Parallel Computing: How to
Write Parallel Programs

Pacheco textbook Chapter 1

Tao Yang, UCSB CS140, 2014

' Outline

« How do we write parallel programs?
= Rewrite serial programs so that they're parallel.

« Task and data partitioning/mapping
= Examples
 What we’ll be doing.

Copyright © 2010, Elsevier
Inc. All rights Reserved

apgns JaydeyD #

How do we write parallel programs?

« Manage task and data parallelism
« Task parallelism

= Partition computations as tasks carried out solving the
problem among the cores.

« Data parallelism

= Partition the data used in solving the problem among
the cores.

= Each core carries out similar operations on it's part of
the data.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Application Example: Grading

Grading an exam with 15 questions
300 exams

Resource: 3 TAsS

How to process grading in parallel?

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Two options in division of work — data
parallelism

Option 1: Data parallelism

TAH2 TAH
TA# @

100 exams 100 exams 100 exams

Option 2: Task parallelism

TA#1 (

Questions 1 -5 \ Questions 6 - 10 Questions 11 - 15
l /
Add the question scores

Division of Work:
' Partition: .

« Task partitioning/mapping
= Divide code into a set of tasks
= Map tasks to parallel processing units (processor

cores, machines) g

« Data partitioning/mapping

= Divide data into a set of items for tasks to process

= For a distributed architecture, map data items to
physical machines

Type of parallel systems

Core 0 Core 0 Memory 0

Core 1 Core 1 Memory 1
e <
i 2
: = . z

Core p—1 Core p—1 Memory p—1
(a) (b)
Shared-memory Distributed-memory

Copyright © 2010, Elsevier
Inc. All rights Reserved

Type of parallel systems

« Shared-memory

= The cores can share access to the computer’s
memory.

= Coordinate the cores by having them examine and
update shared memory locations.

* Distributed-memory
= Each machine has its own, private memory.

= Machines must communicate explicitly by sending
messages across a network.

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Shared memory programming IS easier
« Task partitioning and mapping
= Required L/ﬂ/
program

>

T processors

« Explicit data partitioning/mapping is not required
because of shared memory

= Partitioning may be necessary for performance
optimization

Shared memorv holdlng data

pI’OCCSSOI’ I'OC@SSOI'

Parallel programming style

« SPMD -single program multiple data
= Write one program, works for different data streams

= Computation is distributed among processors, code is
executed based on a predetermined schedule.

= Each processor executes the same program but
operates on different data based on processor
identification.

« Master/slaves: One control process is called the
master (or host).

= There are a number of slaves working for this master.
= These slaves can be coded using an SPMD style.

Generic Parallel Code Structure of SPMD

Processors/processes are numberedas 0, 1, 2, ...

= Each processor executes the same program with a
unique processor ID.
— Differentiate the role of programs by their IDs

= Assume two library functions

— mynode() — returns processor ID of the program executed on
one processor.

— noproc() - returns # of processors used
Sequential code example:
= Fori=0ton-1
code for iteration |

Generic code structure of a process/processor

* my_rank=mynode(). p=noproc();
= Detect who | am.

« Scope the range of computation performed in this
processor based on my _rank and p values.

= For example, given n iterations in a sequential code
— My first_i= firstiteration to handle
— My last_i= lastiteration to handle

 Perform computation tasks under the derived scope.

Example: Sequential program

« Compute n values and add them together.
« Serial solution:

sum = 0;

for (i = 0; i < n; i++) {
¥ = Compute_next_value(. . .);
sum += X;

j

Copyright © 2010, Elsevier
Inc. All rights Reserved

Example of Parallel code

« We have p cores, p much smaller than n.
« Code for each core

= performs a partial sum of approximately n/p values.

fzg’my_sum = 0;

my_first_i = .
my_last_i = .

for (my_i = my_first_i; my_i < my_last_i; my_i++) {
my_x = Compute_next_value(. . .):
my_sSum += my_X:

% Each core uses it's own private variables

and executes this block of code
independently of the other cores.

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Example with a sample data input

* Private variable my sum contains the sum of the
values computed by its calls to Compute next value.

= EX., 8 cores, n = 24, then the calls to
Compute next value return for 8 parallel tasks:

1,43, 9,2,8, 51,1, 52,7, 2,50, 41,8, 6,51, 2,3,9

 Once all the cores are done computing their private
my sum, they form a global sum by sending results
to a designated “master” core which adds the final
result.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Coordination of task parallelism from master

Code semantic.
If my rank==0
1) Recelve

2y Accumulate

if (I'm the master core)
Sum = my_X;
for each core other than myself |
receive value from core;
sum += value;
1

} else |
send my_x to the master;

} ht © 2010, Elsevier
Inc. All rights Reserved

' Example flow with sample data input

11, 5,2,7, 2,50, 4,18, 6,51, 2,39

D

my_sum

Y

my sum 95 19 7 15 7 13 12 14

Global sum
8+19+7+15+7+13+12+14=95

Copyright © 2010, Elsevier
Inc. All rights Reserved

Weakness

Core 0 does all of the work to accumulate
sequentially.

my sum 95 19 7 15 7 13 12 14

S=x1+x2+ 23+ 24 +T5 + 6 + T7 + 2

7 steps

S=8 +x;
S =X,+X;

' Tree summation for parallel addition

Tree-based accumulation

More implementation details for tree-

tion

« Who is responsible for parallel partial accumulation?

= Work with odd and even numbered pairs of cores.
— core 0 adds its result with core 1’s result.
— Core 2 adds its result with core 3’s result. etc.

Cares
3 4 5 6 7

(13) (12) (14)

| (-
5) U
/ : :
| |
| |
I |
- .
(2 26
I\-\-"I'
l
|
|
(46

l Time

Parallel Accumulation (cont.)

Repeat the process now with only the evenly
ranked cores.

= Core 0 adds result from core 2.
= Core 4 adds result from core 6, etc.

Now cores divisible by 4 repeat the process, and
so forth, until core O has the final result.

Cares
0 2 3 5 6 7

I (1eY 1 e 4
@ 15) . 13 QTE/I 14)
| / : |
| | |
| 4| |
+(22) : /ﬁ l |
Time

9
{8

g\

-+

Multiple cores forming a global sum

Divisible
by 2
/l Y
Time

Divisible

Divisible
by 8

Copyright © 2010, Elsevier
Inc. All rights Reserved

Analysis

In the first example, the master core performs 7
receives and 7 additions.

In the second example, the master core performs 3
receives and 3 additions.

The improvement is more than a factor of 2!

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Analysis (cont.)

 The difference is more dramatic with a larger
number of cores.

 |f we have 1000 cores:

= The first example would require the master to
perform 999 receives and 999 additions.

= The second example would only require 10 receives
and 10 additions.

« That’s an improvement of almost a factor of 100!

Copyright © 2010, Elsevier
Inc. All rights Reserved

Coordination and Overhead

« Coordination is needed among parallel tasks

= Communication —one or more cores send their current
partial sums to another core.
— How to communicate?

= |oad balancing — share the work evenly among the
cores so that one is not heavily loaded.

= Synchronization — because each core works at its own
pace, make sure cores do not get too far ahead of the
rest.

« Pay attentions to overhead of coordination
= |s it worthy to add 10 numbers in 5 machines in parallel?
= Aggregation of small tasks is useful

Copyright © 2010, Elsevier
Inc. All rights Reserved

' What we’ll be doing

« Learning to write programs that are explicitly
parallel.

« Using three different extensions to C/C++.
= Message-Passing Interface (MPI)
= Posix Threads (Pthreads)
= OpenMP if time permits
« |1/O-intensive parallel data processing
= Mapreduce/Hadoop with Java

Copyright © 2010, Elsevier
Inc. All rights Reserved

Terminology

Concurrent computing —a program is one in which
multiple tasks can be in progress at any instant.

Parallel computing —a program is one in which
multiple tasks cooperate closely to solve a problem

Distributed computing —a program may need to
cooperate with other programs to solve a problem.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Concluding Remarks

« Task/data partitioning/mapping is essential for
writing parallel programs.

« Parallelism management involves coordination of
cores/machines.

« Parallel programs are usually very complex and
therefore, require sound program techniques and
development.

= Automatic parallelization is difficult.

