.

Shared Memory Programming
with Pthreads

Pacheco. Chapter 4
T. Yang. UCSB CS140. Spring 2014

Outline

apgns JaydeyD #

 Shared memory programming: Overview

« POSIX pthreads

« Critical section & thread synchronization.
= Mutexes.

* Producer-consumer synchronization and
semaphores.

= Barriers and condition variables.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Shared Memory Architecture

CPU CPU CPU CPU
M Fi I
\) / \
Interconnect
/]
i
Memory

Copyright © 2010, Elsevier
Inc. All rights Reserved

Processes and Threads

« A process is an instance of arunning (or
suspended) program.

 Threads are analogous to a “light-weight” process.

* In ashared memory program a single process may
have multiple threads of control.

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Logical View of Threads

 Threads are created within a process

A process

~«| shared code, dfta
ext

Process hierarchy

@@

' Concurrent Thread Execution

 Two threads run concurrently if their logical flows
overlap in time

« Otherwise, they are sequential (we’ll see that
processes have a similar rule)

* Examples: Thread A Thread B Thread C
= Concurrent: | |
A & B, A&C I
o Se I - e e
guential Time| T | ______
B&C |

Execution Flow on one-core or multi-core
systems

Concurrent execution on a single core system

single core T4 To T3 Ty T4 To Ts T i

time

Parallel execution on a multi-core system

core 1 T4 Ta Ty Ta T4

core 2 To Ty Ts Ty Ts

' Benefits of multi-threading

* Responsiveness Rl
read # Thread 43
 Resource Sharing é § @
= Shared memory % E
* Economy v

« Scalability
= Explore multi-core CPUs

hread Programming with Shared Memory

 Program is a collection of threads of control.

= Can be created dynamically

« Each thread has a set of private variables, e.g., local stack
variables

 Also aset of shared variables, e.g., static variables, shared
common blocks, or global heap.

= Threads communicate implicitly by writing and reading
shared variables.

= Threads coordinate by synchronizing on shared
variables

Shared memory
S = ...
\

Private \ 18

ITIVIITIVUL)’ \ f o

_E\

&
)

' Shared Memory Programming

Several Thread Libraries/systems
* Pthreads is the POSIX Standard
= Relatively low level
= Portable but possibly slow; relatively heavyweight
OpenMP standard for application level programming
= Support for scientific programming on shared memory
= http://www.openMP.org
TBB: Thread Building Blocks
= Intel
CILK: Language of the C “ilk”
= Lightweight threads embedded into C
Java threads
= Built on top of POSIX threads

10

http://www.openMP.org

' Creation of Unix processes vs. Pthreads

process thread

fork pthread_create

TS T

L7 returnfexit L7 return

- -
- -
F F
F

“waitpid ‘bthread join
Y Y

' C function for starting a thread

pthread.h owne object for

\ each thread,
pthread t

Int pthread_create (
pthread t* thread p /* out */,
const pthread_attr t* attr p /*in */,
void* (*start_routine) (void) /*in*/,
void* arg p/*in*);

Copyright © 2010, Elsevier
Inc. All rights Reserved

' pthread t objects

 Opaque

* The actual data that they store is system-
specific.

* Their data members aren’t directly accessible
to user code.

 However, the Pthreads standard guarantees
that a pthread_t object does store enough
iInformation to uniquely identify the thread with
which it's associated.

Copyright © 2010, Elsevier
Inc. All rights Reserved

' A closer look (1)

Int pthread_create (
pthread t* thread p /* out */,
const pthread_attr t* attr p /*in*/,
void* (*start_routine) (void) /* in */,
void* arg p/*in*);

We won't be using, so we just pass NULL.

Allocate before calling.

Copyright © 2010, Elsevier
Inc. All rights Reserved

A closer look (2)

Int pthread_create (
pthread t* thread p /* out */,
const pthread_attr t* attr p /*in*/,
void* (*start_routine) (void) /* in */,

i void* arg p/*in*);

Pointer to the argument that should
be passed to the function start_routine.

The function that the thread is to run.

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Function started by pthread create

* Prototype:
void* thread_ function (void* args p) ;

« Void* can be cast to any pointer type in C.

* SO args_p can point to a list containing one or
more values needed by thread_function.

« Similarly, the return value of thread_function can
point to a list of one or more values.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Wait for Completion of Threads

pthread join(pthread t *thread, void
**result) ;

= Wait for specified thread to finish. Place exit value
Into *result.

« We call the function pthread join once for each
thread.

A single call to pthread join will wait for the thread
associated with the pthread t object to complete.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Example of Pthreads

#include <pthread.h>

#include <stdio.h>

void *PrintHello(void * id){
printf(“Thread%d: Hello World!\n", id);

}

void main (){
pthread t threadO, threadl;

thread

pthread_create
pthread_create \\

Y

pthread_create(&threadO, NULL, PrintHello, (void *) 0);
pthread_create(&threadl, NULL, PrintHello, (void *) 1);

}

Example of Pthreads with join

thread -

#include <pthread.h> othread_create
#include <stdio.h> \
void *PrintHello(void * id){ P*““‘-"E"—”‘E““"\

printf(“Thread%d: Hello World'\n", id);
}

=

void main (){

pthread_t threadO, thread1,; Y

pthread_create(&threadO, NULL, PrintHello, (void *) 0);
pthread create(&threadl, NULL, PrintHello, (void *) 1);
pthread_join(threadO, NULL);
pthread_join(threadl, NULL);

Some More Pthread Functions

 pthread yield();

= Informs the scheduler that the thread is willing to yield
« pthread exit(void *value);

= Exit thread and pass value to joining thread (if exists)
Others:
« pthread t me; me = pthread self();

= Allows a pthread to obtain its own identifier pthread t
thread,

 Synchronizing access to shared variables
" pthread mutex 1nit, pthread mutex [un]lock

" pthread cond 1nit, pthread cond [timed]walt

Textbook Hello World example

sinclude <stdio . h> declares the various Pthreads

#include <stdlib.h> functions, constants, types, etc.
#include <pthread.h>

/¥ Global variable: accessible to all threads =/
int thread_count:

void #Hello(veid* rank):; /% Thread function =/
int main(int argc, charx argv[]) {
long thread: J/+ Use long in case of a 64—bit syvstem =/

pthread_t#* thread_handles;

l+ Get number of threads from command line =/
thread_count = strtol(argv|[1l], NULL, 10);

thread_handles = malloc (thread_count#*sizeof(pthread_t));

Copyright © 2010, Elsevier
Inc. All rights Reserved

Hello World! (2)

for (thread = 0:; thread < thread count:; thread++)
pthread_create(&thread_handles|[thread], NULL,
Hello, (void*) thread):

printf("Hello from the main thread\n");

for (thread = 0; thread < thread_count; thread++)
pthread_join(thread_handles[thread], NULL);

free(thread handles);
return 0:
= main */

Copyright © 2010, Elsevier
Inc. All rights Reserved

Hello World! (3)

void *Hello(void#* rank) {
long my_rank = (long) rank: J/+ Use long in case of 64—bit system #*/

printf("Hello from thread %1d of %d\n", my_rank, thread_count);

return NULL;
V /% Hello =/

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Compiling a Pthread program

gcc —g —Wall —o pth_hello pth_hello . ¢ —Ipthread

link In the Pthreads library

Copyright © 2010, Elsevier
Inc. All rights Reserved

Running a Pthreads program

./ pth_hello <number of threads>

./ pth_hello 1

Hello from the main thread
Hello from thread O of 1

./ pth_hello 4

Hello from the main thread
Hello from thread O of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

Copyright © 2010, Elsevier
Inc. All rights Reserved

Issues In Threads vs. Processes

« Shared variables as global variables exist in
threads

= Can introduce subtle and confusing bugs!

= Limit use of global variables to situations in which
they're really needed.

e Starting threads
= Processes in MPI are usually started by a script.

* |n Pthreads the threads are started by the program
executable.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Difference between Single and Multithreaded
Processes

Shared memory access for code/data
Separate control flow -> separate stack/registers

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —> <«— thread

single-threaded process

multithreaded process

-

Matrix-Vector Multiplication with
Pthreads

Textbook P.159-162

Copyright © 2010, Elsevier
Inc. All rights Reserved

Sequential code

1 2 3 1 Ix1+2x24+3%x3 | 14 B
4 5 6 | *]| 2 = 4%x1+5%x24+6x%3 = | 32
7 8 9 3 Tx1+8«x2+9%3 50
/+* For each row of A =/
for (i = 0; 1 < m; i++) {

y[i] = 0.0;
/+ For each element of the row and each element of x =/
for (7 = 0: j < n: j++)

ylil += A[1][3]+ =x[J]:

ann | e adop—1 Yo
ann apy aln—1 X0 ¥
X1
@il ail Xy ain—1 Vi =ajxo +ai x4+ @i p—1Xn—1
Xp—1
p—1.0 | Gm—1,1 | " | 9n—1.n—1 V-1

' Block Mapping for Matrix-Vector Multiplication

e Task partitioning
For (i=0; i<m; I=i+1)
Task Si1 for Row 1
y[1]=0;
For (j=0; j<n; j=5+1)
ylil=y[1] +al1][j]*x[j]

Mapping to
mees | (@) ()] [(@) &

Thread 0 Thread 1

Task graph

Using 3 Pthreads for 6 Rows: 2 row per
— thread

Components
Thread of y
0 yv[0], vI[1] S0, S1
1 yl2], yl[3] S2, 33
2 yv[4], yI[5] 54,55

Codeforso YL0l = 0.0
for (7 = 0: 7 < n: j++)
y[O] += A[O][J]* x[]]
Code for Si
y[i] = 0.0:
for (7 = 0; 7 < n: j++)
yli]l += A[i][J]*x[]]

Copyright © 2010, Elsevier
Inc. All rights Reserved

thread code for thread with ID rank

void #Pth_mat_vect(void+ rank) |

h

long my_rank = (long) rank:
int i, 7:
int local m = m/thread count:
int my_first _row = my_rank#xlocal_m;
int my_last_row = (my_rank+I1)*local m — 1;
for (i = my first row: i <= my last_row; i++) {
v[ii] = 0.0;
for (7 = 0: 7 < n: J++) Task Si
yli]l += A[i][3]=x[]]:

h

return NULL:
/+ Pth_mat_vect =/

Copyright © 2010, Elsevier
Inc. All rights Reserved

CRITICAL SECTIONS

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Data Race Example

static int s = O;
Thread 0 Thread 1
for1=0, n/2-1 for1=n/2, n-1
s =s + f(A[1]) s =s + f(A[1])

* Also called critical section problem.
* A race condition or data race occurs when:

- two processors (or two threads) access the same variable,
and at least one does a write.

- The accesses are concurrent (not synchronized) so they
could happen simultaneously

’ Synchronization Solutions

1. Busy waiting
2. Mutex (lock)
3. Semaphore

4. Conditional Variables
5. Barriers

Example of Busy Waiting

static int s = 0;
static int flag=0

Thread 0
int temp, my rank
for1=0, n/2-1
tempO0=1{(A[1])
while flag!=my rank;
s =s + temp(
flag= (flag+1) %2

Thread 1
int temp, my rank
for1i=n/2, n-1
temp=£t(A[1])
while flag!=my rank;
S =S + temp
flag= (flag+1) %2

* A thread repeatedly tests a condition, but, effectively, does no
useful work until the condition has the appropriate value.
*Weakness: Waste CPU resource. Sometime not safe with

compiler optimization.

' Application Pthread Code: Estimating 1r

L1 1
N (O T I I U AL L
" (T AR Fory)

double factor = 1.0;

double sum = 0.0;

for (i = 0; 1 < n; i++, factor
sum += factor/(2xi+1);

h

pi = 4.0xsum;

—factor) {

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Mapping for a multi-core machine

-Two thread distribution

Divide computation to 2 threads or more using block
mapping. For example, n=20

Thread O: Thread 1:
Iterations O, 1, 2, .., 9 Iterations 10, 11, 12, .., 19

- No of threads = thread _count
- No of iterations per thread my n= n/thread count
-Assume it is an integer?
. Load assigned to my thread.:
First iteration: my _n* my_rank
.Last iteration: First iteration + my _n -1

thread function for computing 1r

~ void+ Thread_sum(void+ rank) |
long my_rank = (long) rank:
double factor;
long long 1i:
long long my n = n/thread count;

long long my first i = my_n#*my_rank:

long long my_last_i = my_first_i + my_n;

if (ny_first_1i % 2 == 0) /+ my_first_i is even =/
factor = 1.0;

else /« my_first_i is odd +/
factor = —1.0;

. / Unprotected critical section.
for (i = my £ t i i<t ——lor) {

sum += factor/(2+1+1);

}

return NULL;
/% Thread_sum =/

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Running results with 1 thread and 2

_ threa

ds

n

10°

10°

10

10°

TU

3.14159

3.141593

3.1415927

3.14159265

| Thread

3.14158

3.141592

3.1415926

3.14159264

2 Threads

3.14158

3.141480

3.1413692

3.14164686

As n becomes larger,

The one thread result becomes more accurate,
gaining more correct digits

The two-thread result is getting worse or strange

Copyright © 2010, Elsevier
Inc. All rights Reserved

S
' Race Conditions: Example m
A

Count=5

Producer thread Consumer thread ‘

Count++ Count--

Is count still 5?

Race Conditions: Example

Count=5
Producer thread Consumer thread
Count+-+: Count—:
register] = count register2 = count
registerl = registerl 1 register2 = register? - 1
count = register] — '

Is count still 5?

Race Conditions: Example

Count=5

Producer thread Consumer thread

Count++:
registerl = count
register]l = register] + 1

Count—;

register2 = count
register2 = register2 - 1

count = registerl

v

count = register2
Is count still 57

' Race Condition

« “count = 5” initially:
SO: producer execute registerl = count {registerl
— 5}
S1: producer execute registerl = registerl + 1
{registerl = 6}
S2. consumer execute register2 = count
{register2 = 5}
S3: consumer execute register2 =register2 - 1
{register2 = 4}
S4: producer execute count =registerl {count=6
}
S5: consumer execute count =register2 {count =
4}

Busy-Waiting

« A thread repeatedly tests a condition, but, effectively,
does no useful work until the condition has the

appropriate value.

« Beware of optimizing compilers, though!

y = Compute(my_rank);

while (flag

'= my_rank):

X = X + V,;
flag++;

flag initialized to O by main thread

Copyright © 2010, Elsevier
Inc. All rights Reserved

Pthreads global sum with busy-waiting

void+ Thread_sum(veoid* rank) {

}

long my _rank = (long) rank:
double factor;:

long long 1i;

long long my_n = n/thread_count:

long long my first i = my_ns#my_rank:
long long my_last i = my_ first_ 1 + my_n:
if (my_first_1i % 2 == 0)

factor = 1.0;
else

sum 1s a shared global variable. Can we
transform code and minimize thread
interaction on this variable?

factor = —1.0;

for (i =
wh@pr/iflag l= my_rar
sum += factor/(2+1+1);

flag = (flag+1) % thread_count:

~first_1i; 1 4

h

return NULL:
/+ Thread_sum +/

o 10, Elsevier
Inc. All rights Reserved

Global sum with local sum variable/busy waiting (1)

void+ Thread_sum(void* rank) {

long my_rank = (long) rank:
double factor., my_sum = 0.0;
long long 1i:

long long my_n = n/thread_count;
long long my_first_i = my_n#*my_rank:
long long my_last_i = my_first_i + my_n:
if (my_first_1 % == 0)

factor = 1.0;
else

factor = —1.0;

Copyright © 2010, Elsevier
Inc. All rights Reserved

Global sum with local sum variable/busy waiting

. . . |my sum 1s a local variable, not shared.
for (i = ~fTirst _1i: -

my_sum += factor/(2x]

)

Still have to contribute my sum at the

while (flag !="my_rank)|eénd to the global sum variable.
sum += my_-sum;
flag = (flag+1l) % thread_count:

return NULL:
/% Thread_sum =/

Copyright © 2010, Elsevier
Inc. All rights Reserved

Mutexes (Locks)

Acquire mutex lock

Critical section

 Code structure
Unlock/Release mutex

Mutex (mutual exclusion) is a special type of variable

used to restrict access to a critical section to a single

thread at a time.

« guarantee that one thread “excludes” all other threads

while it executes the critical section.

Z

« When A thread waits on a mutex/lock, %

CPU resource can be used by others. t,

-
3 3
Z) \Rx
3

A

Z
.

1

Mutex

|

| Protected Resource

%

Mutexes Iin Pthreads

A special type for mutexes: pthread mutex t.

int pthread_mutex_init(
pthread_mutex_t=* mutex_p /% out =/

const pthread_mutexattr_ts* attr_p /% in =/)

« To gain access to a critical section, call
int pthread_mutex_lock(pthread_mutex_t* mutex_p /x in/out =/):.

e To release

int pthread_mutex_unlock(pthread_mutex_t+ mutex_p /% in/out =*/):

 When finishing use of a mutex, call
int pthread_mutex_destroy(pthread_mutex_t+* mutex_p /*x in/out =*/);

Copyright © 2010, Elsevier
Inc. All rights Reserved

lobal sum function that uses a mutex (1)

void+ Thread_sum(veids rank) |
long my_rank = (long) rank:
double factor:
long long 1i;
long long my n = n/thread count;
long long my first i = my_n=#my_rank:
long long my last i = my_first i + my_n;
double my _sum = 0.0;

if (my _first 1 % 2 == 0)
factor = 1.0;

else
factor = —1.0;

Copyright © 2010, Elsevier
Inc. All rights Reserved

lobal sum function that uses a mutex (2)

for (i = my_first_i; 1 < my_last_i; i++, factor = —factor) {
my_sum += factor/(2=1i+1);

}

pthread_mutex_lock(&mutex);

Sum += my_sum;
pthread_mutex_unlock(&mutex);

return NULL:
/% Thread_sum =/

Copyright © 2010, Elsevier
Inc. All rights Reserved

y

Threads || Busy-Wait | Mutex
I 2.90 2.90
2 1.45 1.45 Teuriol
4 0.73 073 Tparaﬂel ~ thread_count
3 0.38 0.38
16 0.50 0.38
32 0.80 0.40
64 3.56 0.38

Run-times (in seconds) of 1T programs using n = 108
terms on a system with two four-core processors.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Producer-consumer
Synchronization and
Semaphores

Copyright © 2010, Elsevier
Inc. All rights Reserved

Why Semaphores?

Synchronization Functionality/weakness

Busy waiting Spinning for a condition. Waste
resource. Not safe

Mutex lock Support code with simple mutual
exclusion

Semaphore Handle more complex signal-based

synchronization

« Examples of complex synchronization

= Allow a resource to be shared among multlple

threads.
— Mutex: no more than 1 thread for one protected region.

= Allow a thread waiting for a condition after a signal

— E.g. Control the access order of threads entering the
critical section.

— For mutexes, the order is left to chance and the system.

Problems with a mutex solution in

Multiplying many matrices

product mat= A*B*C
Out of order multiplication = product mat=A*C*B
That 1s wrong

/¥ n and product_matrix are shared and initialized by the main thread

/¥ product_matrix is initialized to be the The order of

void+ Thread_work(void* rank) {
long my_rank = (long) rank:
matrix_t my_mat = Allocate_matri
Generate_matrix(my_mat):

pthread_mutex_lock(&mutex):

Multiply_matrix(product_mat, my_mat);

pthread_mutex_unlock(&mutex);

Free_matrix(&my_mat);

return NULL;

V' /x Thread_work =/

multiplication 1s not
defined

Copyright © 2010, Elsevier
Inc. All rights Reserved

Producer-Consumer Example

®— @&

« Thread x produces a message for Thread x+1.

= Last thread produces a message for thread 0.
« Each thread prints a message sent from its source.
« Will there be null messages printed?

= A consumer thread prints its source message before
this message is produced.

= How to avoid that?

First attempt at sending messages using pthreads

messages has type char*x*. It’'s allocated in main. */

Each entry is set to NULL in main. */
void #*Send_msg(void* rank) {
long my_rank = (long) rank:
long dest = (my_rank + 1) % thread_count:
long source = (my_rank 4+ thread count — 1) % thread count:
chars my_msg = malloc(X

Produce a message for a destination
fello to 314 Lthread

sprintf(my_msg

messages|[dest]|] = my_msqg;
_ Consume a message
if (messages|[my_rank]| }= NULL)
printf("Thread %1d > %s\n". my_rank., messages|[my_rank]):
else
printf("Thread %$1d > No message from %1d\n"., my_rank. source):

return NULL:
/* Send_msg */

Copyright © 2010, Elsevier
Inc. All rights Reserved

Semaphore: Generalization from mutex
— locks

Semaphore S — integer variable
= |nitial value can be negative or positive
Can only be accessed /modified via two
(atomic) operations with the following
semantics:
= walit (S) { //also called P()
while S <= 0 walt in a queue;
S--;

£500uUMB 1l ydJeRs /ISy 1eulblo @

}

= post(S){ /l/also called V()
S++;

Wake up a thread that waits in the queue.

}

WO ¥I0ISUOoET) WOy ajgeeny siybiy

Syntax of Pthread semaphore functions

/ Semaphores are not part of Pthreads;

#include <semaphore.h> you need to add this.

int sem _init(

sem_t x* semaphore_p /x out =/,
int shared [in x/,
unsigned initial_val /[in x/);

int sem_destroy(sem_t+* semaphore_p /x in/out =/).
int sem_post(sem_tx* semaphore_p /% in/out =/);
int sem wait(sem t=* semaphore_p /x in/out =/):

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Message sending with semaphores

sprintf(my_msg, "Hello to %ld from %Id", dest, my_rank);
messages|dest] = my _msg;

sem_post(&semaphores|[dest));
[* signal|the dest thread*/
sem_wait(&semaphores[my_rank]);
/* Wait until the source message Iis created */

printf("Thread %ld > %s\n", my_rank,
messages[my_rank]);

Typical Producer-Consumer Flow in Using a

hore

= \What does initial value s mean?
— s=07?
— s=27?
— S=-2

BARRIERS AND CONDITION
VARIABLES

Copyright © 2010, Elsevier
Inc. All rights Reserved

Barriers

e Synchronizing the threads to make sure that they all
are at the same point in a program is called a barrier.

* No thread can cross the barrier until all the threads
have reached It.
P1 J P2 P3 l

Barriar-3

/% Shared */
double elapsed_time;

/* Private x/
double my_start, my_finish, my_elapsed;

Ssynchronize threads;

Store current time 1in my_start;
/¥ Execute timed code =/

Store current time in my_finish;
my_elapsed = my_finish — my_start;

elapsed = Maximum of my_elapsed values;

v, - §
Inc. All rights Reserved

Using barriers for debugging

point 1n program we want to reach;

barrier;

if (my_rank == 0) {
printf("All threads reached this point\n");
fflush(stdout);

Copyright © 2010, Elsevier
Inc. All rights Reserved

Implement a barrier with busy-waiting and
— amutex

« A shared counter as # of threads waiting in this point.

/* Shared and initialized by the main thread =/
int counter:; /% Initialize to 0
int thread count:

. Need one counter
pthread_mutex_t barrier_mutex;

variable for each
Instance of the barrier,

. otherwise problems
void* Thread_work (. . .) { arelikelytgoccur

/* Barrier =/
pthread_mutex_lock(&barrier_mutex);
counter++;
pthread_mutex_unlock(&barrier_mutex);
while (counter < thread_count);

plementing a barrier with semaphores

— /% Shared variables_«/

int caunte;j////__‘beﬁectaanft~« 0. s
sem_t countZsem;— " rr—rn Wait all threads to come

sem_t barrier sem; J/x Initialize to 0 =/

void* Thread work(...) {

/+ Barrier =/
sem_walt(&count sem);
if (counter == thread_count—1) {
counter = 0;
sem_post(&count_sem);
for (7 = 0. j < thread_count —1; j++)
sem_post(&barrier sem);
} else {
counter++;
sem_post(&count_sem);
sem _walt(&barrier sem);

© 2010, Elsevier
} rights Reserved

Condition Variables

¢ Why?

« More programming primitives to simplify code for
synchronization of threads

Synchronization
Busy waiting

Mutex lock

Semaphore

Barrier

Condition
variables

Functionality

Spinning for a condition. Waste resource.
Not safe

Support code with simple mutual
exclusion

Signal-based synchronization. Allow
sharing (not wait unless semaphore=0)

Rendezvous-based synchronization

More complex synchronization: Let
threads wait until a user-defined
condition becomes true

' Synchronization Primitive: Condition Variables

« Used together with a lock

* One can specify more general waiting
condition compared to semaphores.

» Athread Is blocked when condition is no
true:
= placed in a waliting queue, Yyielding
CPU resource to somebody else.

= Wake up until receiving a signal

Pthread synchronization: Condition

19hlec

int status; pthread condition t cond;

const pthread condattr t attr;

pthread mutex mutex;

status = pthread cond 1nit(&cond,&attr);
status = pthread cond destroy(&cond);
status = pthread cond wait(&cond,&mutex);

-wait in a queue until somebody wakes up. Then the mutex is
reacquired.

status = pthread cond_signal(&cond);
- wake up one waiting thread.
status = pthread cond_broadcast(&cond);

- wake up all waiting threads in that condition

' How to Use Condition Variables: Typica

—1OW
= Thread 1: //try to get into critical section and
wait for the condition
Mutex_lock(mutex);
While (condition is not satisfied)
Cond_Wait(mutex, cond);
Critical Section;
Mutex unlock(mutex)

= Thread 2: // Try to create the condition.
Mutex_lock(mutex);
When condition can satisfy, Signal(cond);
Mutex_unlock(mutex);

’ondition variables for in producer-
consumer problem with unbounded buffer

Producer deposits data in a buffer for others to consume

Producer | Consumer A

ihilihix

Buffer quene

Producer2 Consumer B

First version for consumer-producer problem
with unbounded buffer

* Int avail=0; //# of data items available for consumption
« Consumer thread:

= Producer thread:

Produce next item; avail = avalil+1,
//notify an item Is available

’ Condition Variables for consumer-producer
problem with unbounded buffer

« Int avail=0; // # of data items available for consumption

« Pthread mutex m and condition cond,;

 Consumer thread:

multex_lock(&m)

while (avail <=0) Cond_Wait(&cond, &m);
Consume next item; avail = avail-1;
mutex_unlock(&mutex)

= Producer thread:

muteX_lock(&m);

Produce next item; availl = avail+1;
Cond_signal(&cond); //notify an item is available
muteXx_unlock(&m);

' When to use condition broadcast?

* When waking up one thread to run
IS not sufficient.

« Example: concurrent malloc()/free()
for allocation and deallocation of
objects with non-uniform sizes.

' Running trace of malloc()/free()

 Initially 10 bytes are free.
* m() stands for malloc(). f() for free()

Thread 1:
m(10) — succ
f(10) —broadcast

m(7) — wait

Resume m(7)-walit

Time

Thread 2:
m(5) — walit

Resume m(5)-succ

f(5) —broadcast

Thread 3:

m(5) — walit

Resume m(5)-succ

m(3) —walit

Resume m(3)-succ

Implementing a barrier with condition variables
— Text book p.180

[+ Shared =/

int counter = 0;

pthread mutex_t mutex;
pthread_cond_t cond_var;

void* Thread work(. . .) {

/* Barrier =/
pthread_mutex_lock(&mutex);
counter++;

if (counter == thread_count) {
counter = 0;
pthread_cond_broadcast(&cond_var);
} else {
while (pthread cond wait(&cond var, &mutex) != 0);

}

pthread_mutex_unlock(&mutex);

Concluding Remarks (1)

* A thread in shared-memory programming is analogous
to a process in distributed memory programming.

= However, a thread is often lighter-weight

* In Pthreads programs, all the threads have access to
global variables, while local variables usually are
private to the thread running the function.

« When multiple threads access a shared resource
without controlling, we have a race condition.

= A critical section is a block of code that updates a
shared resource that can only be updated by one
thread at a time

Copyright © 2010, Elsevier
Inc. All rights Reserved

Concluding Remarks (2)

Busy-waiting can be used for critical sections with
a flag variable and a while-loop

= |t can waste CPU cycles, & may be unreliable

A mutex arrange for mutually exclusive access to a
critical section.

Semaphore & Condition variables
= more powerful synchronization primitives.

A barrier Is a point in a program at which the threads
block until all of the threads have reached it.

Copyright © 2010, Elsevier
Inc. All rights Reserved

