
Advanced Topics on

Shared Memory Programming

with Pthreads

Pacheco. Chapter 4

T. Yang. UCSB CS140. Spring 2014

Copyright © 2010, Elsevier

Inc. All rights Reserved

Outline

• More on thread synchronization.

 Read-write locks.

 Applications in a shared link list

• False sharing

• Deadlocks and thread safety.

#
 C

h
a
p
te

r S
u
b
title

READ-WRITE LOCKS

Copyright © 2010, Elsevier

Inc. All rights Reserved

Synchronization Example for Readers-Writers Problem

• A data set is shared among a number of concurrent

threads.

 Readers – only read the data set; they do not perform any

updates

 Writers – can both read and write

• Requirement:

 allow multiple readers to read at the same time.

 Only one writer can access the shared data at the same

time.

• Reader/writer access permission table:

Reader Writer

Reader OK No

Writer NO No

Readers-Writers (First try with 1 mutex lock)

• writer
 do {

 mutex_lock(w);

 // writing is performed

 mutex_unlock(w);

 } while (TRUE);

• Reader

 do {

 mutex_lock(w);

 // reading is performed

 mutex_unlock(w);

 } while (TRUE);

Reader Writer

Reader ? ?

Writer ? ?

Readers-Writers (First try with 1 mutex lock)

• writer
 do {

 mutex_lock(w);

 // writing is performed

 mutex_unlock(w);

 } while (TRUE);

• Reader

 do {

 mutex_lock(w);

 // reading is performed

 mutex_unlock(w);

 } while (TRUE);

Reader Writer

Reader no no

Writer no no

2nd try using a lock + readcount

• writer
 do {

 mutex_lock(w);// Use writer mutex lock

 // writing is performed

 mutex_unlock(w);

 } while (TRUE);

• Reader

 do {

 readcount++; // add a reader counter.

 if(readcount==1) mutex_lock(w);

 // reading is performed

 readcount--;

 if(readcount==0) mutex_unlock(w);

 } while (TRUE);

Readers-Writers Problem with semaphone

• Shared Data

 Data set

 Lock mutex (to protect readcount)

 Semaphore wrt initialized to 1 (to

synchronize between

readers/writers)

 Integer readcount initialized to 0

Readers-Writers Problem

• A writer

 do {

 sem_wait(wrt) ; //semaphore wrt

 // writing is performed

 sem_post(wrt) ; //

 } while (TRUE);

Readers-Writers Problem (Cont.)

• Reader

 do {

 mutex_lock(mutex);

 readcount ++ ;

 if (readcount == 1)

 sem_wait(wrt); //check if anybody is writing

 mutex_unlock(mutex)

 // reading is performed

 mutex_lock(mutex);

 readcount - - ;

 if (readcount == 0)

 sem_post(wrt) ; //writing is allowed now

 nlock(mutex) ;

 } while (TRUE);

Application case: Sharing a sorted linked list of

integers

• Demonstrate controlling of access to a large, shared

data structure

• Operations supported

 Member, Insert, and Delete.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Membership operation for a linked list

Copyright © 2010, Elsevier

Inc. All rights Reserved

Insert operation: Inserting a new node

Copyright © 2010, Elsevier

Inc. All rights Reserved

Inserting a new node into a list

Copyright © 2010, Elsevier

Inc. All rights Reserved

Find the right position

in the sorted list

Insert to this position

Delete operation: remove a node from a

linked list

Copyright © 2010, Elsevier

Inc. All rights Reserved

Deleting a node from a linked list

Copyright © 2010, Elsevier

Inc. All rights Reserved

Find a node with the

given value

Remove this node

A Multi-Threaded Linked List

• Allow a sorted linked list to be accessed by multiple

threads

• In order to share access to the list, define head_p to

be a global variable.

 This will simplify the function headers for Member,

Insert, and Delete,

 since we won’t need to pass in either head_p or a

pointer to head_p: we’ll only need to pass in the

value of interest.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Simultaneous access by two threads

Copyright © 2010, Elsevier

Inc. All rights Reserved

Solution #1

• An obvious solution is to simply lock the list any

time that a thread attempts to access it.

• A call to each of the three functions can be

protected by a mutex.

Copyright © 2010, Elsevier

Inc. All rights Reserved

In place of calling Member(value).

Issues

• We’re serializing access to the list.

• If the vast majority of our operations are calls to Member,

we’ll fail to exploit this opportunity for parallelism.

• On the other hand, if most of our operations are calls to

Insert and Delete,

 This may be the best solution

– since serialization of infrequent operations has minimum

performance impact.

– Easy to implement.

Member Insert Delete

Member ? ? ?

Insert ? ? ?

Delete ? ? ?

List-

level

Member Insert Delete

Member no no no

Insert no no no

Delete no no no

Solution #2

• Instead of locking the entire list, lock individual

nodes.

 A “finer-grained” approach: One mutex lock per

node

Copyright © 2010, Elsevier

Inc. All rights Reserved

Member Insert Delete

Member ? ? ?

Insert ? ? ?

Delete ? ? ?

List-

level

Member Insert Delete

Member yes yes yes

Insert yes yes yes

Delete yes yes yes

Node-

level

Member Insert Delete

Member no no no

Insert no no no

Delete no no no

Implementation of Member with one mutex per list node (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Implementation of Member with one mutex per list node (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Issues

• Much more complex than the original Member function.

• Much slower,

 each time a node is accessed, a mutex must be

locked and unlocked.

• Significant space cost

 Adding a mutex field to each node

Copyright © 2010, Elsevier

Inc. All rights Reserved

Motivation for using Pthreads Read-Write

Locks

• Neither of our multi-threaded linked lists exploits the

potential for simultaneous access to any node by

threads that are executing Member.

• The first solution only allows one thread to access the

entire list at any instant.

• The second only allows one thread to access any

given node at any instant.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Pthreads Read-Write Locks

• A read-write lock is somewhat like a mutex except that

it provides two lock functions.

 The first lock function locks the read-write lock for

reading, while the second locks it for writing.

• Example for

a linked list

Copyright © 2010, Elsevier

Inc. All rights Reserved

Member Insert Delete

Member ? ? ?

Insert ? ? ?

Delete ? ? ?

Pthreads Read-Write Locks

• Multiple threads can simultaneously obtain the

lock by calling the read-lock function, while

only one thread can obtain the lock by calling

the write-lock function.

• If any threads own the lock for reading, any

threads that want to obtain the lock for writing

will block in the call to the write-lock function.

• If any thread owns the lock for writing, any

threads that want to obtain the lock for reading

or writing will block in their respective locking

functions.

Copyright © 2010, Elsevier

Inc. All rights Reserved

List-

level

Member Insert Delete

Member yes no no

Insert no no no

Delete no no no

A performance comparison of 3

implementations for a linked list

Copyright © 2010, Elsevier

Inc. All rights Reserved

Total time in second for executing 100,000 operations.

99.9% Member

0.05% Insert

0.05% Delete

Linked List Performance: Comparison

Copyright © 2010, Elsevier

Inc. All rights Reserved

Total time in seconds for executing 100,000 operations

80% Member

10% Insert

10% Delete

Issues with Threads: False Sharing,

Deadlocks, Thread-safety

Copyright © 2010, Elsevier

Inc. All rights Reserved

Caches, Cache-Coherence, and False Sharing

• Underlying cache-memory interaction can have a

significant impact on shared-memory program

performance in some cases.

• Cache fetches data

with a cacheline as a unit.

Cachline=128 bytes in

Intel Xeon.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Problem: False Sharing

• Occurs when two or more processors/cores access

different data in same cache line, and at least one

of them writes.

 Leads to ping-pong effect.

• Let’s assume we parallelize code with p=2:

for(i=0; i<n; i++)

 a[i] = b[i];

 Each array element takes 8 bytes

 Cache line has 64 bytes (8 numbers)

False Sharing: Example (2 of 3)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

cache line

Written by CPU 0

Written by CPU 1

Execute this program in two processors

for(i=0; i<n; i++)

 a[i] = b[i];

Source: Jeff Odom 34

False Sharing: Ping-Pong Effort of Cacheline

Access

CPU1CPU0

L2

Main memory

L2

F
e

tc
h

 f
o

o

Fetch foo

35

False Sharing : Ping-Pong Effort of

Cacheline Access

CPU1CPU0

L2

Main memory

L2

36

False Sharing : Ping-Pong Effort of

Cacheline Access

CPU1CPU0

L2

Main memory

L2

F
e

tc
h

 b
a

r

Fet
ch

 b
ar

37

False Sharing : Ping-Pong Effort of

Cacheline Access

CPU1CPU0

L2

Main memory

L2

38

False Sharing : Ping-Pong Effort of

Cacheline Access

CPU1CPU0

L2

Main memory

L2

W
ri
te

 f
o

o

in
v
a

lid
a

te

invalidate

39

False Sharing : Ping-Pong Effort of

Cacheline Access

CPU1CPU0

L2

Main memory

L2

40

False Sharing : Ping-Pong Effort of

Cacheline Access

CPU1CPU0

L2

Main memory

L2

F
e

tc
h

 b
a

r

W
riteback foo Fet

ch
 b

ar

41

False Sharing : Ping-Pong Effort of

Cacheline Access

CPU1CPU0

L2

Main memory

L2

False Sharing: Example

CPU0

CPU1

a[0]

a[1]

a[2] a[4]

a[3] a[5]

... inv
data

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

cache line
Written by CPU 0

Written by CPU 1

Two CPUs execute:

for(i=0; i<n; i++)

 a[i] = b[i];

Block-based pthreads matrix-vector

multiplication

Copyright © 2010, Elsevier

Inc. All rights Reserved

Impact of false sharing on performance of

matrix-vector multiplication

Copyright © 2010, Elsevier

Inc. All rights Reserved

(times are in seconds)

How to avoid false sharing?

• Avoid to write consecutive global variables from
different threads

 Use thread-specific local/private space as much
as possible.

 Pad frequently-modified global variables so
they are not stored close to each other in
memory and will not be held together within a
cacheline.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

cache line

Two CPUs execute:

for(i=0; i<n; i++)

 a[i] = b[i];

Deadlock and Starvation

• Deadlock – two or more threads are waiting
indefinitely for an event that can be only caused by
one of these waiting threads

• Starvation – indefinite blocking (in a waiting queue
forever).
 Let S and Q be two mutex locks:

 P0 P1

 Lock(S); Lock(Q);

 Lock(Q); Lock(S);

 . .

 . .

 . .

 Unlock(Q); Unlock(S);

 Unlock(S); Unlock(Q);

Deadlock Avoidance

• Order the locks and always acquire the locks in
that order.

• Eliminate circular waiting

 :

 P0 P1

 Lock(S); Lock(S);

 Lock(Q); Lock(Q);

 . .

 . .

 . .

 Unlock(Q); Unlock(Q);

 Unlock(S); Unlock(S);

Thread-Safety

• A block of code is thread-safe if it can be

simultaneously executed by multiple threads without

causing problems.

• When you program your own functions, you know if

they are safe to be called by multiple threads or not.

• You may forget to check if system library functions

used are thread-safe.

 Unsafe function: strtok()from C string.h library

 Other example.

– The random number generator random in stdlib.h.

– The time conversion function localtime in time.h.

Example of using strtok()

• “Tokenize” a English text file

 Tokens are contiguous sequences of characters

separated by a white-space, a tab, or a newline.

 Example: “Take UCSB CS140”

Three tokens: “Take”, “UCSB”, “CS140”

• Divide the input file into lines of text and assign the

lines to the threads in a round-robin fashion.

 Each thread tokenizes a line using strtok()

 Line 1  thread 0, Line 2 thread 1, . . . , the tth

goes to thread t, the t +1st goes to thread 0, etc.

 Serialize access to input lines using semaphores

 Copyright © 2010, Elsevier

Inc. All rights Reserved

The strtok function

• The first time it’s called,

 the string argument is the text to be tokenized (Our

line of input)

 strtok caches a pointer to string

• For subsequent calls, it returns successive tokens

taken from the cached copy

 the first argument should be NULL.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Multi-threaded tokenizer (1)

Copyright © 2010, Elsevier

Inc. All rights Reserved

Multi-threaded tokenizer (2)

Copyright © 2010, Elsevier

Inc. All rights Reserved

First token

Next token

Running with one thread

• It correctly tokenizes the input stream with 1 thread

Pease

porridge

hot

… Copyright © 2010, Elsevier

Inc. All rights Reserved

Input file:

Pease porridge hot.

Pease porridge cold.

Pease porridge in the pot

Nine days old.

Running with two threads

Copyright © 2010, Elsevier

Inc. All rights Reserved

Oops!

What happened?

• strtok caches the input line by declaring a variable to

have static (persistent) storage class.

 Unfortunately this cached string is shared, not

private.

• Thus, thread 0’s call to strtok with the third line of the

input has apparently overwritten the contents of thread

1’s call with the second line.

• So the strtok function

is not thread-safe.

If multiple threads call

it simultaneously, the

output may not be

correct.
Copyright © 2010, Elsevier

Inc. All rights Reserved

“re-entrant” (thread safe) functions

• In some cases, the C standard specifies an

alternate, thread-safe, version of a function.

Copyright © 2010, Elsevier

Inc. All rights Reserved

Concluding Remarks

• A read-write lock is used when it’s safe for multiple

threads to simultaneously read a data structure while

only one write thread can access the data structure

during the modification.

• False sharing happens when two threads/cores

frequently read/write different data items stored in the

same cacheline.

• Deadlocks can happen when using thread

synchronization.

• Thread-safe functions.

 Some thread-unsafe C functions cache data

between calls by declaring variables to be static,

causing errors when multiple threads call the

function.
Copyright © 2010, Elsevier

Inc. All rights Reserved

