
1

Case Study: Matrix Computation in Web

Search and Mining

T. Yang. CS140

Some slides are from C. Li (UCI) an R. Mooney

(UTexas)

2

Mining Web Graph for Search Ranking

• PageRank Algorithm by Google

• Intuition:

– The importance of each page is

 decided by what other pages “say” about this page

– One naïve implementation: count the # of pages

pointing to each page (i.e., # of inlinks)

• Problem:

– We can easily fool this technique by generating

many dummy pages that point to a page

The Web

3

Initial PageRank Idea

• Rank r(p) for page p:

– Nq is the total number of out-links from page q.

– A page, q, “gives” an equal fraction of its authority to

all the pages it points to (e.g. p).

– c is a normalizing constant set so that the rank of all

pages always sums to 1.

• Rank of a page represents its authority on

the web





pqq qN

qr
cpr

:

)(
)(

q

p

4

Initial PageRank Idea (cont.)

• Can view it as a process of PageRank

“flowing” among pages.

.1

.09

.05

.05

.03

.03

.03

.08

.08

.03

5

Representing PageRank with

Matrix Computation

• Assume three web sites: Netscape, Amazon,
and Microsoft.

• Their weights are represented as a vector

Ne

Am

MS

For instance, in each iteration, half of the weight of AM
goes to NE, and half goes to MS.

Materials by courtesy of Jeff Ullman



















































a

m

n

a

m

n

012/1

2/100

2/102/1

6

How to solve the matrix equations?

Iterative method

• Initially all rank values are 1

• Compute the new values (n,m,a) using their
old values from the equations

• Repeat many iterations

oldnew
a

m

n

a

m

n



















































012/1

2/100

2/102/1Ne

Am

MS

7

Iterative computation






















































































































5/6

5/3

5/6

16/17

16/11

4/5

8/11

2/1

8/9

1

4/3

4/5

2/3

2/1

1

1

1

1

a

m

n

Ne

Am

MS

Final result:

• Netscape and Amazon have the same

importance, and twice the importance

of Microsoft.

8

Another web graph with rank values

0.4

0.4

0.2

0.2

0.2

0.2

0.4

Converged results from iteration computation are marked

9

Problem 1 of algorithm: dead ends!






















































































































0

0

0

16/5

16/3

2/1

8/3

4/1

8/5

2/1

4/1

4/3

2/1

2/1

1

1

1

1

a

m

n

Ne

Am

MS

• MS does not point to anybody

• Result: weights of the Web “leak out”

oldnew
a

m

n

a

m

n



















































002/1

2/100

2/102/1

10

Problem 2 of algorithm: spider traps






















































































































0

3

0

16/5

16/35

2/1

8/3

2

8/5

2/1

4/7

4/3

2/1

2/3

1

1

1

1

a

m

n

Ne

Am

MS

• MS only points to itself

• Result: all weights go to MS!

oldnew
a

m

n

a

m

n



















































002/1

2/110

2/102/1

11

A revised solution with matrix notation: r=Ar+c

• Matrix A: web connectivity matrix

• Portion of each page’s rank comes from a fixed weight c

– Example: 0.2.

• Rank result r from iterative

computation converges to





































































2.0

2.0

2.0

002/1

2/110

2/102/1

*8.0

a

m

n

a

m

n



































11/5

11/21

11/7

a

m

n

