Use of parallel matrix algorithms

for Laplace partial differential equations

A steady-state heat-flow problem on a rectangular $10 \mathrm{~cm} \times 20 \mathrm{~cm}$ metal sheet.

One edge maintains temperature of 100 degree, other three edges maintain 0 degree. What are the steady-state temperatures at interior points?

The mathematical model

Laplace equation:

$$
\frac{\partial^{2} U(x, y)}{\partial x^{2}}+\frac{\partial^{2} u(x, y)}{\partial y^{2}}=0
$$

with the boundary condition:

$$
\begin{gathered}
u(x, 0)=0, \quad u(x, 10)=0 \\
u(0, y)=0, \quad u(20, y)=100
\end{gathered}
$$

Finite difference method to solve this PDE:

- Discretize the region: Divide the function domain into a grid with gap h at each axis.
- At each point $(i h, j h)$, let $u(i h, j h)=u_{i, j}$. Setup a linear equation using an approximated formula for numerical differentiation.
- Solve the linear equations to find values of all points $u_{i, j}$.

Approximating numerical differentiation

$$
\begin{aligned}
& f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h} \text { or } f^{\prime}(x) \approx \frac{f(x)-f(x-h)}{h} \\
& f^{\prime \prime}(x) \approx \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \approx \frac{\frac{f(x+h)-f(x)}{h}+\frac{f(x)-f(x-h)}{h}}{h}
\end{aligned}
$$

Thus

$$
f^{\prime \prime}(x) \approx \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}
$$

Then

$$
\begin{aligned}
& \frac{\partial^{2} u\left(x_{i}, y_{i}\right)}{\partial x^{2}} \approx \frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{h^{2}} \\
& \frac{\partial^{2} u\left(x_{i}, y_{i}\right)}{\partial y^{2}} \approx \frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{h^{2}}
\end{aligned}
$$

Adding the above two equations

$$
u_{i+1, j}-2 u_{i j}+u_{i-1, j}+u_{i, j+1}-2 u_{i, j}+u_{i, j-1}=0
$$

Then

$$
4 u_{i, j}-u_{i+1, j}-u_{i-1, j}-u_{i, j+1}-u_{i, j-1}=0
$$

Example of Derived Linear Heat Equations

For this case: Let $u_{11}=x_{1}, u_{21}=x_{2}, u_{31}=x_{3}$.

$$
\begin{gathered}
\text { At } u_{11}, \quad 4 x_{1}-0-0-x_{2}=0 \\
\text { At } u_{21}, \quad 4 x_{2}-x_{1}-0-x_{3}-0=0 \\
\text { At } u_{31}, \quad 4 x_{3}-x_{2}-0-100-0=0 \\
{\left[\begin{array}{ccc}
4 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
100
\end{array}\right]}
\end{gathered}
$$

Solutions:

$$
x_{1}=1.786, \quad x_{2}=7.143, \quad x_{3}=26.786
$$

Linear heat equations for a general 2D grid

Given a general $(n+2) \times(n+2)$ grid, we have n^{2} equations:

$$
4 u_{i, j}-u_{i+1, j}-u_{i-1, j}-u_{i, j+1}-u_{i, j-1}=0
$$

for $1 \leq i, j \leq n$. Or express them as:

$$
u_{i, j}=\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right) / 4
$$

Example, $r=2, n=6$.

Temperature held at U_{0}

Temperature held at U_{0}

We order the unknowns as
$\left(u_{11}, u_{12}, \cdots, u_{1 n}, u_{21}, u_{22}, \cdots, u_{2 n}, \cdots, u_{n 1}, \cdots, u_{n n}\right)$

For $n=2$, the ordering is:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
u_{11} \\
u_{12} \\
u_{21} \\
u_{22}
\end{array}\right]
$$

The matrix is:

$$
\left[\begin{array}{cccc}
4 & -1 & -1 & 0 \\
-1 & 4 & 0 & -1 \\
-1 & 0 & 4 & -1 \\
0 & -1 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
u_{01}+u_{10} \\
u_{20}+u_{31} \\
u_{02}+u_{13} \\
u_{32}+u_{23}
\end{array}\right]
$$

In general, the left side matrix is:

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
T & -I & & & & \\
-I & T & -I & & & \\
& -I & T & -I & & \\
& & \ddots & \ddots & \ddots & \\
& & & & -I & T
\end{array}\right]_{n^{2} \times n^{2}}} \\
& T=\left[\begin{array}{cccccc}
4 & -1 & & & \\
-1 & 4 & -1 & & \\
& -1 & 4 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & & -1 & 4
\end{array}\right]_{n \times n}
\end{aligned}
$$

The matrix is too sparse, direct methods for solving this system takes too much time.

The Jacobi Iterative Method

Given

$$
4 u_{i, j}-u_{i+1, j}-u_{i-1, j}-u_{i, j+1}-u_{i, j-1}=0
$$

for $1 \leq i, j \leq n$.
The Jacobi program:
Repeat
For $\mathrm{i}=1$ to n
For $\mathrm{j}=1$ to n

$$
u_{i, j}^{n e w}=0.25\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right) .
$$

EndFor
EndFor
Until $\left\|u_{i j}^{\text {new }}-u_{i j}\right\|<\epsilon$

Called 5-point stencil computation as $u_{i, j}$ depends on 4 neighbors.

The Gauss-Seidel Method

Repeat

$$
u^{o l d}=u .
$$

For $\mathrm{i}=1$ to n
For $\mathrm{j}=1$ to n

$$
u_{i, j}=0.25\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right)
$$

EndFor
EndFor
Until $\left\|u_{i j}-u_{i j}^{\text {old }}\right\|<\epsilon$

Parallel Jacobi Method

Assume we have a mesh of $n \times n$ processors.
Assign $u_{i, j}$ to processor $p_{i, j}$.
The SPMD Jacobi program at processor $p_{i, j}$:
Repeat
Collect data from four neighbors: $u_{i+1, j}, u_{i-1, j}$, $u_{i, j+1}, u_{i, j-1}$ from $p_{i+1, j}, p_{i-1, j}, p_{i, j+1}, p_{i, j-1}$.

$$
u_{i, j}^{\text {new }}=0.25\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right) .
$$

$$
\operatorname{dif} f_{i, j}=\left|u_{i j}^{n e w}-u_{i j}\right|
$$

Do a global reduction to get the maximum of $\operatorname{dif} f_{i, j}$ as M.

Until $M<\epsilon$

Performance evaluation

- Each computation step takes $\omega=5$ operations.
- There are 4 communication messages to be received. Assume sequential receiving.
Communication costs $4(\alpha+\beta)$.
- Assume that the global reduction takes $(\alpha+\beta) \log n$.
- The sequential time $S e q=K \omega n^{2}$ where K is the number of steps.
- Assume
$\omega=0.5, \beta=0.1, \alpha=100, n=500, p^{2}=2500$.
- The parallel time
$P T=K(\omega+(4+\log n)(\alpha+\beta))$
Speedup $=\frac{\omega * n^{2}}{\omega+(4+\log n)(\alpha+\beta)} \approx 192$
Efficiency $=\frac{\text { Speedup }}{n^{2}}=7.7 \%$.

Grid partitioning

- Reduce the number of processors. Increase the granularity of computations.
- Map the $n \times n$ grid to processors using 2D block method.

Assume a $p \times p$ mesh, $\gamma=\frac{n}{p}$.
Example, $r=2, n=6$.

Temperature held at U_{0}

Temperature held at U_{0}

Code partitioning

Re-write the kernel part of the sequential code as:

For $b i=1$ to p
For $b j=1$ to p
For $i=\left(b_{i}-1\right) \gamma+1$ to $b_{i} \gamma$
For $j=\left(b_{j}-1\right) \gamma+1$ to $b_{j} \gamma$
$u_{i, j}^{\text {new }}=0.25\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right)$.
EndFor
EndFor
EndFor
EndFor

Parallel SPMD code

On processor $p_{b_{i}, b_{j}}$:
Repeat
Collect the data from its four neighbors.
For $i=\left(b_{i}-1\right) \gamma+1$ to $b_{i} \gamma$
For $j=\left(b_{j}-1\right) \gamma+1$ to $b_{j} \gamma$

$$
u_{i, j}^{\text {new }}=0.25\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right) .
$$

EndFor

EndFor

Compute the local maximum $\operatorname{dif} f_{b_{i}, b_{j}}$ for the difference between old values and new values.

Do a global reduction to get the maximum $\operatorname{dif} f_{b_{i}, b_{j}}$ as M.

Until $M<\epsilon$

Performance evaluation

- At each processor, each computation step takes ωr^{2} operations.
- The communication cost is $4(\alpha+r \beta)$.
- Assume that the global reduction takes
$(\alpha+\beta) \log p$.
- The number of steps is K.
- Assume $\omega=0.5, \beta=0.1, \alpha=100, n=500, r=$ $100, p^{2}=25$.

$$
\begin{gathered}
P T=K\left(r^{2} \omega+(4+\log p)(\alpha+r \beta)\right) \\
\text { Speedup }=\frac{\omega r^{2} p^{2}}{r^{2} \omega+(4+\log p)(\alpha+r \beta)} \approx 21.2 \\
\text { Efficiency }=84 \%
\end{gathered}
$$

Red-Black Ordering

Reordering variables to eliminate most of data dependence in the Gauss Seidel algorithm.

- Points are divided into "red" points (white) and black points.
- First, black points are computed (using the old red point values).
- Second, red points are computed (using the new black point values).

Parallel code for red-black ordering

- Point (i, j) is black if $\mathrm{i}+\mathrm{j}$ is even.
- Point (i, j) is red if $\mathrm{i}+\mathrm{j}$ is odd.
- Computation on black points (stage 1) can be done in parallel.
- Computation on red points (stage 2) can be done in parallel.

Parallel Code (Kernel)

- For all points (i, j) with $(\mathrm{i}+\mathrm{j}) \bmod 2=0$, do in parallel

$$
u_{i, j}=0.25\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right) .
$$

- For all points (i, j) with $(\mathrm{i}+\mathrm{j}) \bmod 2=1$, do in parallel

$$
u_{i, j}=0.25\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right) .
$$

