
Shared Memory Programming

with Pthreads

Pacheco. Chapter 4

T. Yang. UCSB CS140. Spring 2014

Copyright © 2010, Elsevier

Inc. All rights Reserved

Outline

• Shared memory programming: Overview

• POSIX pthreads

• Critical section & thread synchronization.

 Mutexes.

 Producer-consumer synchronization and
semaphores.

 Barriers and condition variables.

#
 C

h
a
p
te

r S
u
b
title

Shared Memory Architecture

Copyright © 2010, Elsevier

Inc. All rights Reserved

Processes and Threads

• A process is an instance of a running (or

suspended) program.

• Threads are analogous to a “light-weight” process.

• In a shared memory program a single process may

have multiple threads of control.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Logical View of Threads

• Threads are created within a process

P1

sh sh sh

foo

T1

Process hierarchy A process

T2
T4

T5 T3

shared code, data

and kernel context

Concurrent Thread Execution

• Two threads run concurrently if their logical flows

overlap in time

• Otherwise, they are sequential (we’ll see that

processes have a similar rule)

• Examples:

 Concurrent:

A & B, A&C

 Sequential:

B & C

Time

Thread A Thread B Thread C

Execution Flow on one-core or multi-core

systems

Concurrent execution on a single core system

Parallel execution on a multi-core system

Benefits of multi-threading

• Responsiveness

• Resource Sharing

 Shared memory

• Economy

• Scalability

 Explore multi-core CPUs

9

Thread Programming with Shared Memory

• Program is a collection of threads of control.

 Can be created dynamically

• Each thread has a set of private variables, e.g., local stack

variables

• Also a set of shared variables, e.g., static variables, shared

common blocks, or global heap.

 Threads communicate implicitly by writing and reading

shared variables.

 Threads coordinate by synchronizing on shared

variables

Pn P1 P0

s
s = ...

Shared memory

i: 2 i: 5 Private

memory

i: 8

10

Shared Memory Programming

Several Thread Libraries/systems

• Pthreads is the POSIX Standard

 Relatively low level

 Portable but possibly slow; relatively heavyweight

• OpenMP standard for application level programming

 Support for scientific programming on shared memory

 http://www.openMP.org

• TBB: Thread Building Blocks

 Intel

• CILK: Language of the C “ilk”

 Lightweight threads embedded into C

• Java threads

 Built on top of POSIX threads

 Object within Java language

http://www.openMP.org

Creation of Unix processes vs. Pthreads

C function for starting a thread

Copyright © 2010, Elsevier

Inc. All rights Reserved

pthread.h

pthread_t

int pthread_create (

 pthread_t* thread_p /* out */ ,

 const pthread_attr_t* attr_p /* in */ ,

 void* (*start_routine) (void) /* in */ ,

 void* arg_p /* in */) ;

One object for
each thread.

pthread_t objects

• Opaque

• The actual data that they store is system-

specific.

• Their data members aren’t directly accessible

to user code.

• However, the Pthreads standard guarantees

that a pthread_t object does store enough

information to uniquely identify the thread with

which it’s associated.

Copyright © 2010, Elsevier

Inc. All rights Reserved

A closer look (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

int pthread_create (

 pthread_t* thread_p /* out */ ,

 const pthread_attr_t* attr_p /* in */ ,

 void* (*start_routine) (void) /* in */ ,

 void* arg_p /* in */) ;

We won’t be using, so we just pass NULL.

Allocate before calling.

A closer look (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

int pthread_create (

 pthread_t* thread_p /* out */ ,

 const pthread_attr_t* attr_p /* in */ ,

 void* (*start_routine) (void) /* in */ ,

 void* arg_p /* in */) ;

The function that the thread is to run.

Pointer to the argument that should

be passed to the function start_routine.

Function started by pthread_create

• Prototype:

 void* thread_function (void* args_p) ;

• Void* can be cast to any pointer type in C.

• So args_p can point to a list containing one or

more values needed by thread_function.

• Similarly, the return value of thread_function can

point to a list of one or more values.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Wait for Completion of Threads

pthread_join(pthread_t *thread, void

**result);

 Wait for specified thread to finish. Place exit value

into *result.

• We call the function pthread_join once for each

thread.

• A single call to pthread_join will wait for the thread

associated with the pthread_t object to complete.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Example of Pthreads

#include <pthread.h>

#include <stdio.h>

void *PrintHello(void * id){

 printf(“Thread%d: Hello World!\n", id);

}

void main (){

 pthread_t thread0, thread1;

 pthread_create(&thread0, NULL, PrintHello, (void *) 0);

 pthread_create(&thread1, NULL, PrintHello, (void *) 1);

}

Example of Pthreads with join

#include <pthread.h>

#include <stdio.h>

void *PrintHello(void * id){

 printf(“Thread%d: Hello World!\n", id);

}

void main (){

 pthread_t thread0, thread1;

 pthread_create(&thread0, NULL, PrintHello, (void *) 0);

 pthread_create(&thread1, NULL, PrintHello, (void *) 1);

 pthread_join(thread0, NULL);

 pthread_join(thread1, NULL);

}

Some More Pthread Functions

• pthread_yield();

 Informs the scheduler that the thread is willing to yield

• pthread_exit(void *value);

 Exit thread and pass value to joining thread (if exists)

Others:

• pthread_t me; me = pthread_self();

 Allows a pthread to obtain its own identifier pthread_t

thread;

• Synchronizing access to shared variables

 pthread_mutex_init, pthread_mutex_[un]lock

 pthread_cond_init, pthread_cond_[timed]wait

Textbook Hello World example

Copyright © 2010, Elsevier

Inc. All rights Reserved

declares the various Pthreads

functions, constants, types, etc.

Hello World! (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Hello World! (3)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Compiling a Pthread program

Copyright © 2010, Elsevier

Inc. All rights Reserved

gcc −g −Wall −o pth_hello pth_hello . c −lpthread

link in the Pthreads library

Running a Pthreads program

Copyright © 2010, Elsevier

Inc. All rights Reserved

. / pth_hello <number of threads>

. / pth_hello 1

Hello from the main thread

Hello from thread 0 of 1

. / pth_hello 4

Hello from the main thread

Hello from thread 0 of 4

Hello from thread 1 of 4

Hello from thread 2 of 4

Hello from thread 3 of 4

Issues in Threads vs. Processes

• Shared variables as global variables exist in

threads

 Can introduce subtle and confusing bugs!

 Limit use of global variables to situations in which

they’re really needed.

• Starting threads

 Processes in MPI are usually started by a script.

 In Pthreads the threads are started by the program

executable.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Difference between Single and Multithreaded

Processes
Shared memory access for code/data

Separate control flow -> separate stack/registers

Matrix-Vector Multiplication with

Pthreads

Textbook P.159-162

Copyright © 2010, Elsevier

Inc. All rights Reserved

Sequential code

Block Mapping for Matrix-Vector Multiplication

• Task partitioning

 For (i=0; i<m; i=i+1)

Task graph

Mapping to

threads

Task Si for Row i

y[i]=0;

For (j=0; j<n; j=j+1)

 y[i]=y[i] +a[i][j]*x[j]

S0 S1 Sm
...

S0 S1
...

Thread 0

S2 S3

Thread 1

Using 3 Pthreads for 6 Rows: 2 row per

thread

Copyright © 2010, Elsevier

Inc. All rights Reserved

Code for Si

S2, S3

S4,S5

S0, S1

Code for S0

Pthread code for thread with ID rank

Copyright © 2010, Elsevier

Inc. All rights Reserved

Task Si

CRITICAL SECTIONS

Copyright © 2010, Elsevier

Inc. All rights Reserved

Data Race Example

Thread 0

 for i = 0, n/2-1

 s = s + f(A[i])

Thread 1

 for i = n/2, n-1

 s = s + f(A[i])

static int s = 0;

• Also called critical section problem.

• A race condition or data race occurs when:

- two processors (or two threads) access the same variable,

and at least one does a write.

- The accesses are concurrent (not synchronized) so they

could happen simultaneously

Synchronization Solutions

1. Busy waiting

2. Mutex (lock)

3. Semaphore

4. Conditional Variables

5. Barriers

Example of Busy Waiting

Thread 0

 int temp, my_rank

 for i = 0, n/2-1

 temp0=f(A[i])

 while flag!=my_rank;

 s = s + temp0

 flag= (flag+1) %2

Thread 1

 int temp, my_rank

 for i = n/2, n-1

 temp=f(A[i])

 while flag!=my_rank;

 s = s + temp

 flag= (flag+1) %2

static int s = 0;

static int flag=0

• A thread repeatedly tests a condition, but, effectively, does no

useful work until the condition has the appropriate value.

•Weakness: Waste CPU resource. Sometime not safe with

compiler optimization.

Application Pthread Code: Estimating π

Copyright © 2010, Elsevier

Inc. All rights Reserved

Mapping for a multi-core machine

•Two thread distribution

Divide computation to 2 threads or more using block

mapping. For example, n=20

• No of threads = thread_count

• No of iterations per thread my_n= n/ thread_count

•Assume it is an integer?

• Load assigned to my thread:

•First iteration: my_n * my_rank

•Last iteration: First iteration + my_n -1

Thread 0:

 Iterations 0, 1, 2, .., 9

Thread 1:

 Iterations 10, 11, 12, .., 19

A thread function for computing π

Copyright © 2010, Elsevier

Inc. All rights Reserved

Unprotected critical section.

Running results with 1 thread and 2

threads

Copyright © 2010, Elsevier

Inc. All rights Reserved

As n becomes larger,

• The one thread result becomes more accurate,

gaining more correct digits

• The two-thread result is getting worse or strange

Race Conditions: Example

Count--

Producer thread Consumer thread

Count++

Count=5

Is count still 5?

Race Conditions: Example

Count—:

 register2 = count

 register2 = register2 - 1

 count = register2

Producer thread Consumer thread

Count++:

 register1 = count

 register1 = register1 + 1

 count = register1

Count=5

Is count still 5?

Race Conditions: Example

Count—:

 register2 = count

 register2 = register2 - 1

 count = register2

Producer thread Consumer thread

Count++:

 register1 = count

 register1 = register1 + 1

 count = register1

Count=5

Is count still 5?

Race Condition

• “count = 5” initially:

 S0: producer execute register1 = count {register1
= 5}
S1: producer execute register1 = register1 + 1
 {register1 = 6}
S2: consumer execute register2 = count

 {register2 = 5}
S3: consumer execute register2 = register2 - 1
 {register2 = 4}
S4: producer execute count = register1 {count = 6
}
S5: consumer execute count = register2 {count =
4}

Busy-Waiting

• A thread repeatedly tests a condition, but, effectively,

does no useful work until the condition has the

appropriate value.

• Beware of optimizing compilers, though!

Copyright © 2010, Elsevier

Inc. All rights Reserved

flag initialized to 0 by main thread

Pthreads global sum with busy-waiting

Copyright © 2010, Elsevier

Inc. All rights Reserved

Busy waiting until I can

modify the global variable.

sum is a shared global variable. Can we

transform code and minimize thread

interaction on this variable?

Global sum with local sum variable/busy waiting (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Global sum with local sum variable/busy waiting

Copyright © 2010, Elsevier

Inc. All rights Reserved

my_sum is a local variable, not shared.

Still have to contribute my_sum at the

end to the global sum variable.

Mutexes (Locks)

• Code structure

• Mutex (mutual exclusion) is a special type of variable

used to restrict access to a critical section to a single

thread at a time.

• guarantee that one thread “excludes” all other threads

while it executes the critical section.

• When A thread waits on a mutex/lock,

CPU resource can be used by others.

Acquire mutex lock

Critical section

Unlock/Release mutex

Mutexes in Pthreads

• A special type for mutexes: pthread_mutex_t.

• To gain access to a critical section, call

• To release

• When finishing use of a mutex, call

Copyright © 2010, Elsevier

Inc. All rights Reserved

Global sum function that uses a mutex (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Global sum function that uses a mutex (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Copyright © 2010, Elsevier

Inc. All rights Reserved

Run-times (in seconds) of π programs using n = 108

terms on a system with two four-core processors.

Producer-consumer

Synchronization and

Semaphores

Copyright © 2010, Elsevier

Inc. All rights Reserved

Why Semaphores?

• Examples of complex synchronization

 Allow a resource to be shared among multiple

threads.

– Mutex: no more than 1 thread for one protected region.

 Allow a thread waiting for a condition after a signal

– E.g. Control the access order of threads entering the

critical section.

– For mutexes, the order is left to chance and the system.

Synchronization Functionality/weakness

Busy waiting Spinning for a condition. Waste

resource. Not safe

Mutex lock Support code with simple mutual

exclusion

Semaphore Handle more complex signal-based

synchronization

Problems with a mutex solution in

multiplying many matrices

Copyright © 2010, Elsevier

Inc. All rights Reserved

product_mat= A*B*C

Out of order multiplication  product_mat= A*C*B

That is wrong

The order of

multiplication is not

defined

Producer-Consumer Example

• Thread x produces a message for Thread x+1.

 Last thread produces a message for thread 0.

• Each thread prints a message sent from its source.

• Will there be null messages printed?

 A consumer thread prints its source message before

this message is produced.

 How to avoid that?

T0 T1 T2

First attempt at sending messages using pthreads

Copyright © 2010, Elsevier

Inc. All rights Reserved

Produce a message for a destination

thread

Consume a message

Semaphore: Generalization from mutex

locks

• Semaphore S – integer variable

 Initial value can be negative or positive

• Can only be accessed /modified via two

 (atomic) operations with the following

 semantics:

 wait (S) { //also called P()

 while S <= 0 wait in a queue;

 S--;

 }

 post(S) { //also called V()

 S++;

 Wake up a thread that waits in the queue.

 }

Syntax of Pthread semaphore functions

Copyright © 2010, Elsevier

Inc. All rights Reserved

Semaphores are not part of Pthreads;

you need to add this.

Message sending with semaphores

sprintf(my_msg, "Hello to %ld from %ld", dest, my_rank);

messages[dest] = my_msg;

sem_post(&semaphores[dest]);

 /* signal the dest thread*/

sem_wait(&semaphores[my_rank]);

 /* Wait until the source message is created */

printf("Thread %ld > %s\n", my_rank,

messages[my_rank]);

 Thread 1: //Consumer

sem_wait(s);

 // condition is satisfied

Consume an item

 Thread 2: // Producer

Produce an item

sem_post(s);

 What does initial value s mean?
– s=0?

– s=2?

– s=-2

Typical Producer-Consumer Flow in Using a

Semaphore

BARRIERS AND CONDITION

VARIABLES

Copyright © 2010, Elsevier

Inc. All rights Reserved

Barriers

• Synchronizing the threads to make sure that they all

are at the same point in a program is called a barrier.

• No thread can cross the barrier until all the threads

have reached it.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Application: Start timing of all threads at

a fixed point.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Using barriers for debugging

Copyright © 2010, Elsevier

Inc. All rights Reserved

Implement a barrier with busy-waiting and

a mutex

• A shared counter as # of threads waiting in this point.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Need one counter

variable for each

instance of the barrier,

otherwise problems

are likely to occur.

Implementing a barrier with semaphores

Copyright © 2010, Elsevier

Inc. All rights Reserved

Protect counter
Wait all threads to come

Condition Variables

• Why?

• More programming primitives to simplify code for

synchronization of threads

Synchronization Functionality

Busy waiting Spinning for a condition. Waste resource.

Not safe

Mutex lock Support code with simple mutual

exclusion

Semaphore Signal-based synchronization. Allow

sharing (not wait unless semaphore=0)

Barrier Rendezvous-based synchronization

Condition

variables

More complex synchronization: Let

threads wait until a user-defined

condition becomes true

Synchronization Primitive: Condition Variables

• Used together with a lock

• One can specify more general waiting
condition compared to semaphores.

• A thread is blocked when condition is no
true:

 placed in a waiting queue, yielding
CPU resource to somebody else.

Wake up until receiving a signal

Pthread synchronization: Condition

variables
int status; pthread_condition_t cond;

const pthread_condattr_t attr;

pthread_mutex mutex;

status = pthread_cond_init(&cond,&attr);

status = pthread_cond_destroy(&cond);

status = pthread_cond_wait(&cond,&mutex);

 -wait in a queue until somebody wakes up. Then the mutex is

reacquired.

status = pthread_cond_signal(&cond);

 - wake up one waiting thread.

status = pthread_cond_broadcast(&cond);

 - wake up all waiting threads in that condition

 Thread 1: //try to get into critical section and

 wait for the condition

Mutex_lock(mutex);

 While (condition is not satisfied)

 Cond_Wait(mutex, cond);

 Critical Section;

Mutex_unlock(mutex)

 Thread 2: // Try to create the condition.

Mutex_lock(mutex);

When condition can satisfy, Signal(cond);

Mutex_unlock(mutex);

How to Use Condition Variables: Typical

Flow

Producer deposits data in a buffer for others to consume

Condition variables for in producer-

consumer problem with unbounded buffer

First version for consumer-producer problem

with unbounded buffer

• int avail=0; // # of data items available for consumption

• Consumer thread:

 while (avail <=0); //wait

 Consume next item; avail = avail-1;

 Producer thread:

 Produce next item; avail = avail+1;

 //notify an item is available

Condition Variables for consumer-producer

problem with unbounded buffer

• int avail=0; // # of data items available for consumption

• Pthread mutex m and condition cond;

• Consumer thread:

 multex_lock(&m)

 while (avail <=0) Cond_Wait(&cond, &m);

 Consume next item; avail = avail-1;

 mutex_unlock(&mutex)

 Producer thread:

 mutex_lock(&m);

 Produce next item; availl = avail+1;

 Cond_signal(&cond); //notify an item is available

 mutex_unlock(&m);

When to use condition broadcast?

• When waking up one thread to run
is not sufficient.

• Example: concurrent malloc()/free()
for allocation and deallocation of
objects with non-uniform sizes.

Running trace of malloc()/free()

• Initially 10 bytes are free.

• m() stands for malloc(). f() for free()

Thread 1:

m(10) – succ

f(10) –broadcast

m(7) – wait

Resume m(7)-wait

Thread 2:

m(5) – wait

Resume m(5)-succ

f(5) –broadcast

Thread 3:

m(5) – wait

Resume m(5)-succ

m(3) –wait

Resume m(3)-succ

Time

Implementing a barrier with condition variables
Text book p.180

Copyright © 2010, Elsevier

Inc. All rights Reserved

Concluding Remarks (1)

• A thread in shared-memory programming is analogous

to a process in distributed memory programming.

 However, a thread is often lighter-weight

• In Pthreads programs, all the threads have access to

global variables, while local variables usually are

private to the thread running the function.

• When multiple threads access a shared resource

without controlling, we have a race condition.

 A critical section is a block of code that updates a

shared resource that can only be updated by one

thread at a time

Copyright © 2010, Elsevier

Inc. All rights Reserved

Concluding Remarks (2)

• Busy-waiting can be used for critical sections with

a flag variable and a while-loop

 It can waste CPU cycles, & may be unreliable

• A mutex arrange for mutually exclusive access to a

critical section.

• Semaphore & Condition variables

 more powerful synchronization primitives.

• A barrier is a point in a program at which the threads

block until all of the threads have reached it.

Copyright © 2010, Elsevier

Inc. All rights Reserved

