
Parallel Computing: How to

Write Parallel Programs

Pacheco textbook Chapter 1

Tao Yang, UCSB CS140, 2014

Copyright © 2010, Elsevier

Inc. All rights Reserved

Outline

• How do we write parallel programs?
 Rewrite serial programs so that they’re parallel.

• Task and data partitioning/mapping

 Examples

• What we’ll be doing.

#
 C

h
a
p
te

r S
u
b
title

How do we write parallel programs?

• Manage task and data parallelism

• Task parallelism

 Partition computations as tasks carried out solving the

problem among the cores.

• Data parallelism

 Partition the data used in solving the problem among

the cores.

 Each core carries out similar operations on it’s part of

the data.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Application Example: Grading

Copyright © 2010, Elsevier

Inc. All rights Reserved

Grading an exam with 15 questions

300 exams

Resource: 3 TAs

How to process grading in parallel?

Two options in division of work – data

parallelism

TA#1
TA#2 TA#3

100 exams
100 exams 100 exams

Option 1: Data parallelism

TA#1

Questions 1 - 5

TA#2

Questions 6 - 10

TA#3

Questions 11 - 15

Option 2: Task parallelism

Add the question scores

Division of Work:

Partitioning/mapping for task and data

• Task partitioning/mapping

 Divide code into a set of tasks

 Map tasks to parallel processing units (processor

cores, machines)

• Data partitioning/mapping

 Divide data into a set of items for tasks to process

 For a distributed architecture, map data items to

physical machines

program

processors
processors

processors

processors

Type of parallel systems

Copyright © 2010, Elsevier

Inc. All rights Reserved

Shared-memory Distributed-memory

Type of parallel systems

• Shared-memory

 The cores can share access to the computer’s

memory.

 Coordinate the cores by having them examine and

update shared memory locations.

• Distributed-memory

 Each machine has its own, private memory.

 Machines must communicate explicitly by sending

messages across a network.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Shared memory programming is easier

• Task partitioning and mapping

 Required

• Explicit data partitioning/mapping is not required

because of shared memory

 Partitioning may be necessary for performance

optimization

Shared memory – holding data

processor processor processor

program

processors
processors

processors

processors

Parallel programming style

• SPMD – single program multiple data

 Write one program, works for different data streams

 Computation is distributed among processors, code is

executed based on a predetermined schedule.

 Each processor executes the same program but

operates on different data based on processor

identification.

• Master/slaves: One control process is called the

master (or host).

 There are a number of slaves working for this master.

 These slaves can be coded using an SPMD style.

Generic Parallel Code Structure of SPMD

• Processors/processes are numbered as 0, 1, 2, …

 Each processor executes the same program with a

unique processor ID.

– Differentiate the role of programs by their IDs

 Assume two library functions

– mynode() – returns processor ID of the program executed on

one processor.

– noproc() - returns # of processors used

• Sequential code example:

 For i = 0 to n-1

 code for iteration I

Generic code structure of a process/processor

• my_rank= mynode(). p=noproc();

 Detect who I am.

• Scope the range of computation performed in this

processor based on my_rank and p values.

 For example, given n iterations in a sequential code

– My_first_i = first iteration to handle

– My_last_i = last iteration to handle

• Perform computation tasks under the derived scope.

Example: Sequential program

• Compute n values and add them together.

• Serial solution:

Copyright © 2010, Elsevier

Inc. All rights Reserved

Example of Parallel code

• We have p cores, p much smaller than n.

• Code for each core

 performs a partial sum of approximately n/p values.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Each core uses it’s own private variables

and executes this block of code

independently of the other cores.

Example with a sample data input

• Private variable my_sum contains the sum of the

values computed by its calls to Compute_next_value.

 Ex., 8 cores, n = 24, then the calls to

Compute_next_value return for 8 parallel tasks:

• Once all the cores are done computing their private

my_sum, they form a global sum by sending results

to a designated “master” core which adds the final

result.

 Copyright © 2010, Elsevier

Inc. All rights Reserved

1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9

Coordination of task parallelism from master

Copyright © 2010, Elsevier

Inc. All rights Reserved

Code semantic.

If my_rank==0

1) Receive

2) Accumulate

Example flow with sample data input

Copyright © 2010, Elsevier

Inc. All rights Reserved

Core 0 1 2 3 4 5 6 7

my_sum 8 19 7 15 7 13 12 14

Core 0 1 2 3 4 5 6 7

my_sum 95 19 7 15 7 13 12 14

Global sum

8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95

1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9

Core 0 does all of the work to accumulate

sequentially.

Weakness

Core 0 1 2 3 4 5 6 7

my_sum 95 19 7 15 7 13 12 14

Tree-based accumulation

Tree summation for parallel addition

More implementation details for tree-

based parallel accumulation

• Who is responsible for parallel partial accumulation?

 Work with odd and even numbered pairs of cores.

– core 0 adds its result with core 1’s result.

– Core 2 adds its result with core 3’s result, etc.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Parallel Accumulation (cont.)

• Repeat the process now with only the evenly

ranked cores.

 Core 0 adds result from core 2.

 Core 4 adds result from core 6, etc.

• Now cores divisible by 4 repeat the process, and

so forth, until core 0 has the final result.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Multiple cores forming a global sum

Copyright © 2010, Elsevier

Inc. All rights Reserved

Divisible

by 2

Divisible

by 4

Divisible

by 8

Analysis

• In the first example, the master core performs 7

receives and 7 additions.

• In the second example, the master core performs 3

receives and 3 additions.

• The improvement is more than a factor of 2!

Copyright © 2010, Elsevier

Inc. All rights Reserved

Analysis (cont.)

• The difference is more dramatic with a larger

number of cores.

• If we have 1000 cores:

 The first example would require the master to

perform 999 receives and 999 additions.

 The second example would only require 10 receives

and 10 additions.

• That’s an improvement of almost a factor of 100!

Copyright © 2010, Elsevier

Inc. All rights Reserved

Coordination and Overhead

• Coordination is needed among parallel tasks

 Communication – one or more cores send their current

partial sums to another core.

– How to communicate?

 Load balancing – share the work evenly among the

cores so that one is not heavily loaded.

 Synchronization – because each core works at its own

pace, make sure cores do not get too far ahead of the

rest.

• Pay attentions to overhead of coordination

 Is it worthy to add 10 numbers in 5 machines in parallel?

 Aggregation of small tasks is useful
Copyright © 2010, Elsevier

Inc. All rights Reserved

What we’ll be doing

• Learning to write programs that are explicitly

parallel.

• Using three different extensions to C/C++.

 Message-Passing Interface (MPI)

 Posix Threads (Pthreads)

 OpenMP if time permits

• I/O-intensive parallel data processing

 Mapreduce/Hadoop with Java

Copyright © 2010, Elsevier

Inc. All rights Reserved

Terminology

• Concurrent computing – a program is one in which

multiple tasks can be in progress at any instant.

• Parallel computing – a program is one in which

multiple tasks cooperate closely to solve a problem

• Distributed computing – a program may need to

cooperate with other programs to solve a problem.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Concluding Remarks

• Task/data partitioning/mapping is essential for

writing parallel programs.

• Parallelism management involves coordination of

cores/machines.

• Parallel programs are usually very complex and

therefore, require sound program techniques and

development.

 Automatic parallelization is difficult.

