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CS140: Parallel Scientific 

Computing 

Class Introduction 

Tao Yang, UCSB 

Tuesday/Thursday. 11:00-12:15 GIRV 1115 
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CS 140 Course Information 

• Instructor:  Tao Yang (tyang@cs).  

 Office Hours: T/Th 10-11(or email me for appointments or 

just stop by my office). HFH building, Room 5113 

• Supercomputing consultant: Kadir Diri and Stefan Boeriu  

• TA:   Xin Jin [xin_jin@cs]. Steven Bluen [sbluen153@yahoo] 

• Text book 

 An Introduction to Parallel Programming" by Peter 

Pacheco, 2011, Morgan Kaufmann Publisher 

• Class slides/online references: 

 http://www.cs.ucsb.edu/~tyang/class/140s14  

• Discussion group:  registered students are invited to join a 

google group 

 

http://www.cs.ucsb.edu/~tyang
http://www.cs.ucsb.edu/~tyang
http://csc.cnsi.ucsb.edu/staff/diri
http://csc.cnsi.ucsb.edu/staff/diri
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Introduction 

• Why  all computers must be parallel computing 

• Why parallel processing? 

 Large Computational Science and 

Engineering (CSE)  problems require 

powerful computers 

 Commercial data-oriented computing also 

needs. 

• Why writing (fast) parallel programs is hard 

• Class Information 
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All computers use parallel computing 

 
• Web+cloud computing 

Big corporate computing 

 

• Enterprise computing 

 

 

 

 

 

 

• Home computing 

 Desktops, laptops,  

handhelds & phones 



Drivers behind high performance computing 
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Big Data Drives Computing Need Too 

 

Zettabyte = 270 ~ 1 billion Terabytes 

Exabyte = 1 million Terabytes 



Examples of Big Data 

• Web search/ads (Google, Bing, Yahoo, Ask) 

 10B+  pages crawled -> indexing 500-1000TB /day 

 10B+ queries+pageviews /day  100+ TB log 

• Social media 

 Facebook: 3B content items shared. 3B- “like”. 

300M photo upload. 500TB data ingested/day 

 Youtube:  A few billion views/day. Millions of TB. 

• NASA 

 12 data centers, 25,000 datasets.   Climate  weather 

data: 32PB  350PB  

 NASA missions stream  24TB/day. Future space 

data demand: 700 TB/second 
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Metrics in Scientific Computing World 

• High Performance Computing (HPC) units are: 

 Flop: floating point operation, usually double precision 

unless noted 

 Flop/s: floating point operations per second 

 Bytes: size of data (a double precision floating point 

number is 8) 

• Typical sizes are millions, billions, trillions… 

• Current fastest (public) machines in the world  

 Up-to-date list at www.top500.org 

 Top one has 33.86 Pflop/s using 3.12 millions of cores  

      

http://www.top500.org/
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Typical sizes are millions, billions, trillions… 

 

Mega Mflop/s = 106 flop/sec Mbyte = 220 ~ 106 bytes 

Giga Gflop/s = 109 flop/sec Gbyte = 230 ~ 109 bytes 

Tera Tflop/s = 1012 flop/sec Tbyte = 240 ~ 1012 bytes  

Peta Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes 

Exa Eflop/s = 1018 flop/sec Ebyte = 260 ~ 1018 bytes 

Zetta Zflop/s = 1021 flop/sec Zbyte = 270 ~ 1021 bytes 

Yotta Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes  

  

      



Rank Site System Cores 

Rmax 

(TFlop/s) 

Rpeak 

(TFlop/s) 

Power 

(kW) 

1  

NSCC 

China 

MilkyWay

-2 - Intel 

Xeon E5 

2.2GHz 

NUDT 

3120000 33862.7 54902.4 17808 

2 DOE/SC/Oak 

Ridge National 

Laboratory 

United States 

Titan  

AMD 

Opteron, 

2.2GHz 

NVIDIA 

K20x 

Cray Inc. 

560640 17590.0 27112.5 8209 

3 DOE/NNSA/L

LNL 

United States 

Sequoia - 

BlueGene/

Q, Power 

BQC 16C 

1.60 GHz, 

Custom 

IBM 

1572864 16324.8 20132.7 7890 

From  www.top500.org  (Nov 2013) 

http://www.top500.org/site/50365
http://www.top500.org/system/177999
http://www.top500.org/system/177999
http://www.top500.org/system/177999
http://www.top500.org/system/177999
http://www.top500.org/system/177999
http://www.top500.org/system/177999
http://www.top500.org/system/177999
http://www.top500.org/system/177999
http://www.top500.org/system/177999
http://www.top500.org/site/48553
http://www.top500.org/site/48553
http://www.top500.org/site/48553
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/site/49763
http://www.top500.org/site/49763
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/
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Why parallel computing?  Can a single high 

speed core  be used? 

• Chip density is continuing increase ~2x every 2 years 

• Clock speed is not 

• Number of processor cores may double instead 

• Power is under control, no longer growing 
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Can we just use one machine with many cores and 

big memory/storage? 

Technology trends against increasing memory per core 

• Memory performance is not keeping pace, even 

• Memory density is doubling every three years 

• Storage costs (dollars/Mbyte) are dropping gradually 

• have to use  a distributed architecture for many highend 

computing 
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 Impact of Parallelism 

• All major processor vendors are producing multicore 

chips 

 Every machine is a parallel machine 

 To keep doubling performance, parallelism must double 

• Which commercial applications can use this 

parallelism? 

 Do they have to be rewritten from scratch? 

• Will all programmers have to be parallel programmers? 

 New software model needed 

 Try to hide complexity from most programmers – 

eventually 

• Computer industry betting on this big change, but 

does not have all the answers 

Slide source: Demmel/Yelick 
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Roadmap 

• Why  all computers must be parallel computing 

• Why parallel processing? 

 Large Computational Science and 

Engineering (CSE)  problems require 

powerful computers 

 Commercial data-oriented computing also 

needs. 

• Why writing (fast) parallel programs is hard 

• Class Information 
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Examples of Challenging Computations That 

Need High Performance Computing 

• Science 
 Global climate modeling 

 Biology: genomics; protein folding; drug design 

 Astrophysical modeling 

 Computational Chemistry 

 Computational Material Sciences and Nanosciences 

• Engineering 
 Semiconductor design 

 Earthquake and structural modeling 

 Computation fluid dynamics (airplane design) 

 Combustion (engine design) 

 Crash simulation 

• Business 
 Financial and economic modeling 

 Transaction processing, web services and search engines 

• Defense 
 Nuclear weapons -- test by simulations 

 Cryptography Slide source: Demmel/Yelick 
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Economic Impact of High Performance Computing 

• Airlines: 

 System-wide logistics optimization on parallel systems. 

 Savings: approx. $100 million per airline per year. 

• Automotive design: 

 Major automotive companies use 500+ CPUs for: 

– CAD-CAM, crash testing, structural integrity and aerodynamics. 

– One company has 500+ CPU parallel system. 

 Savings: approx. $1 billion per company per year. 

• Semiconductor industry: 

 Semiconductor firms use large systems (500+ CPUs) 

for 

– device electronics simulation and logic validation  

 Savings: approx. $1 billion per company per year. 
Slide source: Demmel/Yelick 
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Global Climate Modeling 

• Problem is to compute: 

f(latitude, longitude, elevation, time)  

 “weather” = (temperature, pressure, humidity,  

                       wind velocity) 

•  Approach: 

 Discretize the domain, e.g., a measurement point every 10 km 

 Devise an algorithm to predict weather at time step 

• Uses: 

- Predict major events, e.g., 
hurricane,  El Nino 

- Use in setting air 
emissions standards 

- Evaluate global warming 
scenarios 

 Slide source: Demmel/Yelick 
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Global Climate Modeling:  Computational 

Requirements 

• One piece is modeling the fluid flow in the atmosphere 

 Solve numerical equations 

– Roughly 100 Flops per grid point with 1 minute timestep 

• Computational requirements: 

 To match real-time, need 5 x 1011 flops in 60 seconds = 8 

Gflop/s 

 Weather prediction (7 days in 24 hours)  56 Gflop/s 

 Climate prediction (50 years in 30 days)  4.8 Tflop/s 

 To use in policy negotiations (50 years in 12 hours)  288 

Tflop/s 

• To double the grid resolution, computation is 8x to 16x  

Slide source: Demmel/Yelick 



Mining and Search for Big Data 

• Identify and discover information from a massive amount of 
data 

• Business intelligence required 

 by many companies/organizations 
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Multi-tier Web Services: Search Engine 

  

Network  

Cache 

Frontend 

Client queries 
Traffic load balancer 

Cache 
Cache 

Cache 

Frontend Frontend Frontend 

 

 
 Index match 

Tier 1 

 Index match 

Tier 2 

Document 

Abstract 
Document 

Abstract 
Document 

Abstract 
Document 

description 

Ranking 
Ranking 
Ranking 
Ranking 
Ranking Rank 

Server 

Search 

Suggestion 

Advertisement 

Engine cluster 
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IDC HPC Market Study 

• International Data Corporation (IDC) is an American 

market research, analysis and advisory firm 

• HPC  covers all servers that are used for highly 

computational or data intensive tasks 

 HPC revenue for 2014 exceeded $12B  

 forecasting ~7% growth over the next 5 years 

Source: IDC July 2013 

Supercomputer 

segment:  IDC defines as 

systems $500,000 and up. 



Motif/Dwarf: Common Computational Methods   
(Red Hot  Blue Cool) 
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1 Finite State Mach.

2 Combinational

3 Graph Traversal

4 Structured Grid

5 Dense Matrix

6 Sparse Matrix

7 Spectral (FFT)

8 Dynamic Prog

9 N-Body

10 MapReduce

11 Backtrack/ B&B

12 Graphical Models

13 Unstructured Grid

What  do compute-intensive applications have in common? 



Types of Big Data Representation 

• Text, multi-media, 

social/graph data 

 

 

 

 

 

• Represented by  

weighted  feature vectors, 

matrices, graphs 

 

 
The Web 

Social graph 
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Basic Scientific Computing Algortihms 

• Matrix-vector multiplication. 

• Matrix-matrix multiplication. 

• Direct method for solving a linear equation. 

 Gaussian Elimination. 

•  Iterative method for solving a linear equation. 

 Jacobi, Gauss-Seidel. 

• Sparse linear systems and differential equations. 
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Roadmap 

• Why  all computers must be parallel computing 

• Why parallel processing? 

 Large Computational Science and 

Engineering (CSE)  problems require 

powerful computers 

 Commercial data-oriented computing also 

needs. 

• Why writing (fast) parallel programs is hard 

• Class Information 
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Principles of Parallel Computing 

• Finding enough parallelism  (Amdahl’s Law) 

• Granularity 

• Locality 

• Load balance 

• Coordination and synchronization 

• Performance modeling 

All of these things makes parallel programming 

even harder than sequential programming. 
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Overhead of Parallelism 

• Given enough parallel work, this is the biggest 

barrier to getting desired speedup 

• Parallelism overheads include: 

 cost of starting a thread or process 

 cost of accessing data, communicating shared data 

 cost of synchronizing 

 extra (redundant) computation 

• Each of these can be in the range of milliseconds   

(=millions of flops) on some systems 

• Tradeoff: Algorithm needs sufficiently large units of 

work to run fast in parallel (i.e. large granularity), but 

not so large that there is not enough parallel work  

Slide source: Demmel/Yelick 
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Locality and Parallelism 

• Large memories are slow, fast memories are small 

• Slow accesses to “remote” data or communicate with other machines 

• Algorithm should do most work on local data, and minimize communication 

overhead 

Proc 
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Slide source: Demmel/Yelick 
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Load Imbalance 

• Load imbalance is the time that some processors 

in the system are idle due to 

 insufficient parallelism (during that phase) 

 unequal size tasks 

• Examples:  tree-structured computations. 

Unstructured problems  

• Algorithm needs to balance load 

 Sometimes can determine work load, divide up 

evenly, before starting 

– “Static Load Balancing” 

 Sometimes work load changes dynamically, need to 

rebalance dynamically 

– “Dynamic Load Balancing” 

 

 

Slide source: Demmel/Yelick 
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Improving Real Performance 
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Peak Performance grows exponentially 

But efficiency (the performance relative to the 

hardware peak) has declined 

 was 40-50% on the vector supercomputers of 

1990s  

 now as little as 5-10% on parallel supercomputers 

of today 

 Close the gap through ... 

 Computing methods and algorithms that achieve 

high performance on a single processor and scale 

to thousands of processors 

 More efficient programming models and tools for 

massively parallel supercomputers 

Performance 

Gap 

Peak Performance 

Real Performance 

Slide source: Demmel/Yelick 



31 

Roadmap 

• Why  all computers must be parallel computing 

• Why parallel processing? 

 Large Computational Science and 

Engineering (CSE)  problems require 

powerful computers 

 Commercial data-oriented computing also 

needs. 

• Why writing (fast) parallel programs is hard 

• Class Information 
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Course Objective 

In depth understanding of: 

• When is parallel computing useful? 

• Understanding of parallel computing hardware 

options. 

• Overview of programming models (software) and 

tools and performance analysis 

• Some important parallel applications and the 

algorithms for scientific/data-intensive computing 
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Course Topics 

• High performance computing 

 Basics of computer architecture, clusters&cloud 

systems. Storage. 

• Parallel programming models, software/libraries 

 Task graph computation. Embarrassingly parallel, 

divide-and-conquer, and pipelining. 

   Partitioning and mapping of program/data  for 

shared memory vs distributed memory 

  Threads, MPI, MapReduce/Hadoop, and openMP if 

time permits 

• Patterns of parallelism. Optimization  techniques for  

parallelization and performance 

• Core computing algorithms in scientific and data-

intensive web applications 



34 

Class Computing Resource 

 
TSCC Cluster at San Diego Supercomputer Center  

 

Computing:  Up to 512 cores. 

 Node architecture 

• 16 cores/machine, 2.6GHz Intel Xeon E5-2670 (Sandy Bridge) 

• Memory: 64GB  per machine 

 

Network: 10GbE (QDR InfiniBand optional)  

 

Storage:  100GB/user with a backup.  

200TB shared scratch space 

 available to all users.  
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Class Computing Resource  

• Triton Shared Computing Cluster (TSCC) 

accounts: 

 Apply in week 1 

    Get a class account in Triton by emailing your 

name, UCSB email, and ssh public key with subject 

"CS140 ssh key" to scc@oit.ucsb.edu .  

 Instructions on generating ssh keys can be found in 

class webpage 

 CSIL TSCC  

Cluster at 

San Diego 

Your 

laptop 

mailto:kadir@oit.ucsb.edu
mailto:kadir@oit.ucsb.edu
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Prerequisites and  Misc Info 
 

• Prerequisites  

 Data structure and algorithms (CS 130A).  

– Graph, tree, stack, queue data structures 

– Sorting. Shortest path algorithms. Algorithm complexity 

 Programming experience with C and Java on Linux. 

– OS and programming experience! 

  Linear algebra (e.g. Math 5A or 4A)  

– Vectors, matrix. Linear equation solving. 

 Basic computer architecture (CPUs, cache, memory) 

• Class material is updated in 

http://www.cs.ucsb.edu/~tyang/class/140s14  

• Text book source code: 

http://www.cs.usfca.edu/~peter/ipp/ 

• CS140 class discussion group at Google 
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Course Workload and Challenges 

• Workload and weighting  

    2-person group homework (55%). Exams (45%). 

 4-5 homework and programming assignments. One group 

interview. 

 Midterm (May 6)  Final (June 11?) 

• Challenges 

 Textbook/documents may not represent the latest 

development: 

– Parallel system is complex. Big data/large scale computing is hard 

– Parallel computing technology evolves fast in last ten years. 

– Documentation is weak (e.g. Hadoop Mapreduce) 

 Reading with self-searching of web material is needed. 

 


