
1

CS240A: Applied Parallel
Computing

Introduction

2

CS 240A Course Information

• Web page:

 http://www.cs.ucsb.edu/~tyang/class/240a13w

• Class schedule: Mon/Wed. 11:00AM-12:50pm Phelp 2510

• Instructor: Tao Yang (tyang at cs).

- Office Hours: MW 10-11(or email me for appointments or just stop by my
office). HFH building, Room 5113

• Supercomputing consultant: Kadir Diri and Stefan Boeriu

• TA:

- Wei Zhang (wei at cs). Office hours: Monday/Wed 3:30PM - 4:30PM

• Class materials:

- Slides/handouts. Research papers. Online references.

• Slide source (HPC part) and related courses:

- Demmel/Yelick's CS267 parallel computing at UC Berkeley

- John Gilbert‘s CS240A at UCSB

http://www.cs.ucsb.edu/~tyang/class/240a
http://www.cs.ucsb.edu/~tyang
http://www.cs.ucsb.edu/~tyang
http://csc.cnsi.ucsb.edu/staff/diri
http://csc.cnsi.ucsb.edu/staff/diri
http://www.cs.berkeley.edu/~demmel/cs267_Spr11/
http://www.cs.ucsb.edu/~gilbert/cs240a/old/cs240aSpr2011/index.html

3

Topics

• High performance computing

- Basics of computer architecture, memory hierarchies, storage, clusters,
cloud systems.

- High throughput computing

• Parallel Programming Models and Machines.
Software/libraries

- Shared memory vs distributed memory

- Threads, OpenMP, MPI, MapReduce, GPU if time
permits

• Patterns of parallelism. Optimization techniques for
parallelization and performance

• Core algorithms in Scientific Computing and Applications

- Dense & Sparse Linear Algebra

• Parallelism in data-intensive web applications and
storage systems

4

What you should get out of the course

In depth understanding of:

• When is parallel computing useful?

• Understanding of parallel computing hardware options.

• Overview of programming models (software) and tools.

• Some important parallel applications and the algorithms

• Performance analysis and tuning

• Exposure to various open research questions

5

Introduction: Outline

• Why powerful computers must be parallel computing

• Why parallel processing?

- Large Computational Science and Engineering (CSE) problems
require powerful computers

- Commercial data-oriented computing also needs.

• Basic parallel performance models

• Why writing (fast) parallel programs is hard

Including your laptops and handhelds

all

6

Metrics in Scientific Computing Worlds

• High Performance Computing (HPC) units are:

- Flop: floating point operation, usually double precision unless noted

- Flop/s: floating point operations per second

- Bytes: size of data (a double precision floating point number is 8)

• Typical sizes are millions, billions, trillions…

Mega Mflop/s = 106 flop/sec Mbyte = 220 = 1048576 ~ 106 bytes

Giga Gflop/s = 109 flop/sec Gbyte = 230 ~ 109 bytes

Tera Tflop/s = 1012 flop/sec Tbyte = 240 ~ 1012 bytes

Peta Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes

Exa Eflop/s = 1018 flop/sec Ebyte = 260 ~ 1018 bytes

Zetta Zflop/s = 1021 flop/sec Zbyte = 270 ~ 1021 bytes

Yotta Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes

• Current fastest (public) machine ~ 27 Pflop/s

- Up-to-date list at www.top500.org

Rank Site System Cores

Rmax

(TFlop/s)

Rpeak

(TFlop/s)

Power

(kW)

1 DOE/SC/Oak

Ridge National

Laboratory

United States

Titan -

Cray XK7 ,

Opteron

6274 16C

2.200GHz,

Cray

Gemini

interconne

ct, NVIDIA

K20x

Cray Inc.

560640 17590.0 27112.5 8209

2 DOE/NNSA/L

LNL

United States

Sequoia -

BlueGene/

Q, Power

BQC 16C

1.60 GHz,

Custom

IBM

1572864 16324.8 20132.7 7890

From www.top500.org

http://www.top500.org/site/48553
http://www.top500.org/site/48553
http://www.top500.org/site/48553
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/system/177975
http://www.top500.org/site/49763
http://www.top500.org/site/49763
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556
http://www.top500.org/system/177556

8

Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years

Called “Moore’s Law”

Moore’s Law

Microprocessors have

become smaller, denser,

and more powerful.

Gordon Moore (co-founder of

Intel) predicted in 1965 that the

transistor density of

semiconductor chips would

double roughly every 18

months.
Slide source: Jack Dongarra

9

Microprocessor Transistors / Clock (1970-2000)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000

Transistors (Thousands)

Frequency (MHz)

10

Impact of Device Shrinkage

• What happens when the feature size (transistor size) shrinks
by a factor of x ?

- Clock rate goes up by x or less because wires are
shorter

• Transistors per unit area goes up by x2

- For on-chip parallelism (ILP) and locality: caches

- More applications go faster without any change

• But manufacturing costs and yield problems limit use of
density

- What percentage of the chips are usable?

& More power consumption

Power Density Limits Serial Performance

4004

8008

8080

8085

8086

286
386

486

Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

P
o

w
e

r
D

e
n

s
it

y
 (

W
/c

m
2
)

Hot Plate

Nuclear

Reactor

Rocket

Nozzle

Sun’s
Surface Source: Patrick Gelsinger,

Shenkar Bokar, Intel

Scaling clock speed (business as usual) will not work

• High performance serial processors waste power
- Speculation, dynamic dependence checking, etc. burn power

- Implicit parallelism discovery

• More transistors, but not faster serial processors

• Concurrent systems are
more power efficient

– Dynamic power is
proportional to V2fC

– Increasing frequency (f)
also increases supply
voltage (V)  cubic
effect

– Increasing cores
increases capacitance
(C) but only linearly

– Save power by lowering
clock speed

12

Revolution in Processors

• Chip density is continuing increase ~2x every 2 years
• Clock speed is not
• Number of processor cores may double instead
• Power is under control, no longer growing

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Cores

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Power (W)

Cores

13

 Impact of Parallelism

• All major processor vendors are producing multicore chips

- Every machine will soon be a parallel machine

- To keep doubling performance, parallelism must double

• Which commercial applications can use this parallelism?

- Do they have to be rewritten from scratch?

• Will all programmers have to be parallel programmers?

- New software model needed

- Try to hide complexity from most programmers – eventually

• Computer industry betting on this big change, but does not
have all the answers

Memory is Not Keeping Pace

Technology trends against a constant or increasing memory per core

• Memory density is doubling every three years; processor logic is every two

• Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

Question: Can you double concurrency without doubling memory?
• Strong scaling: fixed problem size, increase number of processors
• Weak scaling: grow problem size proportionally to number of

processors

Source: IBM

15

Processor-DRAM Gap (latency)

µProc

60%/yr.

DRAM

7%/yr.
1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU
1
9
8
2

Processor-Memory

Performance Gap:

(grows 50% / year)

P
e
rf

o
rm

a
n

c
e

Time

“Moore’s Law”

Goal: find algorithms that minimize communication, not necessarily arithmetic

• Listing the 500 most powerful computers
in the world

• Linpack performance

- Solve Ax=b, dense problem, matrix is random

- Dominated by dense matrix-matrix multiply

• Update twice a year:

- ISC’xy in June in Germany

- SCxy in November in the U.S.

• All information available from the TOP500
web site at: www.top500.org

The TOP500 Project

Moore’s Law reinterpreted

• Number of cores per chip will double every
two years

• Clock speed will not increase (possibly
decrease)

• Need to deal with systems with millions of
concurrent threads

• Need to deal with inter-chip parallelism as
well as intra-chip parallelism

18

Outline

• Why powerful computers must be parallel processors

• Large Computational Science&Engineering and
commercial problems require powerful computers

• Basic performance models

• Why writing (fast) parallel programs is hard

Including your laptops and handhelds

all

19

Some Particularly Challenging Computations

• Science
- Global climate modeling

- Biology: genomics; protein folding; drug design

- Astrophysical modeling

- Computational Chemistry

- Computational Material Sciences and Nanosciences

• Engineering
- Semiconductor design

- Earthquake and structural modeling

- Computation fluid dynamics (airplane design)

- Combustion (engine design)

- Crash simulation

• Business
- Financial and economic modeling

- Transaction processing, web services and search engines

• Defense
- Nuclear weapons -- test by simulations

- Cryptography

20

Economic Impact of HPC

• Airlines:
- System-wide logistics optimization systems on parallel systems.

- Savings: approx. $100 million per airline per year.

• Automotive design:
- Major automotive companies use large systems (500+ CPUs) for:

- CAD-CAM, crash testing, structural integrity and

aerodynamics.

- One company has 500+ CPU parallel system.

- Savings: approx. $1 billion per company per year.

• Semiconductor industry:
- Semiconductor firms use large systems (500+ CPUs) for

- device electronics simulation and logic validation

- Savings: approx. $1 billion per company per year.

• Energy
- Computational modeling improved performance of current

nuclear power plants, equivalent to building two new power

plants.

21

Drivers for Changes in Computational Science

Nature, March 23, 2006

“An important development in

sciences is occurring at the

intersection of computer science and

the sciences that has the potential to

have a profound impact on science.” -
Science 2020 Report, March 2006

• Continued exponential increase in computational
power  simulation is becoming third pillar of
science, complementing theory and experiment

• Continued exponential increase in experimental
data  techniques and technology in data
analysis, visualization, analytics, networking, and
collaboration tools are becoming essential in all
data rich scientific applications

22

 Simulation: The Third Pillar of Science

• Traditional scientific and engineering method:

(1) Do theory or paper design

(2) Perform experiments or build system

• Limitations:

 –Too difficult—build large wind tunnels

 –Too expensive—build a throw-away passenger jet

 –Too slow—wait for climate or galactic evolution

 –Too dangerous—weapons, drug design, climate
 experimentation

• Computational science and engineering paradigm:

(3) Use computers to simulate and analyze the phenomenon

- Based on known physical laws and efficient numerical methods

- Analyze simulation results with computational tools and
methods beyond what is possible manually

Simulation

Theory Experiment

23

$5B World Market in Technical Computing

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1998 1999 2000 2001 2002 2003 Other

Technical Management and

Support

Simulation

Scientific Research and R&D

Mechanical

Design/Engineering Analysis

Mechanical Design and

Drafting

Imaging

Geoscience and Geo-

engineering

Electrical Design/Engineering

Analysis

Economics/Financial

Digital Content Creation and

Distribution

Classified Defense

Chemical Engineering

Biosciences

Source: IDC 2004, from NRC Future of Supercomputing Report

24

Global Climate Modeling Problem

• Problem is to compute:

f(latitude, longitude, elevation, time)  “weather” =

 (temperature, pressure, humidity, wind velocity)

• Approach:

- Discretize the domain, e.g., a measurement point every 10 km

- Devise an algorithm to predict weather at time t+dt given t

• Uses:

- Predict major events,
e.g., hurricane, El Nino

- Use in setting air
emissions standards

- Evaluate global warming
scenarios

25

Global Climate Modeling Computation

• One piece is modeling the fluid flow in the atmosphere

- Solve Navier-Stokes equations

- Roughly 100 Flops per grid point with 1 minute timestep

• Computational requirements:

- To match real-time, need 5 x 1011 flops in 60 seconds = 8 Gflop/s

- Weather prediction (7 days in 24 hours)  56 Gflop/s

- Climate prediction (50 years in 30 days)  4.8 Tflop/s

- To use in policy negotiations (50 years in 12 hours)  288 Tflop/s

• To double the grid resolution, computation is 8x to 16x

• State of the art models require integration of
atmosphere, clouds, ocean, sea-ice, land models, plus
possibly carbon cycle, geochemistry and more

• Current models are coarser than this

26

High Resolution

Climate Modeling on

NERSC-3 – P. Duffy,

et al., LLNL

Scalable Web Service/Processing
Infrastructure

29

•Infrastructure scalability:

Bigdata: Tens of billions of

documents in web search

Tens/hundreds of thousands of

machines.

Tens/hundreds of Millions of

users

Impact on response time,

throughput, &availability,

Platform software
Google GFS, MapReduce and
Bigtable .
UCSB Neptune at Ask
fundamental building blocks for
fast data update/access and
development cycles

…

Motif/Dwarf: Common Computational Methods
(Red Hot  Blue Cool)

E
m

b
e

d

S
P

E
C

D
B

G
a

m
e

s

M
L

H
P

C

Health Image Speech Music Browser

1 Finite State Mach.

2 Combinational

3 Graph Traversal

4 Structured Grid

5 Dense Matrix

6 Sparse Matrix

7 Spectral (FFT)

8 Dynamic Prog

9 N-Body

10 MapReduce

11 Backtrack/ B&B

12 Graphical Models

13 Unstructured Grid

What do commercial and CSE applications have in common?

31

Outline

• Why powerful computers must be parallel processors

• Large CSE problems require powerful computers

• Basic parallel performance models

• Why writing (fast) parallel programs is hard

Commercial problems too

Including your laptops and handhelds

all

Several possible performance models

• Execution time and parallelism:

- Work / Span Model with directed acyclic graph

• Detailed models that try to capture time for moving data:

- Latency / Bandwidth Model for message-passing

- Disk IO

• Model computation with memory access (for hierarchical
memory)

• Other detailed models we won’t discuss: LogP, ….

– From John Gibert’s 240A course

tp = execution time on p processors

Work / Span Model

tp = execution time on p processors

t1 = work

Work / Span Model

tp = execution time on p processors

* Also called critical-path length
 or computational depth.

t1 = work t∞ = span *

Work / Span Model

tp = execution time on p processors

t1 = work t∞ = span *

* Also called critical-path length
 or computational depth.

WORK LAW

∙tp ≥t1/p

SPAN LAW

∙tp ≥ t∞

Work / Span Model

Def. t1/tP = speedup on p processors.

If t1/tP = (p), we have linear speedup,

 = p, we have perfect linear speedup,

 > p, we have superlinear speedup,

 (which is not possible in this model,
 because of the Work Law tp ≥ t1/p)

Speedup

Parallelism

Because the Span Law requires tp ≥ t∞,

the maximum possible speedup is

t1/t∞ = (potential) parallelism

 = the average
 amount of work
 per step along
 the span.

Performance Measures for Parallel Computation

Problem parameters:

• n index of problem size

• p number of processors

Algorithm parameters:

• tp running time on p processors

• t1 time on 1 processor = sequential time = “work”

• t∞ time on unlimited procs = critical path length = “span”

• v total communication volume

Performance measures

• speedup s = t1 / tp

• efficiency e = t1 / (p*tp) = s / p

• (potential) parallelism pp = t1 / t∞

Typical speedup and efficiency of parallel code

Laws of Parallel Performance

• Work law: tp ≥ t1 / p

• Span law: tp ≥ t∞

• Amdahl’s law:

- If a fraction s, between 0 and 1, of the work must be

done sequentially, then

 speedup ≤ 1 / s

Performance model for data movement:
 Latency/Bandwith Model

Moving data between processors by message-passing

• Machine parameters:

- a or tstartup latency (message startup time in seconds)

- b or tdata inverse bandwidth (in seconds per word)

- between nodes of Triton, a ~ 2.2 × 10-6 and b ~ 6.4 × 10-9

• Time to send & recv or bcast a message of w words: a + w*b

• tcomm total commmunication time

• tcomp total computation time

• Total parallel time: tp = tcomp + tcomm

• Assume just two levels in memory hierarchy, fast and slow

• All data initially in slow memory

- m = number of memory elements (words) moved between fast and slow
memory

- tm = time per slow memory operation

- f = number of arithmetic operations

- tf = time per arithmetic operation, tf << tm

- q = f / m average number of flops per slow element access

• Minimum possible time = f * tf when all data in fast memory

• Actual time

- f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)

• Larger q means time closer to minimum f * tf

Modeling Computation and Memory Access

44

Outline

• Why powerful computers must be parallel processors

• Large CSE/commerical problems require powerful
computers

• Performance models

• Why writing (fast) parallel programs is hard

Including your laptops and handhelds

all

45

Principles of Parallel Computing

• Finding enough parallelism (Amdahl’s Law)

• Granularity

• Locality

• Load balance

• Coordination and synchronization

• Performance modeling

All of these things makes parallel programming

even harder than sequential programming.

46

“Automatic” Parallelism in Modern Machines

• Bit level parallelism

- within floating point operations, etc.

• Instruction level parallelism (ILP)

- multiple instructions execute per clock cycle

• Memory system parallelism

- overlap of memory operations with computation

• OS parallelism

- multiple jobs run in parallel on commodity SMPs

• I/O parallelism in storage level

Limits to all of these -- for very high performance, need

user to identify, schedule and coordinate parallel tasks

47

Finding Enough Parallelism

• Suppose only part of an application seems parallel

• Amdahl’s law

- let s be the fraction of work done sequentially, so
(1-s) is fraction parallelizable

- P = number of processors

Speedup(P) = Time(1)/Time(P)

 <= 1/(s + (1-s)/P)

 <= 1/s

• Even if the parallel part speeds up perfectly
performance is limited by the sequential part

• Top500 list: top machine has P~224K; fastest has
~186K+GPUs

48

Overhead of Parallelism

• Given enough parallel work, this is the biggest barrier to
getting desired speedup

• Parallelism overheads include:

- cost of starting a thread or process

- cost of accessing data, communicating shared data

- cost of synchronizing

- extra (redundant) computation

• Each of these can be in the range of milliseconds
(=millions of flops) on some systems

• Tradeoff: Algorithm needs sufficiently large units of work
to run fast in parallel (i.e. large granularity), but not so
large that there is not enough parallel work

49

Locality and Parallelism

• Large memories are slow, fast memories are small

• Storage hierarchies are large and fast on average

• Parallel processors, collectively, have large, fast cache

- the slow accesses to “remote” data we call “communication”

• Algorithm should do most work on local data

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional

Storage

Hierarchy
Proc

Cache

L2 Cache

L3 Cache

Memory

Proc
Cache

L2 Cache

L3 Cache

Memory

p
o
te

n
tia

l

in
te

rc
o
n
n
e
c
ts

50

Load Imbalance

• Load imbalance is the time that some processors in the
system are idle due to

- insufficient parallelism (during that phase)

- unequal size tasks

• Examples of the latter

- adapting to “interesting parts of a domain”

- tree-structured computations

- fundamentally unstructured problems

• Algorithm needs to balance load

- Sometimes can determine work load, divide up evenly, before starting

- “Static Load Balancing”

- Sometimes work load changes dynamically, need to rebalance
dynamically

- “Dynamic Load Balancing”

51

Improving Real Performance

0.1

1

10

100

1,000

2000 2004
T
e
ra

fl
o

p
s

1996

Peak Performance grows exponentially,

a la Moore’s Law

 In 1990’s, peak performance increased 100x;

in 2000’s, it will increase 1000x

But efficiency (the performance relative to

the hardware peak) has declined

 was 40-50% on the vector supercomputers

of 1990s

 now as little as 5-10% on parallel

supercomputers of today

 Close the gap through ...

 Mathematical methods and algorithms that

achieve high performance on a single

processor and scale to thousands of

processors

 More efficient programming models and tools

for massively parallel supercomputers

Performance

Gap

Peak Performance

Real Performance

52

Performance Levels

• Peak performance

- Sum of all speeds of all floating point units in the system

- You can’t possibly compute faster than this speed

• LINPACK

- The “hello world” program for parallel performance

- Solve Ax=b using Gaussian Elimination, highly tuned

• Gordon Bell Prize winning applications performance

- The right application/algorithm/platform combination plus years of work

• Average sustained applications performance

- What one reasonable can expect for standard applications

When reporting performance results, these levels are

often confused, even in reviewed publications

53

Performance Levels (for example on NERSC-5)

• Peak advertised performance (PAP): 100 Tflop/s

• LINPACK (TPP): 84 Tflop/s

• Best climate application: 14 Tflop/s

- WRF code benchmarked in December 2007

• Average sustained applications performance: ? Tflop/s

- Probably less than 10% peak!

• We will study performance

- Hardware and software tools to measure it

- Identifying bottlenecks

- Practical performance tuning (Matlab demo)

54

What you should get out of the course

In depth understanding of:

• When is parallel computing useful?

• Understanding of parallel computing hardware options.

• Overview of programming models (software) and tools.

• Some important parallel applications and the algorithms

• Performance analysis and tuning

• Exposure to various open research questions

55

Course Deadlines (Tentative)

• Week 1: join Google discussion group.

Email your name, UCSB email, and ssh key to
scc@oit.ucsb.edu for Triton account.

• Jan 27: 1-page project proposal.
The content includes: Problem description, challenges
(what is new?), what to deliver, how to test and what to
measure, milestones, and references

• Jan 29 week: Meet with me on the proposal and paper(s)
for reviewing

• Feb 6: HW1 due (may be earlier)

• Feb 18 week: Paper review presentation and project
progress.

• Feb 27. HW2 due.

• Week 13-17. Take-home exam. Final project presentation.
Final 5-page report.

mailto:kadir@oit.ucsb.edu
mailto:kadir@oit.ucsb.edu

