
CS140, 2014 I-1✬

✫

✩

✪

Use of Task Graph Model for

Parallel Program Design

Detailed steps for parallel program design and

implementation

1. Preparing Parallelism

• Computational task partitioning. Aggregate

tasks when needed.

• Dependence analysis to derive a task graph

2. Mapping & Scheduling of parallelism

• Map tasks =⇒ processors (cores)

• Order execution

3. Parallel Programming

• Coding

• Debugging

4. Performance Evaluation

CS, UCSB Tao Yang

CS140, 2014 I-2✬

✫

✩

✪

Example

1. Parallelism

x = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8

a1 a2 a3 a4 a5 a6 a7 a8

+

+

+

+ + + +

2. Processor mapping and scheduling

a1 a2 a3 a4 a5 a6 a7 a8

+

+

+

P0 P1 P2 P3

1 2 3 4

5 6

7

+ + + +

Schedule

1 2 3 4

5 6

7

CS, UCSB Tao Yang

CS140, 2014 I-3✬

✫

✩

✪

Task Graphs with Scheduling

A Simple Model for Parallel Computation

- A set of Tasks ♥ ♥ ♥ ♥

- Data dependence among tasks ♥Tx
✲ ♥Ty
m

- Task Graph

w = y z

a1 a 2

a 3 a4

a1 a 2 a 3 a1 a4a 2

x x

y z

x = +

y = x + z = x +

*
w =(+ +)(+ +)

CS, UCSB Tao Yang

CS140, 2014 I-4✬

✫

✩

✪

Scheduling of task graph

Use a gantt chart to represent a schedule.

I) Assign tasks to processors.

II) Order execution within each processor. Each task

1) Receives data from parents.

2) Executes computation.

3) Sends data to children.

T1

T2 T3

T4

T1

T2 T3

T4

T1

T2

T3

T4

c = 0.5
τ =1

c = 0
τ = 1

10 0 1

The left schedule can be expressed as:

T1 T2 T3 T4

Proc Assign. 0 0 1 0

Start time 0 1 1 2

CS, UCSB Tao Yang

CS140, 2014 I-5✬

✫

✩

✪

Performance Evaluation

• Seq — Sequential Time (
∑

task weights)

• PTp — Parallel Time (Length of the schedule)

Speedup =
Seq

PTp

Efficiency =
Speedup

p

Ex.

T1

T2

T3

T4

0 1

Seq = 4 p = 2, PTp = 4

Speedup = 1

Efficiency =
1

2
= 50%

CS, UCSB Tao Yang

CS140, 2014 I-6✬

✫

✩

✪

Performance Limited by

- Parallelism availability

- Task granularity (Computation Cost
Communication Cost

)

Revisit Amdahl’s Law: Given sequential time Seq,

define α as fraction of computation that has to be done

sequentially.

Parallel time is modeled as

PTp = α Seq +
(1− α)Seq

p

Speedup =
Seq

PTp

=
1

α+ (1− α)/p

Example:

α = 0, Speedup = p

α = 0.5, Speedup =
2

1 + p−1
< 2

CS, UCSB Tao Yang

CS140, 2014 I-7✬

✫

✩

✪

Performance bounds for task graph execution

Define

• Critical path is the longest path (including

computation weights). The length of critical path

is also called Span.

• Degree of parallelism be the maximum size of

independent task sets in the graph.

• Seq = Sequential time (or called work load)

Span Law

PT ≥ Length of the critical path.

Work Law

PT ≥
Seq

p

Additionally

Speedup ≤ Degree of parallelism

CS, UCSB Tao Yang

CS140, 2014 I-8✬

✫

✩

✪

Example.

x 2

x1

x 3

x 4 x 5

τ
z

y

c

No of processors p = 2. Task weight τ = 1. Sequential

time Seq = 9. Communication cost c = 0.

Maximum independent set = {x3, y, z}.

Degree of parallelism =3.

CP = critical path = { x, x2, x3, x4, x5}.

Length(CP) = 5.

PT ≥ max(Length(CP), seq
p
) = max(5, 9

2
) = 5.

Speedup ≤ Seq

5
= 9

5
= 1.8

Speedup ≤ 3 Degree of parallelism

CS, UCSB Tao Yang

CS140, 2014 I-9✬

✫

✩

✪

Pseudo Parallel Code

• SPMD - Single Program / Multiple Data

– Data and program are distributed among

processors, code is executed based on a

predetermined schedule.

– Each processor executes the same program but

operates on different data based on processor

identification.

• Master/slaves: One control process is called the

master (or host). There are a number of slaves

working for this master. These slaves can be coded

using an SPMD style.

CS, UCSB Tao Yang

CS140, 2014 I-10✬

✫

✩

✪

Pseudo Library Functions

• mynode().

Return the processor ID. p processors are

numbered as 0, 1, 2, · · · , p− 1.

• numnodes(). Return the number of processors

allocated.

• send(data,dest).

Send data to a destination processor.

• recv(data buffer, source id) or

recv(data buffer).

Executing recv() will get a message from a

processor (or any processor) and store it in the

space specified by data buffer.

• broadcast(data).

Broadcast a message to all processors.

CS, UCSB Tao Yang

CS140, 2014 I-11✬

✫

✩

✪

Two examples of SPMD Code

• SPMD code: Print

“hello”;

Execute in 4 processors. The screen is: hello

hello

hello

hello

• SPMD code:

x=mynode();

If x > 0, then Print “hello from ” x.

Screen: hello from 1

hello from 2

hello from 3

CS, UCSB Tao Yang

CS140, 2014 I-12✬

✫

✩

✪

Example 3: Parallel Programming Steps

Sequential program:

x = a1 + a2;

y = x+ a3;

z = x+ a4;

w = y ∗ z;

Task Graph:

w = y z

a1 a 2

a 3 a4

a1 a 2 a 3 a1 a4a 2

x x

y z

x = +

y = x + z = x +

*
w =(+ +)(+ +)

Schedule:

T1

T2

T3

T4

0 1

CS, UCSB Tao Yang

CS140, 2014 I-13✬

✫

✩

✪

SPMD Code:

int i, x, y, z, w, a[5];

i = mynode();

if (i==0) then {

x=a[1]+a[2];

send(x, 1);

y=x+a[3];

receive(z);

w=y*z;

}

else{

receive(x);

z=x+a[4];

send(z,0);

}

CS, UCSB Tao Yang

CS140, 2014 I-14✬

✫

✩

✪

Example 4: Parallel Programming Steps

Sequential program:

x=3

For i = 0 to p-1.

y(i)= i*x;

Endfor

Task Graph:

0 x 1 x 2 x (p-1)x

x = 3

. . . .

Schedule:

x = 3

(p-1)x0 x 1 x 2 x
send receive

. . .

. . .

CS, UCSB Tao Yang

CS140, 2014 I-15✬

✫

✩

✪

SPMD Code:

int x,y,i;

i = mynode();

if (i==0) then { x=3;

broadcast(x); }

else receive(x);

y = i*x;

Evaluation:

Assume that each task takes one unit W and

broadcasting takes C.

Seq = (p+ 1)W, PT = W + C +W.

Speedup =
(p+ 1)W

2W + C
.

CS, UCSB Tao Yang

CS140, 2014 I-16✬

✫

✩

✪

Partial SPMD Code for Tree Summation

a1 a2 a3 a4 a5 a6 a7 a8

+

+

+

P0 P1 P2 P3

1 2 3 4

5 6

7

+ + + +

Schedule

1 2 3 4

5 6

7

me=mynode(); p= 4;

sum = sum of local numbers at this processor;

if(?for some leaf node?) Send sum to node ?f(me)?;

for i= 1 to tree depth do{

if(?I am still used in this depth?){

x=receive partial sum from node ?f(me)?;

sum = sum +x

if (?I will not be used in next depth?)

Send sum to node ?f(me)?;

}}

CS, UCSB Tao Yang

