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Case Study: Matrix Computation in Web 

Search and Mining 

 

T. Yang.  CS140 

Some slides are from C. Li (UCI) an R.  Mooney 

(UTexas) 
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Mining Web Graph for Search Ranking 

• PageRank Algorithm by Google 

• Intuition: 

– The importance of each page is 

 decided by what other pages “say” about this page 

– One naïve implementation: count the # of pages 

pointing to each page (i.e., # of inlinks) 

• Problem: 

– We can easily fool this technique by generating 

many dummy pages that point to a page 

The Web 
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Initial PageRank Idea 

• Rank r(p) for page p: 

 

 

 

– Nq is the total number of out-links from page q. 

– A page, q, “gives” an equal fraction of its authority to 

all the pages it points to (e.g. p). 

– c is a normalizing constant set so that the rank of all 

pages always sums to 1. 

• Rank of a page represents its authority on 

the web 
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Initial PageRank Idea (cont.) 

• Can view it as a process of PageRank 

“flowing” among pages. 
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Representing PageRank with  

Matrix Computation 

• Assume three web sites: Netscape, Amazon, 
and Microsoft. 

• Their weights are represented as a vector 

Ne 

Am 

MS 

For instance, in each iteration, half of the weight of AM 
goes to NE, and half goes to MS. 

Materials by courtesy of Jeff Ullman 
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How to solve the matrix equations? 

Iterative method 

• Initially all  rank values are 1 

• Compute the new values (n,m,a) using their 
old values from the equations 

• Repeat many iterations 
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Iterative computation 
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Final result: 

• Netscape and Amazon have the same 

importance, and twice the importance 

of Microsoft. 
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Another web graph with  rank values 
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Converged results from iteration computation are marked 
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Problem 1 of algorithm: dead ends! 
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• MS does not point to anybody 

• Result: weights of the Web “leak out” 
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Problem 2 of algorithm: spider traps 
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• MS only points to itself 

• Result: all weights go to MS! 
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A revised solution with matrix notation: r=Ar+c 

• Matrix A: web connectivity matrix 

• Portion of each page’s rank comes from a fixed weight c 

– Example: 0.2. 

 

 

 

 

 

• Rank result r from iterative  

computation converges to 
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