Transformation based parallel programming

Program parallelization techniques.

1. Program Mapping

- Program partitioning (with task aggregation). Dependence analysis.
- Scheduling & load balancing.
- Code distribution.

2. Data Mapping.

- Data partitioning.
- Communication between processors.
- Data distribution. Indexing of local data.

Program and data mapping should be **consistent**.

An Example

Sequential code:

x=3

For
$$i = 0$$
 to $p-1$.

Endfor

Dependence analysis:

Scheduling: Replicate x = 3 (instead of broadcasting).

SPMD Code:						
<pre>int x,y,i; x = 3; i = mynode();</pre>						
y = i * x;						
Data and program distribution :						
Sequential		Parallel (one node)				
Data						
Array y $[0, 1,, p - 1]$	\implies	Element y				
program						
For i=0 to p-1	\implies	y = i * x				
y(i) = i * x						
CS, UCSB		Tao Yang				

Dependence Analysis

• For each task, define the input and output sets.

Example:
$$S : A = C + E$$

IN(S) = {C,B}
OUT(S) = {A}.

• Given a program with two tasks: S_1, S_2 . If changing execution order of S_1 and S_2 affects the result. $\Longrightarrow S_2$ depends on S_1 .

• Type of dependence:

- 1. Flow dependence (true data dependence).
- 2. Output dependence. Anti dependence.
 - Useful in a shared memory machine.
- 3. Control dependence (e.g. if A then B).

• Flow Dependence: $OUT(S_1) \cap IN(S_2) \neq \phi$

 $S_1: \mathbf{A} = x + \mathbf{B}$

 $S_2: C = A + 3$

S2 is dataflow-dependent on S1.

• Output Dependence: $OUT(S_1) \cap OUT(S_2) \neq \phi$.

- $S_1: \mathbf{A} = 3$
- $S_2: \mathbf{A} = x$

S2 is output-dependent on S1.

• Anti Dependence: $IN(S_1) \cap OUT(S_2) \neq \phi$.

 S_1 : B = A + 3 S_2 : A = x + 5 S2 is anti-dependent on S1.

Delete redundant dependence edges

The deletion should not affect the correctness.

An anti or output dependence edge can be deleted if it is subsumed by another dependence path.

Loop Parallelism

Iteration space – all iterations of a loop and data dependence between iteration statements.

1 D Loop:

2 D Loop:

For i = 1 to n For j = 1 to n S_{ij}: x_{ij} = x_{i-1,j}+1

Program Partitioning

Purpose:

- Increase task granularity (task grain size).
- Reduce unnecessary communication.
- Ease the mapping of a large number of tasks to a small number of processors.

Actions: Group several tasks together as one task.

Loop partitioning techniques:

- Loop blocking/unrolling.
- Interior loop blocking.
- Loop interchange.

Given:

For i=1 to 2n

$$S_i: a_i = b_i + c_i$$

Block this loop by a factor of 2 or unroll this loop by a factor of 2.

After transformation:

$$\Longrightarrow$$
 For $i=1$ to n

do
$$S_{2i-1},S_{2i}$$

Given: For
$$i = 1$$
 to r^*p
$$S_i : a(i) = b(i)+c(i)$$

Block this loop by a factor of r:

For j = 0 to p-1

For
$$i = r^*j+1$$
 to r^*j+r
 $a(i) = b(i)+c(i)$

SPMD code on p nodes.

$$me=mynode();$$

For i = r*me+1 to r*me+r
 $a(i) = b(i)+c(i)$

CS, UCSB

Interior Loop Partitioning

Block the interior loop and make it one task. **Example:**

For
$$i = 1$$
 to 4
For $j = 1$ to 4
 $x_{i,j} = x_{i,j-1} + 1$
After blocking:

For
$$i = 1$$
 to 4
For $j = 1$ to 4
 $x_{i,j} = x_{i,j-1} + 1$
 $i = 1$ to 4
 $x_{i,j} = x_{i,j-1} + 1$

The above example preserves the parallelism.

CS, UCSB

Partitioning may reduce parallelism

For
$$i = 1$$
 to 4
For $j = 1$ to 4
 $x_{i,j} = x_{i-1,j} + 1$

No inter-task parallelism!

Loop Interchange

Definition: A program transformation that changes the execution order of a loop program.

Actions: Swap the loop control statements.

Example:

For
$$i = 1$$
 to 4
For $j = 1$ to 4
 $x_{i,j} = x_{i-1,j} + 1$

After loop interchange:

For
$$j = 1$$
 to 4
For $i = 1$ to 4
 $x_{i,j} = x_{i-1,j} + 1$

CS, UCSB

Why loop interchange?

Usage: Help loop partitioning for better performance.

Example. Interior loop blocking after interchange.

For
$$j = 1$$
 to 4
For $i = 1$ to 4
 $x_{ij} = x_{i-1j} + 1$

For i=1 to 10
$$\implies$$
 For j=2 to 10
For j=i+1 to 10 For i=1 to j-1

Transformation for loop interchange

How to derive the new bounds for i and j loops?

• Step 1: List all inequalities regarding *i* and *j* from the original code.

 $i \le 10, i \ge 1, j \le 10, j \ge i+1.$

- Step 2: Derive bounds for loop *j*.
 - Extract all inequalities regarding the upper bound of j.

$$j \leq 10.$$

The upper bound is 10.

- Extract all inequalities regarding the lower bound of j.

$$j \ge i+1.$$

The lower bound is 2 since i could be as low as 1.

• **Step 3:** Derive bounds for loop *i* when *j*

value is fixed (now loop i is an inner loop).

- Extract all inequalities regarding the upper bound of i.

 $i \le 10, i \le j-1.$

The upper bound is $\min(10, j - 1)$.

- Extract all inequalities regarding the lower bound of i.

 $i \geq 1.$

The lower bound is 1.

Data Partitioning and Distribution

Data structure is divided into *data units* and assigned to processor local memories.

Why?

- Not enough space for replication for solving large problems.
- Partition data among processors so that data accessing is localized for tasks.

Ex:
$$y = \mathbf{A}_{n \times n} \cdot x$$

Distribute array A among p nodes. But replicate x to all processors.

. .

• •

Corresponding Task Mapping: (r = n/p)

P_0	P_1
$\mathtt{A}_1 x$	$\mathbf{A}_{r+1}x$
$\mathtt{A}_2 x$	$A_{r+2}x$
	• • •
$A_r x$	$\mathtt{A}_{2r}x$

• 1D Block Cyclic.

First the array is divided into a set of units using block partitioning (block size b). Then these units are mapped in a cyclic manner to pprocessors.

CS, UCSB

$2D array \longrightarrow 1D processors$

2D data space is partitioned into a 1D space. Then partitioned data items are counted from $0, 1, \dots n - 1$.

Processors are numbered from 0 to p-1.

Methods:

• Column-wise block. (call it (*,block)) Data $(i, j) \Rightarrow Proc \lfloor \frac{j}{r} \rfloor$

• Row-wise block. (call it (block,*)) Data $(i, j) \Rightarrow Proc \lfloor \frac{i}{r} \rfloor$

- Row cyclic. (cyclic, *)Data $(i, j) \Rightarrow Proc i \mod p$.
- **Others:** Column cyclic. Column block cyclic. Row block cyclic ····.

Data elements are counted as (i, j) where $0 \le i, j \le \cdots n - 1$.

Processors are numbered as (s, t) where

 $0 \le s, t \le \cdots q - 1$ where $q = \sqrt{p}$. Let $r = \lceil \frac{n}{q} \rceil$.

• (Block, Block)

Data	(i, j)	\Rightarrow	Proc	$(\lfloor \cdot \rangle$	$\frac{i}{r} \rfloor$,	$\lfloor \frac{j}{r} \rfloor$)
			0	1	2	3

0	Proc (0,0)	Proc (0,1)	Proc (0,2)	Proc (0,3)
1				
2				
3				

• Others: (Block, Cyclic), (Cyclic, Block), (Block Cyclic, Block Cyclic).

Program & data mapping: Consistency

Criteria:

- Sufficient parallelism is provided by partitioning.
- Also the number of distinct units accessed by each task is minimized.

A simple mapping heuristic:

"Owner Computes Rule". If task x modifies data item, then processor that owns this data item executes x.

An Example of "Owner computes rule"

Sequential code:

For i = 0 to r^*p-1

 $S_i: \mathbf{a}[\mathbf{i}] = 3.$

Data distribution:

Map data a(i) to node $proc_map(i)$. Data array a(i) are distributed to processors such that if processor x executes a(i) = 3, then a(i) is assigned to processor x.

SPMD code on p processors:

 $\begin{aligned} \text{me=mynode();} \\ \text{For i =0 to rp-1} \\ \text{if } (\textit{proc_map}(i) == me) \text{ a[i]} = 3. \end{aligned}$

Code distribution:

 $\begin{aligned} \text{me=mynode();} \\ \text{For i =0 to rp-1} \\ \text{if } (\textit{proc_map}(i) == me) \text{ a[i]} = 3. \end{aligned}$

Comments: General, but with extra loop and branch overhead.

CS, UCSB

Optimization to remove loop and branch overhead : First, explicitly block the loop code by a factor of r.

For
$$j = 0$$
 to p-1
For $i = r^*j$ to r^*j+r-1
 $a[i] = 3.$

Optimized SPMD code on p processors:

me=mynode(); For $i = r^*me$ to $r^*me+r-1$ a[i] = 3.

III-34

Global Data Space vs. Local Address

Distributed program \Rightarrow Local data address

Data indexing in

me=mynode(); For i =0 to rp-1 if $(proc_map(i) == me)$ a[i] = 3.

Problem: "a(i)=3" uses "i" as the index function and the value of *i* is in a range between 0 to rp-1. Each processor has to allocate the entire array!

Data localization: Allocate r units for each processor, translate the global index i to a local index which accesses the local memory only.

Mapping Function for 1D Block: $Local(i) = i \mod r.$ Ex. p=2, r=3. Proc 0 Proc 1 $0 \rightarrow 0$ $3 \rightarrow 0$ $1 \rightarrow 1$ $4 \rightarrow 1$ $2 \rightarrow 2$ $5 \rightarrow 2$ Mapping Function for 1D Cyclic: $Local(i) = \lfloor \frac{i}{n} \rfloor.$ Ex. p=2. proc 0 proc 1 $0 \rightarrow 0$ $1 \rightarrow 0$ $2 \rightarrow 1$ $3 \rightarrow 1$ $4 \rightarrow 2$ $5 \rightarrow 2$ $6 \rightarrow 3$

CS, UCSB

Important Mapping Functions

Given: data item i.

• 1D Block

Processor ID:

$$proc_map(i) = \lfloor \frac{i}{r} \rfloor$$

Local data address:

$$Local(i) = i \mod r$$

• 1D Cyclic

Processor ID:

$$proc_map(i) = i \mod p$$

Local data address:

$$Local(i) = \lfloor \frac{i}{p} \rfloor.$$

