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Outline 

• Collective group communication 

• Application examples 

  Pi computation 

 Summation of long vectors 

• More applications 
 Matrix-vector multiplication 

– performance evaluation 

 Parallel sorting 

• Safety and other MPI issues. 
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MPI Collective Communication 

• Collective routines provide a higher-level way to 

organize a parallel program 

 Each process executes the same communication 

operations 

 Communication and computation is coordinated 

among a group of processes in a communicator 

 Tags are not used 

 No non-blocking collective operations. 

• Three classes of operations: synchronization, data 

movement, collective computation. 
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Synchronization 

• MPI_Barrier( comm ) 

• Blocks until all processes in the group of the 

communicator comm call it. 

• Not used often. Sometime  

used in measuring 

 performance and 

 load balancing 
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Collective Data Movement: Broadcast, 
Scatter, and Gather 
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Broadcast 

• Data belonging to a single process is sent to all of 

the processes in the communicator. 
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Comments on Broadcast 

• All collective operations must be called by all 

processes in the communicator 

• MPI_Bcast is called by both the sender (called the 

root process) and the processes that are to receive 

the broadcast 

 MPI_Bcast is not a “multi-send” 

 “root” argument is the rank of the sender; this tells 

MPI which process originates the broadcast and 

which receive 
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Implementation View: A tree-structured 

broadcast of a number 6 from Process 0 



A version of Get_input that uses MPI_Bcast 

in the trapezoidal program 
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Collective Data Movement: Allgather and 

AlltoAll 
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Collective Computation: Reduce vs. Scan 
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MPI_Reduce 



Predefined reduction operators in MPI 
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Implementation View of Global Reduction 

using  a tree-structured sum 
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An alternative tree-structured global sum 
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MPI Scan 

MPI_Scan( void *sendbuf, void *recvbuf,  int count,  

   MPI_Datatype datatype, MPI_Op op, MPI_Comm comm ); 

 



MPI_Allreduce 

• Useful in a situation in which all of the processes 

need the result of a global sum in order to complete 

some larger computation. 
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A global sum followed 

by distribution of the 

result. 
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MPI Collective Routines: Summary 

• Many Routines:  Allgather, Allgatherv, 

Allreduce, Alltoall, Alltoallv, Bcast, 

Gather, Gatherv, Reduce, Reduce_scatter, 

Scan, Scatter, Scatterv 

• All versions deliver results to all participating 

processes. 

• V versions allow the hunks to have variable sizes. 

• Allreduce, Reduce, Reduce_scatter, and Scan 

take both built-in and user-defined combiner 

functions. 

• MPI-2 adds Alltoallw, Exscan, 

intercommunicator versions of most routines 
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Example of MPI PI program using 6 
Functions 

• Using basic MPI  functions: 

 MPI_INIT 

 MPI_FINALIZE 

 MPI_COMM_SIZE 

 MPI_COMM_RANK 

• Using  MPI collectives: 

 MPI_BCAST 

 MPI_REDUCE 

Slide source: Bill Gropp, ANL 
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Example:  PI in C - 1 

#include "mpi.h" 

#include <math.h> 
#include <stdio.h> 

int main(int argc, char *argv[]) 

{ 

int done = 0, n, myid, numprocs, i, rc; 

double PI25DT = 3.141592653589793238462643; 

double mypi, pi, h, sum, x, a; 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 

MPI_Comm_rank(MPI_COMM_WORLD,&myid); 

 

while (!done)  { 

  if (myid == 0) { 

    printf("Enter the number of intervals: (0 quits) "); 

    scanf("%d",&n); 

  } 

   MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 

if (n == 0) break; 

Slide source: Bill Gropp, ANL 

Input and broadcast parameters 
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Example:  PI in C - 2 

    h   = 1.0 / (double) n; 

  sum = 0.0; 

  for (i = myid + 1; i <= n; i += numprocs) { 

    x = h * ((double)i - 0.5); 

    sum += 4.0 / (1.0 + x*x); 

  } 

  mypi = h * sum; 

 

  MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 

             MPI_COMM_WORLD); 

  if (myid == 0) 

    printf("pi is approximately %.16f, Error is .16f\n", 

            pi, fabs(pi - PI25DT)); 

} 

MPI_Finalize(); 

  return 0; 

} 
Slide source: Bill Gropp, ANL 

Compute local pi values 

Compute summation 



Collective vs. Point-to-Point Communications 

• All the processes in the communicator must call the 

same collective function.  

 For example, a program that attempts to match a call 

to MPI_Reduce on one process with a call to 

MPI_Recv on another process is erroneous, and, in all 

likelihood, the program will hang or crash. 

 

if(my_rank==0)  MPI_Reduce(&a,&b,1, MPI_INT, 

MPI_SUM, 0, MPI_COMM_WORLD); 

else MPI_Recv(&a, MPI_INT, MPI_SUM,0,0, 

MPI_COMM_WORLD); 
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Collective vs. Point-to-Point Communications 

• The arguments passed by each process to an MPI 

collective communication must be “compatible.” 

 For example, if one process passes in 0 as the 

dest_process and another passes in 1, then the 

outcome of a call to MPI_Reduce is erroneous, and, 

once again, the program is likely to hang or crash. 

 

if(my_rank==0)  MPI_Reduce(&a,&b,1, MPI_INT, 

MPI_SUM, 0, MPI_COMM_WORLD); 

else MPI_Reduce(&a,&b,1, MPI_INT, MPI_SUM, 1, 

MPI_COMM_WORLD); 
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Example  of MPI_Reduce execution 
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Multiple calls to MPI_Reduce with MPI_SUM and 

Proc 0 as destination (root) 

 

Is b=3  on Proc 0 after two MPI_Reduce() calls? 

Is d=6 on Proc 0? 



Example: Output results 

• However, the names of the memory locations are 

irrelevant to the matching of the calls to MPI_Reduce.  

 

• The order of the calls will determine the matching so 

the value stored in b will be 1+2+1 = 4, and the value 

stored in d will be 2+1+2 = 5. 
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Summation of Two Long Vectors 

 

Collective Communication Application 

Textbook p.109-111 



Application Example: Distributed 

Summation of Two Long Vectors 
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Sequential code for computing a vector sum. 



Parallel implementation of vector addition 
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1. Divide each vector into   n subvectors and distribute data 

2. Add two subvectors at each process in parallel. 

3. Gather  the sum subvector from each process. 

Read two input vectors 

Add  #1 

subvectors 

Add  #2 

subvectors 

Add  #n 

subvectors … 

Gather subvectors 



Partitioning options for distributing 

vectors 

• Block partitioning 

 Assign blocks of consecutive components to each 

process. 

• Cyclic partitioning 

 Assign components in a round robin fashion. 

• Block-cyclic partitioning 

 Use a cyclic distribution of blocks of components. 
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Partitioning examples for data distribution 
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Each vector is divided into 12 subvectors 

and then distributed to 3 processes 



Local code for subvector addition 
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Scatter 

for data 

distribution 

• MPI_Scatter can be used in a function that reads in 

an entire vector on process 0 but only sends the 

needed components to each of the other processes. 

Copyright © 2010, Elsevier 

Inc. All rights Reserved 

A 

B 

D 

C 

B C D Scatter 

Gather 

A P0 

P1 

P2 

P3 



Reading and distributing a vector 
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Gather 

data from 

everybody 

• Collect all of the components of the vector onto 

process 0, and then process 0 can process all of the 

components. 
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MPI code to gather and print a distributed 

vector  
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Gather and print a distributed vector (2) 
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Parallel Matrix Vector Multiplication 

 

Collective Communication Application 

Textbook p. 113-116 



Matrix-vector multiplication:  y= A * x 



Partitioning and Task graph for matrix-vector 

multiplication 

yi= Row Ai * x 



Execution Schedule and Task Mapping 

yi= Row Ai  
* x 



Data Partitioning and Mapping for y= A*x 



SPMD Code for y= A*x 



Evaluation: Parallel Time 

•Ignore the cost of local address 

calculation. 

 

•Each task performs n additions and n 

multiplications. 

 

•Each addition/multiplication costs  ω 

 

•The parallel time is approximately  



How is initial data distributed? 

Assume initially matrix A and vector  x are distributed  

evenly among processes 

Need to redistribute vector x to everybody in order to perform  

parallel computation! 

What MPI collective communication is needed? 



Communication Pattern for Data Redistribution 

Data requirement for  

Process 0 

Data requirement for 

all processes 

MPI_Gather 

MPI_Allgather 



MPI Code for Gathering Data 

Data gather for  

Process 0 

Repeat for all processes 



Allgather 

• Concatenates the contents of each process’ 

send_buf_p and stores this in each process’ 

recv_buf_p.  

• As usual, recv_count is the amount of data being 

received from each process. 
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MPI SPMD Code for y=A*x 



MPI SPMD Code for y=A*x 



Text book solution for y=A*x.        Page 114 

i-th component of y 
Dot product of the ith 

row of A with x. 



Use one dimensional C array to represent 

2D matrix   
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stored  as 



Sequential code for y=A*x 
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Textbook MPI code for matrix-vector 

multiplication 
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Textbook MPI code for y=A*x 
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Performance Evaluation of 

Matrix Vector Multiplication 

Copyright © 2010, Elsevier 

Inc. All rights Reserved 



How to measure elapsed parallel time 

• Use MPI_Wtime() that returns the number of seconds 

that have elapsed since some time in the past. 
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Measure elapsed sequential time in Linux 

• This code works for Linux without using MPI functions 

• Use GET_TIME() which returns time in microseconds 

elapsed from some point in the past. 

 

• Sample code for GET_TIME() 

  #include <sys/time.h> 

/* The argument now should be a double (not a pointer to a 

double) */ 

 #define GET_TIME(now) {  

       struct timeval t;  

       gettimeofday(&t, NULL);  

      now = t.tv_sec + t.tv_usec/1000000.0;  

  } 

 



Measure elapsed sequential time 
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Use MPI_Barrier()  before time measurement  

Start timing until every process in the communicator has 

reached the same time stamp 



Run-times of serial and parallel matrix-vector 

multiplication 
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(Seconds) 



Speedup  and Efficiency 
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Speedups of Parallel Matrix-Vector 

Multiplication 
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Efficiencies of Parallel Matrix-Vector 

Multiplication 
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Scalability 

• A program is scalable if the problem size can be 

increased at a rate so that the efficiency doesn’t 

decrease as the number of processes increase. 

 

• Programs that can maintain a constant efficiency 

without increasing the problem size are sometimes 

said to be strongly scalable. 

 

• Programs that can maintain a constant efficiency if the 

problem size increases at the same rate as the number 

of processes are sometimes said to be weakly 

scalable. 

•  
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A PARALLEL SORTING 

ALGORITHM 

Copyright © 2010, Elsevier 
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Textbook p. 127-136 



Sorting 

• n keys and p = # of processes. 

• n/p keys assigned to each process. 

• When the algorithm terminates: 

 The keys assigned to each process should be 

sorted in (say) increasing order. 

 If 0 ≤ q < r < p, then each key assigned to process q 

should be less than or equal to every key assigned 

to process r. 

Copyright © 2010, Elsevier 
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Simple bubble sort with pairwise swaps  



Odd-even sort 

• Expose more parallelism with pairwise swaps        

 Also called Odd-even transposition sort  or brick sort.   

• Algorithm:  Repeat at most n phases 

 Even phases, compare swaps: 

 

 

 Odd phases, compare swaps: 

 

 

 Complexity: best case O(n). Worst case O(n2) 
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Example of odd-even sort 

Start:  3, 6, 2, 1, 4, 7, 5, 0 

Even phase:  compare-swap (3,6), (2,1), (4,7), (5,0) 

 getting the list  3, 6, 1, 2, 4, 7, 0, 5 

Odd phase:  compare-swap (6,1), (2,4), (7,0) 

 



Sequential odd-even sort 
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Communications among tasks in odd-even sort 
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Computation contains a set of tasks 

Each task handling a[i]  is labeled with ‘”a[i]”. 



Parallel odd-even sort for n keys and p 

processes  (n=p) 

• Weakness  

 When n>>p, modify to let each process handle n/p keys 

 Too much communication overhead with key-level fine-

grain data exchange/swap 

 



Parallel odd-even sort for n keys and p 

processes  (n >> p) 

              P0                 P1                  P2                 P3 

        13   7  12        8   5   4           6  1  3         9   2  10 

 

Local sort 

        7  12  13        4   5   8           1  3  6         2   9  10 

 

Process-level exchange/swap  

 

         4   5   7         8  12  13          1  2  3        6  9  10 

                         

 

         4   5   7           1  2  3           8  12  13      6  9  10 

             

 

         1   2   3           4  5  7             6   8  9       10 12  13 

                            

  

SORTED:    1  2  3      4  5  6        7  8  9       10 12 13 



Parallel odd-even sort  of n keys with p 

processes 

• Each process owns  n/p   keys. 

• First each process sorts its keys locally  in parallel. 

 E.g. call C library qsort for quick sorting 

• Repeat at most p phases 

 Even phases,  process with even ID  exchanges data 

with odd ID and swaps keys 

– (P0, P1),  (P2, P3), (P4, P5) … 

 Odd phases, compare swaps: 

– (P1, P2),  (P3, P4), (P5, P6) … 

 



Textbook example of parallel odd-even  sort 
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Parallel time of odd-even sort 

• Total cost 

  Local sorting using the best algorithm. 

 At most p phases 
– Neighbor process data exchanges of n/p keys 

– Merge and split two n/p key lists 

• Tpar = (local sort) + (p data exchanges)  

                                      + (p merges/splits) 

          =  O((n/p)log(n/p)) + p*O(n/p) + p*O(n/p)  

          =  O((n/p)log(n/p)) + O(2n) 

 



Pseudo-code 
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Comm_sz= # of processes 



Compute_partner(phase,my_rank) 
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Merge/split in parallel odd-even sort 

Copyright © 2010, Elsevier 

Inc. All rights Reserved 



Safety Issues in MPI programs 

 



Safety in MPI programs 

• The MPI standard allows MPI_Send to behave in 

two different ways:  

 it can simply copy the message into an MPI 

managed buffer and return,  

 or it can block until the matching call to MPI_Recv 

starts. 

Copyright © 2010, Elsevier 
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Buffer a message implicitly during MPI_Send() 

• When you send data, where does it go?  One possibility is: 

Process 0 Process 1 

User data 

Local buffer 

the network 

User data 

Local buffer 

Slide source: Bill Gropp, ANL 
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Avoiding Buffering 

• Avoiding copies uses less memory 

• May use more or less time 

MPI_Send() waits until a matching receive is 

executed. 

Process 0 Process 1 

User data 

User data 

the network 

Slide source: Bill Gropp, ANL 



Safety in MPI programs 

• Many implementations of MPI set a threshold at which 

the system switches from buffering to blocking.  

 Relatively small messages will be buffered by 

MPI_Send. 

 Larger messages, will cause it to block. 

Copyright © 2010, Elsevier 

Inc. All rights Reserved 

• If the MPI_Send() executed by each process blocks, 

no process will be able to start executing a call to 

MPI_Recv, and the program will hang or deadlock. 

 

 Each process is blocked waiting for an event that will 

never happen. 
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• Assume tag/process ID is assigne properly. 
 
 
 
 

 

Will there  be a deadlock? 

Process 0 

 
Send(1) 

Recv(1) 

Process 1 

 
Send(0) 

Recv(0) 

Slide source: Bill Gropp, ANL 
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• Send a large message from process 0 to process 
1 

 If there is insufficient storage at the destination, the 
send must wait for the user to provide the memory 
space (through a receive) 

• What happens with this code? 
 
 
 
 

 

Example  of unsafe MPI code with  

possible deadlocks 

Process 0 

 
Send(1) 

Recv(1) 

Process 1 

 
Send(0) 

Recv(0) 

• This is called “unsafe” because it depends on 
the availability of system buffers in which to 
store the data sent until it can be received  

Slide source: Bill Gropp, ANL 



Safety in MPI programs 

• A program that relies on MPI provided buffering is 

said to be unsafe.  

 

• Such a program may run without problems for 

various sets of input, but it may hang or crash with 

other sets. 
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How can we tell if a program is unsafe  

• Replace MPI_Send() with  MPI_Ssend() 

• The extra “s” stands for synchronous and MPI_Ssend is 

guaranteed to block until the matching receive starts. 

• If the new program does not hang/crash, the original 

program is safe. 

• MPI_Send() and MPI_Ssend() have the same arguments 

Copyright © 2010, Elsevier 
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Some Solutions to the “unsafe” Problem 

• Order the operations more carefully: 

• Simultaneous send and receive in one call 

Process 0 

 
Send(1) 

Recv(1) 

Process 1 

 
Recv(0) 

Send(0) 

Process 0 

 

Sendrecv(1) 

Process 1 

 
Sendrecv(0) 

Slide source: Bill Gropp, ANL 



Restructuring communication in odd-

even sort 
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Uncertainty with five processes 
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Use MPI_Sendrecv()  

 to conduct a blocking send and a receive in a 

single call.  
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Use MPI_Sendrecv() in odd-even sort 

• An alternative to scheduling determinstic 

communications 
 The dest and the source can be the same or different.  

 Send and receive datatypes may be different 

 Can use Sendrecv with plain Send or Recv (or Irecv or Ssend_init, …) 

• Ensure safer communication behavior so that the 

program won’t hang or crash. 

 

MPI_Sendrecv( 

mykeys, n/comm_sz, MPI_INT, partner,0, 

recvkeys,n/comm_sz, MPI_INT, partner, 0,  

comm, MPI_Status_ignore) 
Copyright © 2010, Elsevier 
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More Solutions to the “unsafe” 

Problem 

• Supply own space as buffer for send 

• Use non-blocking operations: 

Process 0 

 
Bsend(1) 

Recv(1) 

Process 1 

 
Bsend(0) 

Recv(0) 

Process 0 

 
Isend(1) 

Irecv(1) 

Waitall 

Process 1 

 
Isend(0) 

Irecv(0) 

Waitall 



Run-times of parallel odd-even sort 
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(times are in milliseconds) 



Concluding Remarks (1) 

• MPI works in C, C++, or Fortran. 

• A communicator is a collection of processes that 

can send messages to each other. 

• Many parallel programs use the SPMD approach. 

• Most serial programs are deterministic: if we run the 

same program with the same input we’ll get the same 

output.  

 Parallel programs often don’t possess this property. 

• Collective communications involve all the 

processes in a communicator. 
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Concluding Remarks (2) 

• Performance evaluation 

 Use elapsed time or “wall clock time”. 

 Speedup = sequential/parallel time 

  Efficiency = Speedup/ p  

 If it’s possible to increase the problem size (n) so 

that the efficiency doesn’t decrease as p is 

increased, a parallel program is said to be scalable. 

• An MPI program is unsafe if its correct behavior 

depends on the fact that MPI_Send is buffering its 

input. 
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