
Collective Communication in

MPI and Advanced Features

Pacheco. Chapter 3

T. Yang, CS140 2014

Part of slides from the text book, CS267 K. Yelick

from UC Berkeley and B. Gropp, ANL

Copyright © 2010, Elsevier

Inc. All rights Reserved

Outline

• Collective group communication

• Application examples

 Pi computation

 Summation of long vectors

• More applications
 Matrix-vector multiplication

– performance evaluation

 Parallel sorting

• Safety and other MPI issues.

#
 C

h
a
p
te

r S
u
b
title

4

MPI Collective Communication

• Collective routines provide a higher-level way to

organize a parallel program

 Each process executes the same communication

operations

 Communication and computation is coordinated

among a group of processes in a communicator

 Tags are not used

 No non-blocking collective operations.

• Three classes of operations: synchronization, data

movement, collective computation.

5

Synchronization

• MPI_Barrier(comm)

• Blocks until all processes in the group of the

communicator comm call it.

• Not used often. Sometime

used in measuring

 performance and

 load balancing

6

Collective Data Movement: Broadcast,
Scatter, and Gather

A

A

A

A

Broadcast

A

B

D

C

B C D Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

Broadcast

• Data belonging to a single process is sent to all of

the processes in the communicator.

Copyright © 2010, Elsevier

Inc. All rights Reserved

8

Comments on Broadcast

• All collective operations must be called by all

processes in the communicator

• MPI_Bcast is called by both the sender (called the

root process) and the processes that are to receive

the broadcast

 MPI_Bcast is not a “multi-send”

 “root” argument is the rank of the sender; this tells

MPI which process originates the broadcast and

which receive

Copyright © 2010, Elsevier

Inc. All rights Reserved

Implementation View: A tree-structured

broadcast of a number 6 from Process 0

A version of Get_input that uses MPI_Bcast

in the trapezoidal program

Copyright © 2010, Elsevier

Inc. All rights Reserved

11

Collective Data Movement: Allgather and

AlltoAll

A

B

D

C

A B C D

A B C D

A B C D

A B C D

Allgather

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

12

Collective Computation: Reduce vs. Scan

P0

P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

R(ABCD)

R(A)

R(AB)

R(ABC)

R(ABCD)

Reduce

Scan

MPI_Reduce

Predefined reduction operators in MPI

Copyright © 2010, Elsevier

Inc. All rights Reserved

Implementation View of Global Reduction

using a tree-structured sum

Copyright © 2010, Elsevier

Inc. All rights Reserved

An alternative tree-structured global sum

Copyright © 2010, Elsevier

Inc. All rights Reserved

MPI Scan

MPI_Scan(void *sendbuf, void *recvbuf, int count,

 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);

MPI_Allreduce

• Useful in a situation in which all of the processes

need the result of a global sum in order to complete

some larger computation.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Copyright © 2010, Elsevier

Inc. All rights Reserved

A global sum followed

by distribution of the

result.

22

MPI Collective Routines: Summary

• Many Routines: Allgather, Allgatherv,

Allreduce, Alltoall, Alltoallv, Bcast,

Gather, Gatherv, Reduce, Reduce_scatter,

Scan, Scatter, Scatterv

• All versions deliver results to all participating

processes.

• V versions allow the hunks to have variable sizes.

• Allreduce, Reduce, Reduce_scatter, and Scan

take both built-in and user-defined combiner

functions.

• MPI-2 adds Alltoallw, Exscan,

intercommunicator versions of most routines

23

Example of MPI PI program using 6
Functions

• Using basic MPI functions:

 MPI_INIT

 MPI_FINALIZE

 MPI_COMM_SIZE

 MPI_COMM_RANK

• Using MPI collectives:

 MPI_BCAST

 MPI_REDUCE

Slide source: Bill Gropp, ANL

)(f
24

)ab(
)

2

ba
(f)ab(

)x(f)ab(dx)x(f

3

m

b

a











Midpoint Rule for

a b x

f(x)

xm

25

Example: PI in C - 1

#include "mpi.h"

#include <math.h>
#include <stdio.h>

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done) {

 if (myid == 0) {

 printf("Enter the number of intervals: (0 quits) ");

 scanf("%d",&n);

 }

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;

Slide source: Bill Gropp, ANL

Input and broadcast parameters

26

Example: PI in C - 2

 h = 1.0 / (double) n;

 sum = 0.0;

 for (i = myid + 1; i <= n; i += numprocs) {

 x = h * ((double)i - 0.5);

 sum += 4.0 / (1.0 + x*x);

 }

 mypi = h * sum;

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD);

 if (myid == 0)

 printf("pi is approximately %.16f, Error is .16f\n",

 pi, fabs(pi - PI25DT));

}

MPI_Finalize();

 return 0;

}
Slide source: Bill Gropp, ANL

Compute local pi values

Compute summation

Collective vs. Point-to-Point Communications

• All the processes in the communicator must call the

same collective function.

 For example, a program that attempts to match a call

to MPI_Reduce on one process with a call to

MPI_Recv on another process is erroneous, and, in all

likelihood, the program will hang or crash.

if(my_rank==0) MPI_Reduce(&a,&b,1, MPI_INT,

MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Recv(&a, MPI_INT, MPI_SUM,0,0,

MPI_COMM_WORLD);

Copyright © 2010, Elsevier

Inc. All rights Reserved

Collective vs. Point-to-Point Communications

• The arguments passed by each process to an MPI

collective communication must be “compatible.”

 For example, if one process passes in 0 as the

dest_process and another passes in 1, then the

outcome of a call to MPI_Reduce is erroneous, and,

once again, the program is likely to hang or crash.

if(my_rank==0) MPI_Reduce(&a,&b,1, MPI_INT,

MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Reduce(&a,&b,1, MPI_INT, MPI_SUM, 1,

MPI_COMM_WORLD);

Copyright © 2010, Elsevier

Inc. All rights Reserved

Example of MPI_Reduce execution

Copyright © 2010, Elsevier

Inc. All rights Reserved

Multiple calls to MPI_Reduce with MPI_SUM and

Proc 0 as destination (root)

Is b=3 on Proc 0 after two MPI_Reduce() calls?

Is d=6 on Proc 0?

Example: Output results

• However, the names of the memory locations are

irrelevant to the matching of the calls to MPI_Reduce.

• The order of the calls will determine the matching so

the value stored in b will be 1+2+1 = 4, and the value

stored in d will be 2+1+2 = 5.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Summation of Two Long Vectors

Collective Communication Application

Textbook p.109-111

Application Example: Distributed

Summation of Two Long Vectors

Copyright © 2010, Elsevier

Inc. All rights Reserved

Sequential code for computing a vector sum.

Parallel implementation of vector addition

Copyright © 2010, Elsevier

Inc. All rights Reserved

1. Divide each vector into n subvectors and distribute data

2. Add two subvectors at each process in parallel.

3. Gather the sum subvector from each process.

Read two input vectors

Add #1

subvectors

Add #2

subvectors

Add #n

subvectors …

Gather subvectors

Partitioning options for distributing

vectors

• Block partitioning

 Assign blocks of consecutive components to each

process.

• Cyclic partitioning

 Assign components in a round robin fashion.

• Block-cyclic partitioning

 Use a cyclic distribution of blocks of components.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Partitioning examples for data distribution

Copyright © 2010, Elsevier

Inc. All rights Reserved

Each vector is divided into 12 subvectors

and then distributed to 3 processes

Local code for subvector addition

Copyright © 2010, Elsevier

Inc. All rights Reserved

Scatter

for data

distribution

• MPI_Scatter can be used in a function that reads in

an entire vector on process 0 but only sends the

needed components to each of the other processes.

Copyright © 2010, Elsevier

Inc. All rights Reserved

A

B

D

C

B C D Scatter

Gather

A P0

P1

P2

P3

Reading and distributing a vector

Copyright © 2010, Elsevier

Inc. All rights Reserved

Gather

data from

everybody

• Collect all of the components of the vector onto

process 0, and then process 0 can process all of the

components.

Copyright © 2010, Elsevier

Inc. All rights Reserved

A

B

D

C

B C D Scatter

Gather

A P0

P1

P2

P3

MPI code to gather and print a distributed

vector

Copyright © 2010, Elsevier

Inc. All rights Reserved

Gather and print a distributed vector (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Parallel Matrix Vector Multiplication

Collective Communication Application

Textbook p. 113-116

Matrix-vector multiplication: y= A * x

Partitioning and Task graph for matrix-vector

multiplication

yi= Row Ai * x

Execution Schedule and Task Mapping

yi= Row Ai
* x

Data Partitioning and Mapping for y= A*x

SPMD Code for y= A*x

Evaluation: Parallel Time

•Ignore the cost of local address

calculation.

•Each task performs n additions and n

multiplications.

•Each addition/multiplication costs ω

•The parallel time is approximately

How is initial data distributed?

Assume initially matrix A and vector x are distributed

evenly among processes

Need to redistribute vector x to everybody in order to perform

parallel computation!

What MPI collective communication is needed?

Communication Pattern for Data Redistribution

Data requirement for

Process 0

Data requirement for

all processes

MPI_Gather

MPI_Allgather

MPI Code for Gathering Data

Data gather for

Process 0

Repeat for all processes

Allgather

• Concatenates the contents of each process’

send_buf_p and stores this in each process’

recv_buf_p.

• As usual, recv_count is the amount of data being

received from each process.

Copyright © 2010, Elsevier

Inc. All rights Reserved

A

B

D

C

A B C D

A B C D

A B C D

A B C D

Allgather

MPI SPMD Code for y=A*x

MPI SPMD Code for y=A*x

Text book solution for y=A*x. Page 114

i-th component of y
Dot product of the ith

row of A with x.

Use one dimensional C array to represent

2D matrix

Copyright © 2010, Elsevier

Inc. All rights Reserved

stored as

Sequential code for y=A*x

Copyright © 2010, Elsevier

Inc. All rights Reserved

Textbook MPI code for matrix-vector

multiplication

Copyright © 2010, Elsevier

Inc. All rights Reserved

Textbook MPI code for y=A*x

Copyright © 2010, Elsevier

Inc. All rights Reserved

Performance Evaluation of

Matrix Vector Multiplication

Copyright © 2010, Elsevier

Inc. All rights Reserved

How to measure elapsed parallel time

• Use MPI_Wtime() that returns the number of seconds

that have elapsed since some time in the past.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Measure elapsed sequential time in Linux

• This code works for Linux without using MPI functions

• Use GET_TIME() which returns time in microseconds

elapsed from some point in the past.

• Sample code for GET_TIME()

 #include <sys/time.h>

/* The argument now should be a double (not a pointer to a

double) */

 #define GET_TIME(now) {

 struct timeval t;

 gettimeofday(&t, NULL);

 now = t.tv_sec + t.tv_usec/1000000.0;

 }

Measure elapsed sequential time

Copyright © 2010, Elsevier

Inc. All rights Reserved

Use MPI_Barrier() before time measurement

Start timing until every process in the communicator has

reached the same time stamp

Run-times of serial and parallel matrix-vector

multiplication

Copyright © 2010, Elsevier

Inc. All rights Reserved

(Seconds)

Speedup and Efficiency

Copyright © 2010, Elsevier

Inc. All rights Reserved

Speedups of Parallel Matrix-Vector

Multiplication

Copyright © 2010, Elsevier

Inc. All rights Reserved

Efficiencies of Parallel Matrix-Vector

Multiplication

Copyright © 2010, Elsevier

Inc. All rights Reserved

Scalability

• A program is scalable if the problem size can be

increased at a rate so that the efficiency doesn’t

decrease as the number of processes increase.

• Programs that can maintain a constant efficiency

without increasing the problem size are sometimes

said to be strongly scalable.

• Programs that can maintain a constant efficiency if the

problem size increases at the same rate as the number

of processes are sometimes said to be weakly

scalable.

•

Copyright © 2010, Elsevier

Inc. All rights Reserved

A PARALLEL SORTING

ALGORITHM

Copyright © 2010, Elsevier

Inc. All rights Reserved

Textbook p. 127-136

Sorting

• n keys and p = # of processes.

• n/p keys assigned to each process.

• When the algorithm terminates:

 The keys assigned to each process should be

sorted in (say) increasing order.

 If 0 ≤ q < r < p, then each key assigned to process q

should be less than or equal to every key assigned

to process r.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Simple bubble sort with pairwise swaps

Odd-even sort

• Expose more parallelism with pairwise swaps

 Also called Odd-even transposition sort or brick sort.

• Algorithm: Repeat at most n phases

 Even phases, compare swaps:

 Odd phases, compare swaps:

 Complexity: best case O(n). Worst case O(n2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Example of odd-even sort

Start: 3, 6, 2, 1, 4, 7, 5, 0

Even phase: compare-swap (3,6), (2,1), (4,7), (5,0)

 getting the list 3, 6, 1, 2, 4, 7, 0, 5

Odd phase: compare-swap (6,1), (2,4), (7,0)

Sequential odd-even sort

Copyright © 2010, Elsevier

Inc. All rights Reserved

Communications among tasks in odd-even sort

Copyright © 2010, Elsevier

Inc. All rights Reserved

Computation contains a set of tasks

Each task handling a[i] is labeled with ‘”a[i]”.

Parallel odd-even sort for n keys and p

processes (n=p)

• Weakness

 When n>>p, modify to let each process handle n/p keys

 Too much communication overhead with key-level fine-

grain data exchange/swap

Parallel odd-even sort for n keys and p

processes (n >> p)

 P0 P1 P2 P3

 13 7 12 8 5 4 6 1 3 9 2 10

Local sort

 7 12 13 4 5 8 1 3 6 2 9 10

Process-level exchange/swap

 4 5 7 8 12 13 1 2 3 6 9 10

 4 5 7 1 2 3 8 12 13 6 9 10

 1 2 3 4 5 7 6 8 9 10 12 13

SORTED: 1 2 3 4 5 6 7 8 9 10 12 13

Parallel odd-even sort of n keys with p

processes

• Each process owns n/p keys.

• First each process sorts its keys locally in parallel.

 E.g. call C library qsort for quick sorting

• Repeat at most p phases

 Even phases, process with even ID exchanges data

with odd ID and swaps keys

– (P0, P1), (P2, P3), (P4, P5) …

 Odd phases, compare swaps:

– (P1, P2), (P3, P4), (P5, P6) …

Textbook example of parallel odd-even sort

Copyright © 2010, Elsevier

Inc. All rights Reserved

Parallel time of odd-even sort

• Total cost

 Local sorting using the best algorithm.

 At most p phases
– Neighbor process data exchanges of n/p keys

– Merge and split two n/p key lists

• Tpar = (local sort) + (p data exchanges)

 + (p merges/splits)

 = O((n/p)log(n/p)) + p*O(n/p) + p*O(n/p)

 = O((n/p)log(n/p)) + O(2n)

Pseudo-code

Copyright © 2010, Elsevier

Inc. All rights Reserved

Comm_sz= # of processes

Compute_partner(phase,my_rank)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Merge/split in parallel odd-even sort

Copyright © 2010, Elsevier

Inc. All rights Reserved

Safety Issues in MPI programs

Safety in MPI programs

• The MPI standard allows MPI_Send to behave in

two different ways:

 it can simply copy the message into an MPI

managed buffer and return,

 or it can block until the matching call to MPI_Recv

starts.

Copyright © 2010, Elsevier

Inc. All rights Reserved

88

Buffer a message implicitly during MPI_Send()

• When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Slide source: Bill Gropp, ANL

89

Avoiding Buffering

• Avoiding copies uses less memory

• May use more or less time

MPI_Send() waits until a matching receive is

executed.

Process 0 Process 1

User data

User data

the network

Slide source: Bill Gropp, ANL

Safety in MPI programs

• Many implementations of MPI set a threshold at which

the system switches from buffering to blocking.

 Relatively small messages will be buffered by

MPI_Send.

 Larger messages, will cause it to block.

Copyright © 2010, Elsevier

Inc. All rights Reserved

• If the MPI_Send() executed by each process blocks,

no process will be able to start executing a call to

MPI_Recv, and the program will hang or deadlock.

 Each process is blocked waiting for an event that will

never happen.

91

• Assume tag/process ID is assigne properly.

Will there be a deadlock?

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

Slide source: Bill Gropp, ANL

92

• Send a large message from process 0 to process
1

 If there is insufficient storage at the destination, the
send must wait for the user to provide the memory
space (through a receive)

• What happens with this code?

Example of unsafe MPI code with

possible deadlocks

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This is called “unsafe” because it depends on
the availability of system buffers in which to
store the data sent until it can be received

Slide source: Bill Gropp, ANL

Safety in MPI programs

• A program that relies on MPI provided buffering is

said to be unsafe.

• Such a program may run without problems for

various sets of input, but it may hang or crash with

other sets.

Copyright © 2010, Elsevier

Inc. All rights Reserved

How can we tell if a program is unsafe

• Replace MPI_Send() with MPI_Ssend()

• The extra “s” stands for synchronous and MPI_Ssend is

guaranteed to block until the matching receive starts.

• If the new program does not hang/crash, the original

program is safe.

• MPI_Send() and MPI_Ssend() have the same arguments

Copyright © 2010, Elsevier

Inc. All rights Reserved

95

Some Solutions to the “unsafe” Problem

• Order the operations more carefully:

• Simultaneous send and receive in one call

Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

Slide source: Bill Gropp, ANL

Restructuring communication in odd-

even sort

Copyright © 2010, Elsevier

Inc. All rights Reserved

Uncertainty with five processes

Copyright © 2010, Elsevier

Inc. All rights Reserved

Use MPI_Sendrecv()

 to conduct a blocking send and a receive in a

single call.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Use MPI_Sendrecv() in odd-even sort

• An alternative to scheduling determinstic

communications
 The dest and the source can be the same or different.

 Send and receive datatypes may be different

 Can use Sendrecv with plain Send or Recv (or Irecv or Ssend_init, …)

• Ensure safer communication behavior so that the

program won’t hang or crash.

MPI_Sendrecv(

mykeys, n/comm_sz, MPI_INT, partner,0,

recvkeys,n/comm_sz, MPI_INT, partner, 0,

comm, MPI_Status_ignore)
Copyright © 2010, Elsevier

Inc. All rights Reserved

100

More Solutions to the “unsafe”

Problem

• Supply own space as buffer for send

• Use non-blocking operations:

Process 0

Bsend(1)

Recv(1)

Process 1

Bsend(0)

Recv(0)

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall

Run-times of parallel odd-even sort

Copyright © 2010, Elsevier

Inc. All rights Reserved

(times are in milliseconds)

Concluding Remarks (1)

• MPI works in C, C++, or Fortran.

• A communicator is a collection of processes that

can send messages to each other.

• Many parallel programs use the SPMD approach.

• Most serial programs are deterministic: if we run the

same program with the same input we’ll get the same

output.

 Parallel programs often don’t possess this property.

• Collective communications involve all the

processes in a communicator.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Concluding Remarks (2)

• Performance evaluation

 Use elapsed time or “wall clock time”.

 Speedup = sequential/parallel time

 Efficiency = Speedup/ p

 If it’s possible to increase the problem size (n) so

that the efficiency doesn’t decrease as p is

increased, a parallel program is said to be scalable.

• An MPI program is unsafe if its correct behavior

depends on the fact that MPI_Send is buffering its

input.

Copyright © 2010, Elsevier

Inc. All rights Reserved

