_key: document name  

// input_value: document contents  

for each word w in input_value:  

 EmitIntermediate(w, "1");  

 

reduce(String output_key, Iterator intermediate_values):  

// output_key: a word  

// output_values: a list of counts  

int result = 0;  

for each v in intermediate_values:  

 result  = result + ParseInt(v);  

Emit(output_key, AsString(result)); 
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MapReduce WordCount.java 
 Hadoop distribution: src/examples/org/apache/hadoop/examples/WordCount.java 

 public static class TokenizerMapper 

       extends Mapper<Object, Text, Text, IntWritable>{   

 

    private final static IntWritable one = new IntWritable(1); // a mapreduce int class 

    private Text word = new Text(); //a mapreduce String  class 

 

    public void map(Object key, Text value, Context context 

                    ) throws IOException, InterruptedException { // key is the offset of 
current record in a file 

      StringTokenizer itr = new StringTokenizer(value.toString()); 

      while (itr.hasMoreTokens()) { // loop for each token 

          word.set(itr.nextToken());  //convert from string to token 

         context.write(word, one);  // emit (key,value) pairs for reducer 

      } 

    } 
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MapReduce WordCount.java 

map() gets a key, value, and context 

• key - "bytes from the beginning of the line?“ 

• value - the current line; 

in the while loop, each token is a "word" from the current line 

US history book 

School admission records 

iPADs sold in 2012 

 

US history book 

School admission records 

iPADs sold in 2012 

Input file 
Line value tokens 

US    history book 
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Reduce code in WordCount.java 

public static class IntSumReducer 

       extends Reducer<Text,IntWritable,Text,IntWritable> { 

    private IntWritable result = new IntWritable(); 

 

    public void reduce(Text key, Iterable<IntWritable> values, 

                       Context context 

                       ) throws IOException, InterruptedException { 

      int sum = 0; 

      for (IntWritable val : values) { 

        sum += val.get(); 

      } 

      result.set(sum);  //convert  “int” to IntWritable  

      context.write(key, result); //emit the final key-value result  

    } 

  } 
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The driver to set things up and start 

//   Usage: wordcount <in> <out>  

 public static void main(String[] args) throws Exception { 

    Configuration conf = new Configuration(); 

    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); 

    Job job = new Job(conf, "word count"); //mapreduce job 

    job.setJarByClass(WordCount.class); //set jar file 

    job.setMapperClass(TokenizerMapper.class); // set mapper class 

    job.setCombinerClass(IntSumReducer.class); //set combiner class 

    job.setReducerClass(IntSumReducer.class);   //set reducer class 

    job.setOutputKeyClass(Text.class);                // output key class 

    job.setOutputValueClass(IntWritable.class);  //output value class 

    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));   //job input path 

    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); //job output path 

    System.exit(job.waitForCompletion(true) ? 0 : 1);  //exit status  

  } 



Systems Support for MapReduce 

 

Applications 

MapReduce 

 

 

Distributed File Systems (Hadoop, 
Google FS) 
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Distributed Filesystems 

• The interface is the same as a single-machine file system 

– create(), open(), read(), write(), close() 

• Distribute file data to a number of machines (storage units). 

– Support replication 

• Support concurrent  data access 

– Fetch content from remote servers. Local caching 

• Different implementations sit in different places on 
complexity/feature scale 

– Google file system  and Hadoop HDFS 

» Highly scalable for large data-intensive applications. 

» Provides redundant storage of massive amounts of data 
on cheap and unreliable computers 
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Assumptions of GFS/Hadoop DFS 

• High component failure rates 

– Inexpensive commodity components fail all the time 

• “Modest” number of HUGE files 

– Just a few million 

– Each is 100MB or larger; multi-GB files typical 

• Files are write-once, mostly appended to 

– Perhaps concurrently 

• Large streaming reads 

• High sustained throughput favored over low latency 



Hadoop Distributed File System 

• Files split into 64 MB blocks 

• Blocks replicated across 
several datanodes ( 3) 

• Namenode stores metadata 
(file names, locations, etc) 

• Files are append-only. 
Optimized for large files, 
sequential reads 

– Read: use any copy 

– Write: append to 3 replicas 

Namenode 

Datanodes 

1 
2 
3 
4 

1 
2 
4 

2 
1 
3 

1 
4 
3 

3 
2 
4 

File1 



Shell Commands for Hadoop File System  

 

• Mkdir, ls, cat, cp 

– hadoop fs -mkdir /user/deepak/dir1 

– hadoop fs -ls /user/deepak 

– hadoop fs -cat /usr/deepak/file.txt 

– hadoop fs -cp /user/deepak/dir1/abc.txt /user/deepak/dir2 

• Copy data from the local file system to HDF 

– hadoop fs -copyFromLocal <src:localFileSystem> <dest:Hdfs>  

– Ex: hadoop fs –copyFromLocal /home/hduser/def.txt  /user/deepak/dir1 

• Copy data from HDF to local 

– hadoop fs -copyToLocal <src:Hdfs> <dest:localFileSystem> 
 

http://www.bigdataplanet.info/2013/10/All-Hadoop-Shell-Commands-you-need-Hadoop-Tutorial-Part-5.html 

Hapdoop Local Linux  



Hadoop DFS with MapReduce 



Demons for Hadoop/Mapreduce 

 

• Following demons must be running 

(use jps to show  these  

Java processes) 

• Hadoop 

– Name node (master) 

– Secondary name node 

– data nodes 

• Mapreduce 

– Task tracker 

– Job tracker 
 



Hadoop Cluster with MapReduce 

 



Execute MapReduce on a cluster of machines with 
Hadoop DFS 
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MapReduce: Execution Details 

• Input reader 

– Divide input into splits, assign each split to a Map task 

• Map task 

– Apply the Map function to each record in the split 

– Each Map function returns a list of (key, value) pairs 

• Shuffle/Partition and Sort 

– Shuffle distributes sorting & aggregation to many reducers 

– All records for key k are directed to the same reduce processor 

– Sort groups the same keys together, and prepares for aggregation 

• Reduce task 

– Apply the Reduce function to each key 

– The result of the Reduce function is a list of (key, value) pairs 
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How to create and execute map tasks? 

• The system spawns a number of mapper processes and reducer 
processes 

– A typical/default setting 2 mappers and 1 reducer per core. 

– User can specify/change setting 

• Input reader 

– Input is typically a directory of files. 

– Divide  each input file  into splits, 

–  Assign each split to a Map task 

• Map task 

– Executed by a mapper process 

– Apply the user-defined map  

   function to each record in the split 

– Each Map function 

 returns a list of (key, value) pairs 
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How to create and execute reduce tasks? 

• Partition (key, value) output  pairs of map tasks 

 

 

 

 

 

 

Partitioning is based on hashing, and can be modified. 

 

 
Key Hash Hash % 4 

of -1463488791 4 

course 2334184425 0 

you 1116843962 2 

don’t -482782459 1 

know 326123353 3 
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How to create and execute reduce tasks? 

• Shuffle/partition outputs of map tasks 

– Sort  keys and group values of  the same key together. 

– Direct  (key, values) pairs to the partitions, and then distribute to 
the right destinations. 

• Reduce task 

– Apply the Reduce function to the list of each key 

• Multiple map tasks -> one reduce 
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Multiple map tasks and multiple reduce tasks 

• When there are multiple reducers, the map tasks partition their 
output, each creating one partition for each reduce task. There can be 
many keys (and their associated values) in each partition, but the 
records for any given key are all in a single partition 



MapReduce: Fault Tolerance 

• Handled via re-execution of tasks. 

 Task completion committed through master  

• Mappers save outputs to local disk before serving to reducers 

– Allows recovery if a reducer crashes 

– Allows running more reducers than # of nodes 

• If a task crashes: 

– Retry on another node 

» OK for a map because it had no dependencies 

» OK for reduce because map outputs are on disk 

– If the same task repeatedly fails, fail the job or ignore that input block 

– : For the fault tolerance to work, user tasks must be deterministic and side-
effect-free 

2. If a node crashes: 

– Relaunch its current tasks on other nodes 

– Relaunch any maps the node previously ran 

» Necessary because their output files were lost along with the crashed node 

 



MapReduce: Redundant Execution 
   

• Slow workers are source of bottleneck, may delay 
completion time. 

• spawn backup tasks, one to finish first wins. 

• Effectively utilizes computing power, reducing job 
completion time by a factor.  
 

 

 

 

 

 

 



User Code Optimization: Combining Phase 

• Run on map machines after map phase 

– “Mini-reduce,” only on local map output 

– E.g.  job.setCombinerClass(Reduce.class); 

• save bandwidth before sending data to full reduce tasks 

• Requirement:  commutative & associative 

Combiner 

replaces with:

Map output

To reducer

On one mapper machine:

To reducer



MapReduce Applications (I) 

• Distributed grep (search for words) 

• Map: emit a line if it matches a given 
pattern 

• Reduce: just copy the intermediate data to 
the outputCount  

• URL access frequency 

• Map: process logs of web page access; 
output 

• Reduce: add all values for the same URL 
37 



MapReduce Applications (II) 

• Reverse web-link graph  

• Map:  Input is node-outgoing links. 
Output  each link with the target as a key.  

• Reduce: Concatenate the list of all source 
nodes associated with a target.  

• Inverted index 

• Map: Input is words for a document. 
Emit word-document pairs 

• Reduce: for the same word, sort the document 
IDs that contain this word; emits a pair.  



Types of MapReduce Applications 

• Map only parallel processing 

• Count word usage for each document 

• Map-reduce two-stage processing 

• Count word usage for the entire document 
collection 

• Multiple map-reduce stages 

1. Count word usage in a document set 

2. Identify most frequent words in each 
document, but exclude those most popular 
words in the entire document set 

39 



MapReduce Job Chaining 

 

• Run a sequence of map-reduce jobs 

 

 

 

 

• Use job.waitForComplete() 

– Define the first job including input/output directories, and 
map/combiner/reduce classes. 

» Run the first job with job.waitForComplete() 

– Define the second job  

» Run the second job with job.waitForComplete() 

• Use JobClient.runJob(job) 



Example 

Job job = new Job(conf, "word count"); //mapreduce job 

    job.setJarByClass(WordCount.class); //set jar file 

    job.setMapperClass(TokenizerMapper.class); // set mapper class 

    ... 

    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));   // input path 

    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); // output path 

    job.waitForCompletion(true) ; 

Job job1 = new Job(conf, "word count"); //mapreduce job 

    job1.setJarByClass(WordCount.class); //set jar file 

    job1. setMapperClass(TokenizerMapper.class); // set mapper class 

    ... 

    FileInputFormat.addInputPath(job1, new Path(otherArgs[1]));   // input path 

    FileOutputFormat.setOutputPath(job1, new Path(otherArgs[2])); // output path 

     System.exit(job1.waitForCompletion(true) ? 0 : 1);  //exit status  

} 



MapReduce Use Case: Inverted Indexing 
Preliminaries 

Construction of  inverted lists for document 
search 

• Input: documents: (docid, [term, term..]), 
(docid, [term, ..]), .. 

• Output: (term, [docid, docid, …]) 

– E.g., (apple, [1, 23, 49, 127, …]) 

A document id is an internal document id, e.g., 
a unique integer 

• Not an external document id such as a url 
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Inverted Indexing: Data flow 

This page contains 

so much text

My page contains 

text too

Foo

Bar

contains: Bar

My: Bar

page : Bar

text: Bar

too: Bar

contains: Foo

much: Foo

page : Foo

so : Foo

text: Foo

This : Foo
contains: Foo, Bar

much: Foo

My: Bar

page : Foo, Bar

so : Foo

text: Foo, Bar

This : Foo

too: Bar

Reduced output

Foo map output

Bar map output



Using MapReduce to Construct Inverted Indexes 

• Each Map task is a document parser 

– Input:  A stream of documents 

– Output:  A stream of (term, docid) tuples 

» (long, 1) (ago, 1) (and, 1) … (once, 2) (upon, 2) … 

» We may create internal IDs for words. 

• Shuffle sorts tuples by key and routes tuples to Reducers 

• Reducers convert streams of keys into streams of inverted lists 

– Input: (long, 1) (long, 127) (long, 49) (long, 23) … 

– The reducer sorts the values for a key and builds an inverted list 

– Output:  (long, [frequency:492, docids:1, 23, 49, 127, …]) 
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Using Combine () to Reduce Communication 

• Map: (docid1, content1)  (t1, ilist1,1) (t2, ilist2,1) (t3, ilist3,1) … 

– Each output inverted list covers just one document 

• Combine locally 

Sort by t 

Combine:  (t1 [ilist1,2 ilist1,3 ilist1,1 …])  (t1, ilist1,27)  

– Each output inverted list covers a sequence of documents 

• Shuffle by t 

• Sort by t 

(t4, ilist4,1) (t5, ilist5,3) …  (t4, ilist4,2) (t4, ilist4,4) (t4, ilist4,1) … 

• Reduce:  (t7, [ilist7,2, ilist3,1, ilist7,4, …])  (t7, ilistfinal) 

 

ilisti,j: the j’th inverted list fragment for term i 
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Hadoop and Tools 

• Various Linux Hadoop clusters 

– Cluster +Hadoop:  http://hadoop.apache.org 

– Amazon EC2 

• Windows and other platforms 

– The NetBeans plugin simulates Hadoop 

– The workflow view works on Windows 

• Hadoop-based tools 

– For Developing in Java, NetBeans plugin 

• Pig Latin, a SQL-like high level data processing script language 

• Hive, Data warehouse, SQL 

• HBase, Distributed data store as a large table 
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http://hadoop.apache.org/

