.

Advanced Topics on

Shared Memory Programming
with Pthreads

Pacheco. Chapter 4
T. Yang. UCSB CS140. Spring 2014

Outline

 More on thread synchronization.
= Read-write locks.
= Applications in a shared link list
« False sharing
 Deadlocks and thread safety.

Copyright © 2010, Elsevier
Inc. All rights Reserved

apgns JaydeyD #

READ-WRITE LOCKS

Copyright © 2010, Elsevier
Inc. All rights Reserved

Synchronization Example for Readers-Writers Problem

« A datasetis shared among a number of concurrent
threads.

= Readers — only read the data set; they do not perform any
updates

= Writers - can both read and write
 Requirement:
= allow multiple readers to read at the same time.
= Only one writer can access the shared data at the same

time.
 Reader/writer access permission table:
Reader Writer
Reader OK No

Writer NO NoO

Readers-Writers (First try with 1 mutex lock)

—swriter
do {
mutex_lock(w);
/[writing is performed
mutex_unlock(w);
} while (TRUE);

e Reader Reader ? ?
do { Writer ? ?

mutex_lock(w);
/I reading is performed
mutex_unlock(w);

} while (TRUE);

Readers-Writers (First try with 1 mutex lock)

—swriter
do {
mutex_lock(w);
/[writing is performed
mutex_unlock(w);
} while (TRUE);

e Reader Reader no no
do { Writer no no

mutex_lock(w);
/I reading is performed
mutex_unlock(w);

} while (TRUE);

2"d try using a lock + readcount

e Writer
do {
mutex_lock(w);// Use writer mutex lock
/[writing is performed

mutex_unlock(w);
} while (TRUE);

« Reader

do {
readcount++; // add a reader counter.
if(readcount==1) mutex_lock(w);
/[reading is performed
readcount--;
If(readcount==0) mutex_unlock(w);
} while (TRUE);

’ Readers-Writers Problem with semaphone

« Shared Data
= Data set
* Lock mutex (to protect readcount)

= Semaphore wrt initialized to 1 (to
synchronize between
readers/writers)

= Integer readcount initialized to O

’ Readers-Writers Problem

A writer
do {
sem_wailt(wrt) ; //[semaphore wrt

// writing Is performed

sem_post(wrt) ; //
} while (TRUE);

Readers-Writers Problem (Cont.)

Reader
do {
muteXx_lock(mutex);
readcount ++
If (readcount == 1)
sem_wait(wrt); /Icheck if anybody is writing
mutex_unlock(mutex)

// reading is performed

mutex_lock(mutex);
readcount - -
If (readcount == 0)
sem_post(wrt) ; //writing is allowed now
nlock(mutex) ;
} while (TRUE);

Application case: Sharing a sorted linked list of
Integers

Demonstrate controlling of access to a large, shared
data structure

Operations supported
= Member, Insert, and Delete.

A 4
[\
Y
&)
A 4
oo

head_p

struct list_node_s {
int data:
struct list node s* next:

} Copyright © 2010, Elsevier
Inc. All rights Reserved

Membership operation for alinked list

int Member(int value, struct list_node_s# head_p) {

struct list_node_s#* curr_p = head_p:

while (curr_p != NULL && curr_p—>data < value)
curr_p = curr_p—>next:

if (curr_p == NULL || curr_p—>data > value) {
return 0;

} else {
return 1[;

}

t /% Member =/

4

&)
\
oo

head_p > 2

HiG. Al TIYHIW Resciveu

Insert operation: Inserting a new node

head p

pred_p

Cemp_p

cCurr_p

Copyright © 2010, Elsevier
Inc. All rights Reserved

Inserting a new node into a list

int Insert(int wvalue.
struct list_node_s=* curr_p =
struct list_ncde_s+ pred_p =
struct list_nocde_s+ temp_p:

+head
NULL:

_bp:

while (curr_p
pred_p = curr_p;
curr_p = curr_p—>next:

|

if (curr_p
temp_p =

temp_p—>data = value;

NULL ||

struct list_node_s#* head_pp) |

l= NULL && curr_p—> a 9

Find the right position
1n the sorted list

malloc(sizeof (struct list nod

curr_p—>data > value) {

Insert to this position

temp_p—>next = curr_p;
if (pred_p == NULL) /% New first node =/
+head_pp = temp_p:
else
pred_p—>next = temp_p:
return]: pred_p curr_p
b else | /+ Value already in list
return 0O;
} head_p 2 5 % 8
b /+ Insert «/

temp_p 7

Delete operation: remove a node from a
linked list

head_p

pred_p

curr_p

Copyright © 2010, Elsevier
Inc. All rights Reserved

——int Delete(int wvalue.

|

Deleting a node from a linked list

struct list_node_s*% head_pp) 1

struct list_node_s#* curr_p = *head_pp:
struct list_node_s#* pred_p = NULL:

while (curr_p != NULL && curr_p“>data Findanode Wlth the

f

if (curr_p

pred_p
curr_p

l= NULL && curr_p—>data

cCurr_p:
curr_p—>next .

if (pred_p == NULL) { /% Deleting
+*head_pp = curr_p—>next;
free(curr_p);

b else

{

pred_p—>next = curr_p—>next:
free(curr_p);

|

return

b else |

f
/*

return

Delete

I
/
0:

+/

Value isn’'t in list =/

orven value

== value) {

first node in list =/

Remove this node

head_p 2 5

pred_p curr_p

A Multi-Threaded Linked List

« Allow a sorted linked list to be accessed by multiple
threads

* In order to share access to the list, define head p to
be a global variable.

= This will simplify the function headers for Member,
Insert, and Delete,

= since we won't need to pass in either head p or a
pointer to head p: we'll only need to pass in the
value of interest.

Copyright © 2010, Elsevier
Inc. All rights Reserved

!lmultaneous access by two threads

Thread O;
curr_p
head_p| —F— 2 ——{ 5 —— 8
7 3
Thread 1; Thread 1:

pred_p curr_p

Copyright © 2010, Elsevier
Inc. All rights Reserved

Solution #1

 An obvious solution is to simply lock the list any
time that a thread attempts to access lit.

« A call to each of the three functions can be
protected by a mutex.

Pthread mutex lock(&list mutex):
Member (value);
Pthread mutex unlock(&list _mutex);

In place of calling Member(value).

Copyright © 2010, Elsevier
Inc. All rights Reserved

Issues

« We’'re serializing access to the list.

 If the vast majority of our operations are calls to Member,
we’ll fail to exploit this opportunity for parallelism.

* On the other hand, if most of our operations are calls to
Insert and Delete,

= This may be the bes :_(;\?;l Member Insert Delete
— since serializati~~ -*
performance im Member no no no
— Easy to implem
Mem Insert no no no
Delete no no no

Inser.

Delete ? ? ?

Solution #2

« Instead of locking the entire list, lock individual

nodes.
= A “finer-grained” approach: One mutex lock per
node
struct list_node_s {
int data:

struct list node s* next:
pthread_mutex_t mutex,;

} Node- Member Insert Delete
level
Member no no no
Insert no no no

Delete no no no

Implementation of Member with one mutex per list node (1)

int Member(int value) {
struct list_node_s#* temp_p:

pthread_mutex_lock(&head_p_mutex):
temp_p = head_p:
while (temp_p != NULL && temp_p—>data < value) {
if (temp_p—>next != NULL)
pthread_mutex_lock(&(temp_p—>next—>mutex));
if (temp_p == head_p)
pthread_mutex_unlock(&head_p_mutex):
pthread_mutex_unlock(&(temp_p—>mutex)):
temp_p = temp_p—>next:

Copyright © 2010, Elsevier
Inc. All rights Reserved

Implementation of Member with one mutex per list node (2)

if (temp_p
if (temp_p
pthread

if (temp_p

pthread_

return 0;
} else {
if (temp_p

pthread_

NULL || temp_p—>data > value) {
head_p)
mutex_unlock(&head_p_mutex):
NULL)
mutex_unlock(&(temp_p—>mutex));

1=

head_p)
mutex_unlock(&head_p_mutex):

pthread_mutex_unlock(&(temp_p—>mutex)):

return 1;

;

} /* Member =/

Copyright © 2010, Elsevier
Inc. All rights Reserved

Issues

« Much more complex than the original Member function.
* Much slower,

= each time a node Is accessed, a mutex must be
locked and unlocked.

 Significant space cost
= Adding a mutex field to each node

Copyright © 2010, Elsevier
Inc. All rights Reserved

Motivation for using Pthreads Read-Write
Locks

* Neither of our multi-threaded linked lists exploits the
potential for simultaneous access to any node by
threads that are executing Member.

« The first solution only allows one thread to access the
entire list at any instant.

« The second only allows one thread to access any
given node at any instant.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Pthreads Read-Write Locks

* A read-write lock is somewhat like a mutex except that
It provides two lock functions.

= The first lock function locks the read-write lock for
reading, while the second locks it for writing.

« Example for
a linked list

Member Insert
Member ? ?
Insert ? ?
Delete ? ?

Delete

pthread_rwlock_rdlock(&rwlock):

Member(value):

pthread_rwlock_unlock(&rwlock):

pthread_rwlock_wrlock(&rwlock):

Insert(value):

pthread_rwlock_unlock(&rwlock):

pthread_rwlock_wrlock(&rwlock):

Delete(value):

pthread_rwlock_unlock(&rwlock);

' Pthreads Read-Write Locks

* Multiple threads can simultaneously obtain the
lock by calling the read-lock function, while
only one thread can obtain the lock by calling
the write-lock function.

 If any threads own the lock for reading, any
threads that want to obtain the lock for writing
will block in the call to the write-lock function.

o If any thread owns the Ic)C.Li'st- .M.ember Insert Delete
threads that want to obtaii level
or writing will block in theil Member yes no no

functions.

Insert no no no

Delete no no no

' A performance comparison of 3

Implementations for a linked Tist

Total time in second for executing 100,000 operations.

99.9% Member
0.05% Insert
0.05% Delete

Number of Threads

Implementation l 2 4 8

Read-Write Locks 0.213 | 0.123 | 0.098 | O.115
One Mutex for Entire List || 0.211 | 0.450 | 0.385 | 0.457
One Mutex per Node [1.680 | 5.700 | 3.450 | 2.700

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Linked List Performance: Comparison

Total time in seconds for executing 100,000 operations

80% Member
10% Insert
10% Delete

Number of Threads

Implementation l 2 4 3

Read-Write Locks 248 | 497 | 4.69 | 471
One Mutex for Entire List || 2.50 | 5.13 | 5.04 | 5.11
One Mutex per Node 12.00 | 29.60 | 17.00 | 12.00

Copyright © 2010, Elsevier
Inc. All rights Reserved

Issues with Threads: False Sharing,
Deadlocks, Thread-safety

Copyright © 2010, Elsevier
Inc. All rights Reserved

Caches, Cache-Coherence, and False Sharing

« Underlying cache-memory interaction can have a

significant impact on shared-memory program
performance in some cases.

« Cache fetches data
with a cacheline as a unit.
Cachline=128 bytes in
Intel Xeon.

Thread 0 Thread 1

CPUO

CPU1

Cache Line Cache Line

Cache A Cache

Nt

Memory

' Problem: False Sharing

 Occurs when two or more processors/cores access
different data in same cache line, and at least one
of them writes.

= |eads to ping-pong effect.
 Let’s assume we parallelize code with p=2:
for(1=0; i<n; I++)
all] = b[i];
= Each array element takes 8 bytes
= Cache line has 64 bytes (8 numbers)

' False Sharing: Example (2 of 3)

Execute this program in two processors
for(1=0; 1<n; 1++)
a[1] = b[1];

[0

cache line

Written by CPU 1

L2

35

i

L2

N

37

L2

39

' False Sharing : Ping-Pong Effort of
— Cacheline Access

41

False Sharing: Example Two CPUs execute:

for(1=0; 1<n; 1++)
a[1] = b[1];

0]

Written by CPU 0
Written by CPU 1

al0] al2
[[/
ddia nv

al 1]

cache line

CPUO

| al4]
/ ‘
AV
a[3]

Block-based pthreads matrix-vector

—multiphcat

CD

void *Pth_mat_vect(void* rank) {

long my_rank = (long) rank:

int i, 7:

int local m = m/thread count;

int my_first_row = my_rankxlocal_m;

int my_last_row = (my_rank+Il)xlocal_m — 1;

for (i = my_first_row; i <= my_last_row; i++) {
vii] = 0.0;
for (7 = 0: 7 < n: j++)

ylil += A[1][3I*xx[]]:

j

return NULL:
/x Pth_mat_vect =/

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Impact of false sharing on performance of
matrix-vector multiplication

Matrix Dimension
8,000,000 x 8 | 8000 x 8000 | 8 x 8,000,000
Threads || Time Eff. | Time Eff. | Time EfT.
| 0.393 | 1.000 | 0.345 | 1.000 | 0.441 | 1.000
2 0217 | 0.906 | 0.188 | 0.918 | 0.300 | 0.735
4 0.139 | 0.707 | 0.115 | 0.750 | 0.388 | 0.290

(times are In seconds)

Copyright © 2010, Elsevier
Inc. All rights Reserved

How to avoid false sharing? Two CPUs execute:
for(1=0; 1<n; 1++)

a[1] = bl[1];

cache line

« Avoid to write consecutive global variables from
different threads

= Use thread-specific local/private space as much
as possible.

= Pad frequently-modified global variables so
they are not stored close to each other In
memory and will not be held together within a
cacheline.

’ Deadlock and Starvation

« Deadlock —two or more threads are waiting
Indefinitely for an event that can be only caused by
one of these waiting threads

- Starvation — indefinite blocking (in a waiting queue

forever).
B Lets and ¢ be two mutex locks:
I:)O Pl
Lock(S); Lock(Q);
Lock(Q); Lock(S);
Unlock(Q); Unlock(S);

Unlock(S); Unlock(Q);

’ Deadlock Avoidance

 Order the locks and always acquire the locks in

that order.
. .E_Iiminate circular waiting
I:)O Pl
Lock(S); Lock(S);
Lock(Q); Lock(Q);
Unlock(Q); Unlock(Q);

Unlock(S); Unlock(S);

Thread-Safety

* A block of code Is thread-safe if it can be
simultaneously executed by multiple threads without
causing problems.

« When you program your own functions, you know if
they are safe to be called by multiple threads or not.

* You may forget to check if system library functions
used are thread-safe.

= Unsafe function: strtok()from C string.h library

= Other example.
— The random number generator random in stdlib.h.
— The time conversion function localtime in time.h.

' Example of using strtok()

 “Tokenize” a English text file

= Tokens are contiguous seguences of characters
separated by a white-space, a tab, or a newline.

= Example: “Take UCSB CS140”
—->Three tokens: “Take”, “UCSB”, “CS140”

« Divide the input file into lines of text and assign the
lines to the threads in around-robin fashion.

= Each thread tokenizes a line using strtok()

= Line 1 - thread O, Line 2-> thread 1, . . ., the tth
goes to thread t, the t +1st goes to thread O, etc.

= Serialize access to input lines using semaphores

Copyright © 2010, Elsevier
Inc. All rights Reserved

The strtok function

The first time it’s called,
= the string argument is the text to be tokenized (Our
line of input)
= strtok caches a pointer to string

For subsequent calls, it returns successive tokens
taken from the cached copy

= the first argument should be NULL.

char+ strtok(
char « string /[in/out =/,
const charx separators /x in £/)

Copyright © 2010, Elsevier
Inc. All rights Reserved

Multi-threaded tokenizer (1)

void #Tokenize(void+ rank) {

long my_rank
int count:
int next (my_rank +
char xfg_rv;:

char my_line[MAX]:
char *my_string:

(long) rank:

sem_wait(&sems|[my_rank]):

fg_rv fgets(my_line, MAX, stdin):

sem_post(&sems|[next]);

while (fg_rv != NULL) {

printf("Thread %1d > my line ts",

1) % thread_count:

my_rank, my_line):

Copyright © 2010, Elsevier
Inc. All rights Reserved

Multi-threaded tokenizer (2)

count = 0 / First token

my string = strtok(my line. " \t\n"):
while (my_string != NULL) {
count ++;
printf("Thread %1d > string %d = %s\n",
my_string);
my_string = strtok(NULL, ™ \t\n");

I

sem_wait(&sems|[my_rank]);:
fg_rv = fgets(my_line, MAX, stdin);:
sem_post(&sems|[next |);

I

return NULL:
} /x Tokenize =/

my_rank ,

Next token

Copyright © 2010, Elsevier
Inc. All rights Reserved

count ,

Running with one thread

Input file:

Pease porridge hot.
Pease porridge cold.
Pease porridge in the pot
Nine days old.

« It correctly tokenizes the input stream with 1 thread
Pease

porridge

hot

Copyright © 2010, Elsevier
Inc. All rights Reserved

Running with two threads
Thread 0 > my line = Pease porridge hot.
Thread 0 > string 1 = Pease
Thread 0 > string 2 = porridge
Thread 0 > string 3 = hot.
Thread 1 > my line = Pease porridge cold.
Thread 0 > my line = Pease porridge in the pot
Thread 0 > string 1 = Pease
i];read 0 > St]_”lll'lg 2 : El)orrldge Oops!
read 0 > string 3 = in
Thread 0 > string 4 = the
Thread 0 > string 5 = pot
Thread 1 > string 1 = Pease
Thread 1 > my line Nine days old.
Thread 1 > string 1 = Nine
Thread 1 > string 2 = days
Thread 1 > string 3 = old.

Copyright © 2010, Elsevier
Inc. All rights Reserved

What happened?

 strtok caches the input line by declaring a variable to

have static (persistent) storage class.

= Unfortunately this cached string is shared, not
private.

Thus, thread O’s call to strtok with the third line of the
Input has apparently overwritten the contents of thread
1’s call with the second line.

So the strtok function
IS not thread-safe.

If multiple threads call
It simultaneously, the
output may not be
correct.

Inc. All rights Reserved

re-entrant” (thread safe) functions

* In some cases, the C standard specifies an
alternate, thread-safe, version of a function.

char+ strtok _r(
char =
const char=
char *x

string

separators,

saveptr_p

/ %
/ %

in/out */
In */
in/out */);

Copyright © 2010, Elsevier
Inc. All rights Reserved

Concluding Remarks

A read-write lock is used when it's safe for multiple
threads to simultaneously read a data structure while
only one write thread can access the data structure
during the modification.

False sharing happens when two threads/cores
frequently read/write different data items stored in the
same cacheline.

Deadlocks can happen when using thread
synchronization.

Thread-safe functions.

= Some thread-unsafe C functions cache data
between calls by declaring variables to be static,
causing errors when multiple threads call dh&: 2010, exsevier
fu nct| On . Inc. All rights Reserved

