Collective Communication In
MPI| and Advanced Features

Pacheco. Chapter 3

T. Yang, CS140 2014

Part of slides from the text book, CS267 K. Yelick
from UC Berkeley and B. Gropp, ANL

Outline

« Collective group communication

* Application examples
= Pi computation
= Summation of long vectors

More applications

= Matrix-vector multiplication
— performance evaluation

= Parallel sorting
Safety and other MPI issues.

Copyright © 2010, Elsevier
Inc. All rights Reserved

apgns JaydeyD #

MPI Collective Communication

« Collective routines provide a higher-level way to
organize a parallel program

= Each process executes the same communication
operations

= Communication and computation is coordinated
among a group of processes in a communicator

= Tags are not used
= No non-blocking collective operations.

 Three classes of operations: synchronization, data
movement, collective computation.

Synchronization

* MPI Barrier(comm)

« Blocks until all processes in the group of the
communicator comm call it.

MP_Barrier])

* Not used often. Sometime ©
used in measuring O
performance and © o

load balancing

olololo}

T3

T7

T4

MPI_Barmier()

ORNOIO

10L0J010

’ Collective Data Movement: Broadcast,
Scatter, and Gather

PO
p1 Broadcast,

P2
P3

PO Scatter
P1

P2
P3

Gather

Before MPI_Bcast

B r O ad C aS t Process | Process 2 Process 3 Process 4

After MPI_Bcast

Process | Process 2 Process 3 Process 4

10 1110|110 (] 10

« Data belonging to a single process is sent to all of
the processes in the communicator.

int MPI Bcast(

void = data_p /+ in/out */.
int count /+ 0N */
MPI Datatype datatype VER D/ */
int source_proc /+ 0N #/
MPI Comm Comm /+ IR /)

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Comments on Broadcast

« All collective operations must be called by all
processes in the communicator

« MPI_Bcast is called by both the sender (called the
root process) and the processes that are to receive
the broadcast

= MPI_Bcast is not a “multi-send”

= “root” argument is the rank of the sender; this tells

MPI which process originates the broadcast and
which receive @

0JOJOJOXOXOXO N

Implementation View: A tree-structured

Sy

3 4 5
Processes

Copyright © 2010, Elsevier
Inc. All rights Reserved

A version of Get_input that uses MPI_Bcast
In the trapezoidal program

void Get input(
int my_rank /% in %/,
int comm_sz J/+ Iin %/,

;

doublex 2 p
double+ b p
intx n_p

f+ out /.,
S+ out #/,
[+ out /) {

if (my_rank == 0) |
printf("Enter a, b, and n\n");
scanf("%1f %1f %d", a_p. b_p, n_p):

h

MPI_Bcast(a_p., 1.
MPI_Bcast(b_p, 1,
MPI_Bcast(n_p, 1,

J+ Get_input #/

MPI DOUBLE, 0, MPI COMM WORLD);
MPI_DOUBLE, O, MPI_COMM_WORLD);
MPI_INT, 0O, MPI_COMM WORLD):

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Collective Data Movement: Allgather and
AlltoAll

PO
p1 Allgather

P2
P3

PO
P1 Alltoall

P2
P3

11

Collective Computation: Reduce vs. Scan

PO
p1 Reduce

P2
P3

PO

Scan

P2
P3

12

MPI| Reduce

Process | Process 2

Before MPI_Reduce

Process 3 Process 4

1 2

3 +

After MPI_Reduce

Process 1 Process 2

Process 3 Process 4

10
int MPI Reduce (
void = input _data_p [0in x/,
void output_data p 7/ out */,
int count lw o 0in ®/,
MPI_Datatype datatype lx 0in %/,
MPI_Op operator S 0in %/,
int dest_process [0in */,
MPI Comm comm f#= 0In /)

MPI_ Reduce(&local int,
MPI_ COMM_WORLD):

&total int,

1.

MPI_DOUBLE ,

MPI SUM,

0,

MPI Reduce(local _x, sum,
MPI_ COMM WORLD):

double local x[WN]. sum|[N]:

N,

MPI_DOUBLE ,

MPI_SUM, 0,

Predefined reduction operators in MPI

Operation Value | Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical and

MPI_BAND Bitwise and

MPI_LOR Logical or

MPI_BOR Bitwise or

MPI_LXOR Logical exclusive or

MPI_BXOR Bitwise exclusive or

MPI_MAXLOC Maximum and location of maximum
MPI_MINLOC Minimum and location of minimum

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Implementation View of Global Reduction

—H%—ML@%LLUGI—U!’Q’J =LA

Processes

Copyright © 2010, Elsevier
Inc. All rights Reserved

' An alternative tree-structured global sum

Processes

Copyright © 2010, Elsevier
Inc. All rights Reserved

MPI Scan

MPI Scan(void *sendbuf, void *recvbuf, int count,
MPI Datatype datatype, MPI Op op, MPI Comm comm);

Before MPI_Scan

Process 1 Process 2 Process 3 Process 4

IR

After MPI_Scan

Process 1 Process 2 Process 3 Process 4

Lo]

Before MPI_Allreduce

Process 2

Process 3

MPI_Allreduce 1 > 15 1[4
. Afte‘r‘MPI_Al)lre‘:‘duce n
10 10 || 10 10

« Useful in a situation in which all of the processes
need the result of a global sum in order to complete
some larger computation.

int MPI Allreduce(
void =
void =
int
MPI Datatype
MPI_Op
MPI Comm

input_data_p

output_data_p

count

datatype
operator
comm

/
/
/
/
/
/

in
out
In
in
in
in

Copyright ©

x/
w/
#/
#/
#/
/) ;

2010, Elsevier

Inc. All rights Reserved

Processes

A global sum followed
by distribution of the
result.

) ©

C(%) 1 G29> 3 Céls:) 5 C;;) 7

Processes

Copyright © 2010, Elsevier
Inc. All rights Reserved

MPI| Collective Routines: Summary

« Many Routines: Allgather, Allgatherv,

Allreduce, Alltoall, Alltoallwv, Bcast,
Gather, Gatherv, Reduce, Reduce scatter,
Scan, Scatter, Scatterv

All versions deliver results to all participating
processes.

V versions allow the hunks to have variable sizes.

. Allreduce,Reduce,Reduce_scatterﬁmujScan

take both built-in and user-defined combiner
functions.

MPI-2 adds Alltoallw, Exscan,
Intercommunicator versions of most routines

22

Example of MPI Pl program using 6

Functions 1
-1
=4 d
) ./n 1+ o T

« Using basic MPI functions:

= MPI_INIT

= MPI FINALIZE

= MPI _COMM SIZE

= MPI COMM RANK
 Using MPI collectives:

= MPI_ BCAST

= MPI_REDUCE

Slide source: Bill Gropp, ANL

23

Midpoint Rule for :rr=4fn

Iff(x)dxz(b—a)f(xm)

A

e

\ \ _nnN i
% -

H/

a

m

1

f_01+$2”21 i=05)2

1=1

xample: PlinC-1

#include <math.h>
#include <stdio.h>

int main(int argc, char *argv][])

{

|
#include "mpi.h" = f — dm
i

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;

MPI Init(&argc, &argv);

MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI_ COMM WORLD, &myid) ;

while ('done) {
if (myid == 0) {
printf ("Enter the number of intervals: (0 quits) ");
scanf ("%d", &n) ;
}
MPI Bcast(&n, 1, MPI_INT, 0, MPI_COMM WORLD) ;
if (n == 0) break;

Input and broadcast parameters

Slide source: Bill Gropp, ANL

25

xample: PlinC-2

h =1.0/ (double) n; Compute local pi valugs
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);
}

mypi = h * sum;

PI Reduce(&mypi, &pi, 1, MPI DOUBLE, MPI SUM, O,
MPI_COMM WORLD); Compute summation
if (myid == 0)
printf ("pi is approximately %.16f, Error is .16f\n",
pi, fabs(pi - PI25DT));

}
MPI Finalize();

return O;
} Slide source: Bill Gropp, ANL 26

’ Collective vs. Point-to-Point Communications

« All the processes in the communicator must call the
same collective function.

= For example, a program that attempts to match a call
to MPI_Reduce on one process with a call to
MPI_ Recv on another process is erroneous, and, in all
likelihood, the program will hang or crash.

If(my_rank==0) MPI Reduce(&a,&b,1, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Recv(&a, MPI_INT, MPI_SUM,0,0,
MPI_COMM_WORLD);

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Collective vs. Point-to-Point Communications

« The arguments passed by each process to an MPI
collective communication must be “compatible.”

= For example, if one process passes in 0 as the
dest process and another passes in 1, then the
outcome of a call to MP| Reduce is erroneous, and,
once again, the program is likely to hang or crash.

If(my_rank==0) MPI_Reduce(&a,&b,1, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);,

else MPl_Reduce(&a,&b,1, MPI_INT, MPI_SUM, 1,
MPI_COMM_WORLD);

Copyright © 2010, Elsevier
Inc. All rights Reserved

Example of MPI_Reduce execution

Time || Process O Process 1 Process 2
0 a=1, ¢c =2 a=1; c¢c=2 a=1;, c=2
[MPI_Reduce(&a, &b, ... MPI_Reduce(&c, &d, ... MPI_Reduce (&a, &b, ...
2 MPI_Reduce(&c, &d, ... MPI_Reduce(&a, &b, ... MPI_Reduce (&c, &d, ...

Multiple calls to MPI_Reduce with MPl_SUM and
Proc O as destination (root)

Is b=3 on Proc 0 after two MPI_Reduce() calls?
Is d=6 on Proc 0?7

Copyright © 2010, Elsevier
Inc. All rights Reserved

Example: Output results

 However, the names of the memory locations are
Irrelevant to the matching of the calls to MP| Reduce.

e The order of the calls will determine the matching so
the value stored in b will be 1+2+1 = 4, and the value

stored in d will be 2+1+2 = 5.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Summation of Two Long Vectors

Collective Communication Application
Textbook p.109-111

Application Example: Distributed
Summation of Two Lonhg Vectors

X+V = (.m,x],...,rn_l)—l- (}‘-ﬂ,}-‘],.---,}’n—l)
= (X0 +Y0:X1 +V1se- s Xn—1+Vn-1)
= (20,21 +++2n—1)
= Z

Sequential code for computing a vector sum.

void Vector_sum(double x[], double y[], double z[], int n) |{

int i:
for (1 = 0:; 1 < n: 1++)
z[i] = x[i] + vlil:

p /= Vector_sum =/

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Parallel implementation of vector addition

1. Divide each vector into n subvectors and distribute data
2. Add two subvectors at each process in parallel.
3. Gather the sum subvector from each process.

[Read two mput vectors }

Add #1 Add #2 [Add n }
subvectors subvectors . subvectors

/////

[Gather subvectors }

Copyright © 2010, Elsevier
Inc. All rights Reserved

Partitioning options for distributing

A A I =4

* Block partitioning

= Assign blocks of consecutive components to each
process.

« Cyclic partitioning
= Assign components in a round robin fashion.
« Block-cyclic partitioning
= Use a cyclic distribution of blocks of components.

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Partitioning examples for data distribution

Each vector 1s divided into 12 subvectors
and then distributed to 3 processes

Components
Block-cyclic
Process Block Cyclic Blocksize = 2
0 0111213 J0(3[6]9 ||0]1] 67
I 41516 | 7|14y 7110]|2]3] 8|9
2 S191107 11 (|2 (5|8 |11 ||4]|5[10]11

Copyright © 2010, Elsevier
Inc. All rights Reserved

Local code for subvector addition

void Parallel vector_ sum(

double local x|] /= in */,
double local y|[] /=« in =/,
double local z|[] /= out =*/.
int local n [in x/) |
int local 1i;
for (local i = 0; local i < local n; local i++)
local_z[local_i] = local_x|local_i] + local_yllocal_il;

} /= Parallel_vector_sum */

Copyright © 2010, Elsevier
Inc. All rights Reserved

Scatter p1
for data P2
distribution P3

Scatter |

Gather

<«

« MPI_Scatter can be used in a function that reads in
an entire vector on process 0 but only sends the
needed components to each of the other processes.

int MPI Scatter(
void
int
MPI_Datatype
void «
int
MPI_Datatype
int
MPI Comm

send_buf p
send_count
send_type
recv_buf p
recv_count
recv_type
src_proc
comm

Pl T R T T S

<IN
£ 0N
- 0n
< out
<IN
£ 0N
£ 1IN
£ 0N

w/
/.,
w7
/.
w/ .
/.
w7
*/)

Copyright © 2010, Elsevier
Inc. All rights Reserved

Reading and distributing a vector

void Read vector(

double local _al] /+ out */.
int local n [+ in */.
int n /+ IR w/
char vec_name|[] /% in /.
int my_rank /v in %/,
MPI_Comm comm l# in x=/) |

double+ 2z = NULL:
int i:

if (my_rank = 0) {

a = malloc(n=sizeof (double));

printf("Enter the vector %s\n",

for (1 = 0: 1 < n: 1++)
scanf("%1f", &al[i]);

vec_name);

local n., MPI_DOUBLE,

MPI Scatter(a, local n, MPI DOUBLE,

0, comm);
free(z):

I oelse |
MPI Scatter(a. local n, MPI DOUBLE,

0, comm);

Read_vector =+/

local a,

local a, local n, MPI DOUBLE,

Copyright © 2010, Elsevier
Inc. All rights Reserved

PO
Gather B1

tata-from P2
everybody 3

Scatter

Gather

<«

« Collect all of the components of the vector onto
process 0, and then process 0 can process all of the

components.

int MPI Gather(
void =
int
MPI_Datatype
void =
int
MPI Datatype
int
MPI Comm

send_buf p
send count
send_type

recv_buf_ p
recv_count
recv_type

dest_proc

comm

proBieo Bibe. v, v Bl Bl iy

in
in
in
out
in
in
in
in

#/

#/

#/

#/

w/

w/

w/

#/)

Copyright © 2010, Elsevier
Inc. All rights Reserved

MPI code to gather and print a distributed

A A A~ |

void Print vector(

double local b[]
int local n
int n

char title|]
int my_rank

MFI Comm comm

double+ b = NULL:
int i:

T T T T

in
in
in
in
in
in

w/
x/
#/
x/
#/
x/) 4

Copyright © 2010, Elsevier
Inc. All rights Reserved

}

Gather and print a distributed vector (2)

if (ny_rank == 0) {
b = malloc(n+sizeof (double)):
MPI Gather(local b, local n, MPI DOUBLE, b, local n, MPI DOUBLE,

0, comm);
printf("%s\n", title);
for (1 = 0: 1 < n: 1i++)

printf("%f ", bli]):
printf("\n");
free(b):

} else |
MPI Gather(local b, local n, MPI DOUBLE, b, local n, MPI DOUBLE,

0, comm);

1

/+« Print_vector =#/

Copyright © 2010, Elsevier
Inc. All rights Reserved

Parallel Matrix Vector Multiplication

Collective Communication Application
Textbook p. 113-116

Matrix-vector multiplication: y=A * X

(1 23\ (1) [1+14+2+2+3%3) [14)
4 5 6 | x| 2 = | 4%x14+5%x24+6%*3 =1 32

\78 9/ \3) \7+«14+8%24+9%3 /) \50)

Problem: y = A x x where A is a n X n matrix

and x 1s a column vector of dimension 7.

Sequential code:

for i =1 to n do
yi = 0;
for j =1 tondo
Yi = Y;i + Q445 * T3

endfor

endfor

Partitioning and Task graph for matrix-vector

multiptication

Partitioned code:

for 2 =1 to n do
Sit Y =0;

for y =1 to n do
Yi = Y; + Qi *Tj;

endfor

endfor

S; ;' Read row A; and vector .
_ y,=Row A, *x
Write element y;

Task graph:

& & O &

Execution Schedule and Task Mapping

S; : Read row A; and vector x.
, y=RowA, "x
Write element y;

Task graph:

& & O &

Schedule:
0 1 p—1

S1 Sr+12|
s2 |sr+

sr | S2r Sn

Mapping function of tasks S;:

proc_map(i) = [=2] where r = [2].

Data Partitioning and Mapping for y= A*x

Data partitioning: for the above schedule:

Matrix A is divided into n rows A, As,--- A,,.

Local space

proc 0

proc 1

WN=0 N o

Data mapping:

Row A; is mapped to processor proc_map(i), the
same as task 7. The indexing function is:
local(i) = (i — 1) mod r. Vectors = and y are

replicated to all processors.

SPMD Code for y= A*x

Schedule:
0 1 -1
S1 Sr+12|
S2 |Sr+
int x[n], y[n|, a[r][n];
me=mynode(); sr | S2r Sn
for i =1ton do
if proc_map(i) == me, then do S;:

Si . y[z] — 0;
for 1 =1 ton do
yli] = yli] + allocal(i)][] * z[7];

endfor

endfor

' Evaluation: Parallel Time

*Ignore the cost of local address
calculation.

*Each task performs » additions and »
multiplications.

*Each addition/multiplication costs ®

*The parallel time is approximately " X 20w

P

How Is Initial data distributed?

Assume initially matrix A and vector x are distributed
evenly among processes

A x

Proc 0

Proc 1

Proc 2

Proc 3

Need to redistribute vector x to everybody in order to perform
parallel computation!
What MPI collective communication 1s needed?

' Communication Pattern for Data Redistribution

Data requirement for
Process 0

Data requirement for
all processes

Proc 0

Proc 1

Proc 2

Proc 3

Proc 0

Proc 1

Proc 2

Proc 3

x3

MPI Gather

MPI_Allgather

MPI| Code for Gathering Data

Data gather for float local_x[]: /*local storage for x*/
Process 0 float global_x[]; /*storage for all of xx*/

MPI_Gather(local_x, n/p, MPI_FLOAT,
global_x, n/p, MPI_FLOAT,
0, MPI_COMM_WORLD);

Repeat for all processes
It is the same as:

MPI_A11_gather(local_x, n/p, MPI_FLOAT,
global_x, n/p, MPI_FLOAT,
MPI_COMM_WORLD) ;

Allgather Allgather

 Concatenates the contents of each process’
send buf p and stores this in each process’
recv_buf _p.

 As usual, recv_count is the amount of data being
received from each process.

int MPI_Allgather(

void = send_buf_p /% in =/,

int send count /% in */,
MPI_Datatype send_type J+ 0in */,
void * recv_buf_ p /+ out =/,
int recv_count /% in %/,
MPI_Datatype recv_type l+ 0in */,
MPI Comm comm f= 0n #/):

Copyright © 2010, Elsevier
Inc. All rights Reserved

MPI SPMD Code for y=A*x

void Parallel_matrix_vector_prod(A
LOCAL_MATRIX_T 1local_A Proc 0 _
int m Proc 1
int n Proc 2
float local_x[] o
float global _x[]
float local_y[.
int local_m)
int local_n) {

/* local_m = n/p, local_n = n/p */

MPI_Allgather(local_x, local_n, MPI_FLOAT
global_x, local_n, MPI_FLOAT,
MPI_COMM_WORLD) ;

MPI SPMD Code for y=A*x

for (i = 0; 1 < local_m; i++) {
local_y[i] = 0.0;
for (j = 0; j < m; j++)
local_y[i] = local_y[i] +
local_A[i] [jl*global_x[j];

} A x

Proc 1

Proc 2

Proc 3

Text book solution for y=A*x. Page 114

A = (ajj) 1s an m x n matrix
X 18 a vector with n components

ano apt | 0| dop—1 VO
ayQ arr || artpr |7 xp | Vi
X1 | :
djp daip || dip—1 Yo yi=daipYo+aiXi+ - dip_1Xn—1
Xn—1 | :
Um—1.0 | dm—1.1 | "~ | dm—1.n—1 Vm—1

Vi = djpX0 T dj1X] T dpX2 T djp—1Xp—]
o f
I-th component of y _
Dot product of the ith

row of A with Xx.

' Use one dimensional C array to represent

— 2D matrix
A = (ajj) 1s an m x n matrix

0 1 2 -

4 5 6 7

8 9 10 11
stored as

01234567891011

Copyright © 2010, Elsevier
Inc. All rights Reserved

Sequential code for y=A*x

ano ao d0.n—1
an an d1n—1
a;n dijl dipn—1
void Mat wvect mult(i 10 Lem it |~ aom
double 2] /+ in /.
double x|] /+ in /.
double vy [] /x out =/,
int m /= in %/,
int n /= in x/) |
int i, 7:
for (i = 0: i < m: i++) |
v[ii] = 0.0;
for (7 = 0; 7 < n: j++)

vli] += Ali*n+jl=x[]]:

j

P/« Mat_vect_mult +/

X1

Xn—1 |

Yo

V1

Vi = djpXo +dj1xX1 + - dip—1Xn—1

Vm—1

Copyright © 2010, Elsevier
Inc. All rights Reserved

Textbook MPI code for matrix-vector

multiptication

void Mat vect mult(

double local A|]
double local x|]
double local v]
int local m
int n

int local n

MPI Comm comm
double+ x:
int local i, 7j:
int local ok = 1:

Paliie T B o B e

in
in
out
in
in
in
in

*/
*/
*/
*/
*/

*/

#fj {

Copyright © 2010, Elsevier
Inc. All rights Reserved

Textbook MPI code for y=A*x

¥x = malloc(n+sizeof(double)):
MPI Allgather(local_x, local_n. MPI_DOUBLE.
X, local n, MPI DOUBLE, comm);

for (local_ i = 0; local_i < local m: local_i++) {
local _y|local_i] = 0.0;
for (7 = 0: 37 < n: j++)
local_yllocal_i] += local_ Allocal_isn+jl=*x[J]:

h

free(x):
A x
Proc 1
Proc 2
Proc 3

Copyright © 2010, Elsevier
Inc. All rights Reserved

Performance Evaluation of
Matrix Vector Multiplication

Copyright © 2010, Elsevier
Inc. All rights Reserved

How to measure elapsed parallel time

« Use MPI_Wtime() that returns the number of seconds
that have elapsed since some time in the past.

double MPI Wtime(void):

double start., finish:

start = MPI Wtime ();
/+ Code to be timed =+/

finish = MPI Wtime ();
printf("Proc %d > Elapsed time = %e seconds\n"
my_rank ., finish—start):

Copyright © 2010, Elsevier
Inc. All rights Reserved

=
!

« This code works for Linux without using MPI functions

« Use GET_TIME() which returns time in microseconds
elapsed from some point in the past.

Measure elapsed sequential time in Linux

« Sample code for GET_TIME()
#include <sys/time.h>

[* The argument now should be a double (not a pointer to a
double) */

#define GET_TIME(nhow) {
struct timeval t;
gettimeofday(&t, NULL);
now = t.tv_sec + t.tv_usec/1000000.0;

Measure elapsed sequential time

#include "timer.h"
double start. finish:

GET _TIME(start);

/+ Code to be timed =+/

CET TIME(Ffinish).
printf("Elapsed time =

e seconds\n",

finish—start):

Copyright © 2010, Elsevier
Inc. All rights Reserved

Use MPI_Barrier() before time measurement

Start timing until every process in the communicator has
reached the same time stamp

double local_start, local_finish, local_elapsed, elapsed;

MPI Barrier(comm);
local start = MPI Wtime ();
/+ Code to be timed =/

local finish = MPI Wtime ();

local_elapsed = local_finish — local_start;:

MPI_Reduce(&local _elapsed. &elapsed, 1, MPI_DOUBLE,
MPI_MAX, 0, comm);

if (my_rank == 0)
printf("Elapsed time = %e seconds\n"., elapsed):

’ Run-times of serial and parallel matrix-vector
multiplication

Order of Matrix
comm_sz || 1024 | 2048 | 4096 | 8192 | 16,3584
] 411 160 640 270 1100
2 2.3 8.5 33.0| 140 560
4 2.0 5.1 | 18.0 70 280
8 [.7 3.3 0.8 36 140
16 [.7 2.6 5.9 19 71

(Seconds)

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Speedup and Efficiency

T. - q(n
S[:.F.'?pj — EEI'IHI()
Tparallel(”a ﬁ?}
S(n, p) _ Tﬂerial(”)

p pX Iharallel (n,p)

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Speedups of Parallel Matrix-Vector
Multiplication

Order of Matrix
comm_sz || 1024 | 2048 | 4096 | 8192 | 16,384
l 1.0 1.0 1.0 1.0 1.0
2 [.8 1.9 1.9 1.9 2.0
4 2. 3.1 3.6 3.9 3.9
8 2.4 4.8 6.9 7.5 7.9
16 2.4 6.2 | 10.8 | 14.2 5.5

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Efficiencies of Parallel Matrix-Vector
Multiplication

Order of Matnx
comm_sz || 1024 | 2048 | 4096 | 8192 | 16.384
l .00 | 1.00 | 1.00 [1.00 .00

0.89 | 094 | 097 | 0.96 0.98
0.51] 0.78 | 0.89 | 0.96 0.98
0.30 | 0.61 | 0.82 | 0.94 0.98
0.15] 0.39 | 0.68 | 0.89 0.97

0| | 2

[a—
)

Copyright © 2010, Elsevier
Inc. All rights Reserved

Scalability

A program is scalable if the problem size can be
iIncreased at a rate so that the efficiency doesn’t
decrease as the number of processes increase.

Programs that can maintain a constant efficiency
without increasing the problem size are sometimes
said to be strongly scalable.

Programs that can maintain a constant efficiency if the
problem size increases at the same rate as the number
of processes are sometimes said to be weakly
scalable.

Copyright © 2010, Elsevier
Inc. All rights Reserved

.

A PARALLEL SORTING
ALGORITHM

Textbook p. 127-136

Copyright © 2010, Elsevier

Sorting

 n keys and p = # of processes.
* n/p keys assigned to each process.
 When the algorithm terminates:

= The keys assigned to each process should be
sorted in (say) increasing order.

= [f0 <q<r<p,then each key assigned to process (
should be less than or equal to every key assigned
to process r.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Simple bubble sort with pairwise swaps

void Bubble sort(
f+ in/out */,

w/) |
temp .

all

int list_length,

for (list_length

for (i = 0;

ali]

ali+1

Bubble _sort

in
i,

<

alil]:
ali+1];
temp.

list_length >= 2;
list_length—1;
if (a[1] > ali+1]) {

temp

6

list_length——)

unsorted

6> 1, swap
6> 2, swap
6 > 3, swap
6 > 4, swap

6 > 5, swap

' Odd-even sort

« Expose more parallelism with pairwise swaps

= Also called Odd-even transposition sort or brick sort.
« Algorithm: Repeat at most n phases

= Even phases, compare swaps:

(a[0], a[1]), (a[2], a[3]), (a[4],a[5]), ...

= Odd phases, compare swaps:

= Complexity: best case O(n). Worst case O(n?)

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Example of odd-even sort

Start: 3,6,2,1,4,7,5,0

Even phase: compare-swap (3,6), (2,1), (4,7), (5,0)
getting the list 3,6,1,2,4,7,0,5

Odd phase: compare-swap (6,1), (2,4), (7,0)

3

6

2

3

e

6

1

-

4

7

4

ol
[

7

5

3

4

7

0

4

0

7

[2 []
3 6 1

= -] F
1 3 2

| -_] F e
1 2 0

L]
1 = ﬂ []

HHH

IR RREEREE

Sequential odd-even sort

void 0dd even sort(
int a|] /+ in/out =/,
int n /% 0n /) |
int phase, i, temp:

for (phase = 0; phase < n: phase++)
if (phase % 2 == 0) { /+« Even phase +/

for (i = 1; 1 < n: 1 += 2)
if (al[i—-1] > a[i]) {
temp = alil]:
ali] = a[i—-1];
ali—1] = temp:
h
} else { /« Odd phase =/
for (i = 1; 1 < n—1; 1 += 2)
if (ali] > a[i+1]) |
temp = alil]:
ali] = ali+1];
ali+l] = temp:
h

}
V' /+ Odd_even_sort =/

Copyright © 2010, Elsevier
Inc. All rights Reserved

Communications among tasks in odd-even sort

Computation contains a set of tasks

Each task handling ali] is labeled with “a[i]”.

ali-11[o alil
\4 \V
%a[i—l] a[1]

V

ali+1]

.~ phasej

N

ali+1]

phase j+1

Copyright © 2010, Elsevier
Inc. All rights Reserved

Parallel odd-even sort for n keys and p

—processes—(n=pP)

. Po P, Ps Ps P4
0 4 -——e 2 7 =— 8 5 +—— 1
1 2 4 =— 7 8 =— 1
2 2 =— 4 [=-— 1 8 =— 3
3 2 4 =— 1 f =—3

Time| 4 2 1 4 3 7
5 1 2 =—3 4 =—— 5
6 1=+ 2 3= 4 5=<-—> 6
7 1 2 == 3 4 =— 5

L

« Weakness

= When n>>p, modify to let each process handle n/p keys
= Too much communication overhead with key-level fine-

grain data exchange/swap

' Parallel odd-even sort for n keys and p

—processes (n>>)

[13 l;nu] [81;1 4] [61)173][9 1;310]

Locfagsirztls] [4 5 8] [136] [2 910]

=)
Process-level exchange/swap -

as7) (81213 (123 (6910

[457]“[123 T[81213L[6910]
[1 23] [457] [689] [101213]

SORTED: 123 456 789 101213

' Parallel odd-even sort of n keys with p

Processes

« Each process owns n/p keys.

* First each process sorts its keys locally in parallel.
= E.g. call C library gsort for quick sorting

 Repeat at most p phases

= Even phases, process with even ID exchanges data
with odd ID and swaps keys
— (PO, P1), (P2, P3), (P4, P5) ...
= Odd phases, compare swaps:
— (P1, P2), (P3, P4), (P5, P6) ...

Textbook example of parallel odd-even sort

Time

Process

Start

After Local Sort

After Phase 0

After Phase 1

After Phase 2

After Phase 3

[3.14.15.
[3.14.15.16

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Parallel time of odd-even sort

» Total cost
= Local sorting using the best algorithm.
= At most p phases

— Neighbor process data exchanges of n/p keys
— Merge and split two n/p key lists

* Ty = (local sort) + (p data exchanges)

+ (p merges/splits)
O((n/p)log(n/p)) + p*O(n/p) + p*O(n/p)
O((n/p)log(n/p)) + O(2n)

Pseudo-code

Comm_sz= # of processes

Sort local keys:
for (phase = 0; phase < comm_sz: phase++) |
partner = Compute_partner(phase. my_rank):
if (I'm not idle) {
Send my keys to partner;
Receive keys from partner;
if (my_rank < partner)
Keep smaller keys;
else
Keep larger keys;

Copyright © 2010, Elsevier
Inc. All rights Reserved

Compute_partner(phase,my_rank)

if (phase % 2 == 0) /+ Even phase =/
if (my_rank % 2 '= 0) /+ Odd rank =/
partner = my_rank — 1;
else /+ Even rank +/
partner = my_rank + 1;
else /¥ Odd phase =/
if (my _rank % 2 !'= 0) /+ 0Odd rank +/
partner = my_rank + 1;
else /+ Even rank =/
partner = my_rank — 1;
if (partner == —1 || partner == comm_sz)

partner = MPI_PROC_NULL:

Copyright © 2010, Elsevier
Inc. All rights Reserved

Merge/split in parallel odd-even sort

void Merge low(

int my _keys|], /% in/out s/
int recv_keys|], /% In s/
int temp_keys|], /% scratch s/
int local n /¥ = n/p, in /) {

int m_ i, r i, t_i:

mi=1ri=1ti= 0;
while (t_i < local_n) {
if (ny_keys[m_1i] <= recv_keys|r_i]) {

temp_keys[t_i] = my_keys[m_1i];:
t i++; m_1+4++4;
I else {
temp_keys|[t_i] = recv_keys|r_1i]:
t i++4; r_ i++4;
}
1
for (m_i = 0; m_i < local n: m_i++)
my_keys[m_i] = temp_keys|[m_1i]:
} E: ME."g e_low =/ Copyright © 2010, Elsevier

Inc. All rights Reserved

<2

Safety Issues in MPI programs

Safety in MPI programs

« The MPI standard allows MPI_Send to behave in
two different ways:

= it can simply copy the message into an MPI
managed buffer and return,

= or it can block until the matching call to MPI_Recv
starts.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Buffer a message implicitly during MP1_Send()

 When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

e

User data

Slide source: Bill Gropp, ANL 88

Avoiding Buffering

Avoiding copies uses less memory
May use more or less time

Process 0 Process 1

| User" data

MPI Send() waits until a matching receive is
executed.

User data

Slide source: Bill Gropp, ANL 89

' Safety in MPI programs

« Many implementations of MPI set a threshold at which
the system switches from buffering to blocking.

= Relatively small messages will be buffered by
MPI_Send.

= Larger messages, will cause it to block.

:> If the MPI_Send() executed by each process blocks,
no process will be able to start executing a call to
MPI_Recv, and the program will hang or deadlock.

= Each process is blocked waiting for an event that will
never happen.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Will there be a deadlock?

« Assume tag/process ID is assigne properly.

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

Slide source: Bill Gropp, ANL

91

’ Example of unsafe MPI code with
possible deadlocks

« Send alarge message from process 0 to process
1

= |f there Is insufficient storage at the destination, the
send must wait for the user to provide the memory
space (through a receive)

 What happens with this code?

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

e This is called “"unsafe” because it depends on
the availability of system buffers in which to
store the data sent until it can be received

Slide source: Bill Gropp, ANL 92

Safety in MPI programs

A program that relies on MPI provided buffering is
said to be unsafe.

« Such a program may run without problems for

various sets of input, but it may hang or crash with
other sets.

Copyright © 2010, Elsevier
Inc. All rights Reserved

How can we tell if a program is unsafe

Replace MPI_Send() with MPI1_Ssend()

The extra “s” stands for synchronous and MP|_Ssend is
guaranteed to block until the matching receive starts.

If the new program does not hang/crash, the original
program is safe.

MPI1_Send() and MPI_Ssend() have the same arguments

int MPI Ssend(

void « msg_buf p /% in */,
int msg_siz [+ in +/,
MPI_Datatype msg_type [0n o/,
int dest [+ 0In #/,
int tag /= in #/,
MPI Comm communicator /% in #/);

Copyright © 2010, Elsevier
Inc. All rights Reserved

Some Solutions to the “unsafe” Problem

« Qrder the operations more carefully:

Process 0 Process 1
Send (1) Recv (0)
Recv (1) Send (0)

 Simultaneous send and receive 1n one call

Process 0 Process 1

Sendrecv (1) Sendrecv (0)

Slide source: Bill Gropp, ANL

95

Restructuring communication in odd-

even-sort

MPI_Send(msg, size. MPI_INT, (my_rank+1) % comm_sz. 0, comm);
MPI_Recv(new_msg. size., MPI_INT, (my_rank+comm _sz—1) % comm_sz .
0, comm, MPI STATUS_ IGNORE.

if (my_rank % 2 == 0) {
MPI_Send(msg, size, MPI_INT. (my_rank+1) % comm_sz, 0, comm);
MPI_Recv(new_msg, size, MPI_INT, (my_rank+comm_sz—1) % comm_sz,
0, comm, MPI STATUS IGNORE.
} oelse {
MPI_Recv(new_msg, size, MPI_INT., (my_rank+comm_sz—1) % comm_sz,
0, comm, MPI STATUS IGNORE.
MPI_Send(msg, size, MPI_INT, (my_rank+1) % comm_sz, 0, comm);

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Uncertainty with five processes

Copyright © 2010, Elsevier
Inc. All rights Reserved

Use MPI_Sendrecv()

to conduct a blocking send and a receive in a
single call.

int MPI Sendrecv(

void

int

MPI Datatype
int

int

void

int

MPI Datatype
int

int

MPI Comm

MPI Statuss#

send_buf p
send buf size
send_buf_ type
dest

send_tag

recv_buf p
recv_buf size
recv_buf_ type
source
recv_tag
communicator
status_p

/%
/
/
/
/

/
/
/
/
/
/
/

in
in
in
in
in
out
in
in
in
in
in
in

s/,
T
#/
T
+/

+/
#/
#/
#/
#/
#/ .
/).

Copyright © 2010, Elsevier

Inc. All rights Reserved

Use MPI_Sendrecv() in odd-even sort

« An alternative to scheduling determinstic
communications

= The dest and the source can be the same or different.
= Send and receive datatypes may be different
= (Can use Sendrecv with plain Send or Recv (or Irecv or Ssend_init, ...)

 Ensure safer communication behavior so that the
program won't hang or crash.

MPI_Sendrecv(

mykeys, n/comm_sz, MPI_INT, partner,0,
recvkeys,n/comm_sz, MPI_INT, partner, O,
comm, MPI_Status_ignore)

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ More Solutions to the “unsafe”
Problem

e Supply own space as buffer for send

Process 0 Process 1
Bsend (1) BRsend (0)
Recv (1) Recv (0)

e Use non-blocking operations:

Process 0 Process 1
Isend (1) Isend (0)
ITrecv (1) ITrecv (0)

Waitall Waitall

100

' Run-times of parallel odd-even sort

Number of Keys (in thousands)
Processes || 200 | 400 | 800 | 1600 | 3200
I 88 | 190 | 390 | 830 | 1800

2 43 | 91 | 190 | 410 | 860

4 22 1 46 | 96 | 200 | 430

8 12 | 24 | 51 | 110 | 220

16 75 14 | 29 60 130

(times are in milliseconds)

Copyright © 2010, Elsevier
Inc. All rights Reserved

Concluding Remarks (1)

MPI works in C, C++, or Fortran.

A communicator is a collection of processes that
can send messages to each other.

Many parallel programs use the SPMD approach.

Most serial programs are deterministic: if we run the
same program with the same input we’'ll get the same
output.

= Parallel programs often don’t possess this property.

Collective communications involve all the
processes in a communicator.

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Concluding Remarks (2)

 Performance evaluation
= Use elapsed time or “wall clock time”.
= Speedup = sequential/parallel time
= Efficiency = Speedup/ p
= |f it's possible to increase the problem size (n) so

that the efficiency doesn’t decrease as p is
Increased, a parallel program is said to be scalable.

« An MPI program is unsafe if its correct behavior
depends on the fact that MPIl_Send is buffering its
Input.

Copyright © 2010, Elsevier
Inc. All rights Reserved

