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Overview

•What is MapReduce?
–Example with word counting

•Parallel data processing with 
MapReduce
–Hadoop file system

•More application example



Motivations

• Motivations 
– Large-scale data processing on clusters
– Massively parallel (hundreds or thousands of CPUs)
– Reliable execution with easy data access

• Functions
– Automatic parallelization & distribution
– Fault-tolerance
– Status and monitoring tools
– A clean abstraction for programmers

» Functional programming meets distributed computing
» A batch data processing system



Parallel Data Processing in a Cluster

• Scalability to large data volumes:
– Scan 1000 TB on 1 node @ 100 MB/s = 24 days
– Scan on 1000-node cluster = 35 minutes

• Cost-efficiency:
– Commodity nodes /network 

» Cheap, but not high bandwidth, sometime unreliable
– Automatic fault-tolerance (fewer admins)
– Easy to use (fewer programmers)



Typical Hadoop Cluster

•40 nodes/rack, 1000-4000 nodes in cluster
•1 Gbps bandwidth in rack, 8 Gbps out of rack
•Node specs :

8-16 cores, 32 GB RAM, 8×1.5 TB disks

Aggregation switch

Rack switch



MapReduce Programming Model

•Data:  a set of key-value pairs
– Initially input data is stored in files

•Parallel computation: 
– A set of Map tasks and reduce tasks to access and produce 

key-value pairs
– Map Function: (key1, val1) → (key2, val2)
– Reduce: (key2, [val2 list]) → [val3]
– Inspired from map and reduce operations commonly used in 

functional programming languages like Lisp

• Input/output files are stored in Hadoop: distributed file 
system built on a cluster of machinesà Looks like one 
machine



Key-Value Pairs Maniupated by Map/Reduce Tasks

Map Tasks Reduce Tasks

Input files
Output files

Stored in Hadoop

in Hadoop



Inspired by LISP Function Programming

•Two Lisp functions
•Lisp map function

– Input parameters:  a function and a set of values
– This function is applied to each of the values.
Example:
– (map ‘length ‘(() (a) (ab) (abc)))
à(length(()) length(a) length(ab) length(abc))
à (0 1 2 3)



Lisp Reduce Function

•Lisp reduce function
– given a binary function and a set of values. 
– It combines all the values together using the binary 

function. 
•Example:

– use the + (add) function to reduce the list (0 1 2 3)
– (reduce    #'+   '(0 1 2 3)) 
à 6



Example: Map Processing with Hadoop

•Given a file 
– A file may be divided  by the system into multiple 

parts (called splits or shards).
•Each record in a split is processed by a  user Map 

function,
– takes each record as an input
– produces  key/value pairs



Processing of Reducer Tasks

•Given a set of (key, value) records produced by map tasks.
– all the intermediate values for a key are combined together 

into a list and given to a reducer. Call it [val2]
– A user-defined function is applied to each list  [val2]   and 

produces another value

k1 k2 k3



Put Map and Reduce Tasks Together

User 
responsibility



Example of Word Count Job (WC)

the 
quick
brown 

fox

the fox 
ate the 
mouse

how 
now

brown 
cow

Map

Map

Map

the, 1
brown, 1

fox, 1

the, 1
fox, 1
the, 1
ate,1

mouse,1

how, 1
now, 1

brown, 1
cow,1

Reduce

Reduce

quick, 1
brown, 1

brown, 1

Input Map Shuffle & Sort Reduce Output

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1



Input/output specification of the WC mapreduce job

Input : a set of (key values) stored in files
key:  document ID
value:   a list of words as content of each document

Output:  a set of (key values) stored in files
key:  wordID
value: word frequency appeared in all documents

MapReduce function specification:
map(String input_key, String input_value): 
reduce(String output_key, Iterator intermediate_values): 



Pseudo-code

map(String input_key, String input_value): 
// input_key: document name 
// input_value: document contents 

for each word w in input_value: 
EmitIntermediate(w, "1"); 

reduce(String output_key, Iterator intermediate_values): 
// output_key: a word 
// output_values: a list of counts 

int result = 0; 
for each v in intermediate_values: 

result  = result + ParseInt(v); 
Emit(output_key, AsString(result));
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MapReduce WordCount.java
Hadoop distribution: src/examples/org/apache/hadoop/examples/WordCount.java

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{  

private final static IntWritable one = new IntWritable(1); // a mapreduce int class
private Text word = new Text(); //a mapreduce String  class

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException { // key is the offset of 

current record in a file
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) { // loop for each token

word.set(itr.nextToken());  //convert from string to token
context.write(word, one);  // emit (key,value) pairs for reducer

}
}
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MapReduce WordCount.java

map() gets a key, value, and context
• key - "bytes from the beginning of the line?“
• value - the current line;
in the while loop, each token is a "word" from the current line

US history book
School admission records
iPADs sold in 2012

US history book

School admission records

iPADs sold in 2012

Input file
Line value tokens

US    history book
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Reduce code in WordCount.java

public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {

int sum = 0;
for (IntWritable val : values) {
sum += val.get();

}
result.set(sum);  //convert  “int” to IntWritable 
context.write(key, result); //emit the final key-value result 

}
}
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The driver to set things up and start

//   Usage: wordcount <in> <out> 
public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
Job job = new Job(conf, "word count"); //mapreduce job
job.setJarByClass(WordCount.class); //set jar file
job.setMapperClass(TokenizerMapper.class); // set mapper class
job.setCombinerClass(IntSumReducer.class); //set combiner class
job.setReducerClass(IntSumReducer.class);   //set reducer class
job.setOutputKeyClass(Text.class);                // output key class
job.setOutputValueClass(IntWritable.class);  //output value class
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));   //job input path
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); //job output path
System.exit(job.waitForCompletion(true) ? 0 : 1);  //exit status 

}



Systems Support for MapReduce

Applications

MapReduce

Distributed File Systems (Hadoop, 
Google FS)
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Distributed Filesystems

• The interface is the same as a single-machine file system
– create(), open(), read(), write(), close()

• Distribute file data to a number of machines (storage units).
– Support replication

• Support concurrent  data access
– Fetch content from remote servers. Local caching

• Different implementations sit in different places on 
complexity/feature scale
– Google file system  and Hadoop HDFS

» Highly scalable for large data-intensive applications.
» Provides redundant storage of massive amounts of data 

on cheap and unreliable computers
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Assumptions of GFS/Hadoop DFS

• High component failure rates
– Inexpensive commodity components fail all the time

• “Modest” number of HUGE files
– Just a few million
– Each is 100MB or larger; multi-GB files typical

• Files are write-once, mostly appended to
– Perhaps concurrently

• Large streaming reads
• High sustained throughput favored over low latency



Hadoop Distributed File System

•Files split into 64 MB blocks
•Blocks replicated across 

several datanodes ( 3)
•Namenode stores metadata 

(file names, locations, etc)
•Files are append-only. 

Optimized for large files, 
sequential reads

– Read: use any copy
– Write: append to 3 replicas

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1



Shell Commands for Hadoop File System 

• Mkdir, ls, cat, cp
– hadoop fs -mkdir /user/deepak/dir1
– hadoop fs -ls /user/deepak
– hadoop fs -cat /usr/deepak/file.txt
– hadoop fs -cp /user/deepak/dir1/abc.txt /user/deepak/dir2

• Copy data from the local file system to HDF
– hadoop fs -copyFromLocal <src:localFileSystem> <dest:Hdfs> 
– Ex: hadoop fs –copyFromLocal /home/hduser/def.txt /user/deepak/dir1

• Copy data from HDF to local
– hadoop fs -copyToLocal <src:Hdfs> <dest:localFileSystem>

http://www.bigdataplanet.info/2013/10/All-Hadoop-Shell-Commands-you-need-Hadoop-Tutorial-Part-5.html

Hapdoop Local Linux 

User



Hadoop DFS with MapReduce



Demons for Hadoop/Mapreduce

• Following demons must be running
(use jps to show  these 
Java processes)
• Hadoop

– Name node (master)
– Secondary name node
– data nodes

• Mapreduce
– Task tracker
– Job tracker



Hadoop Cluster with MapReduce



Execute MapReduce on a cluster of machines with 
Hadoop DFS
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MapReduce: Execution Details

• Input reader
– Divide input into splits, assign each split to a Map task

• Map task for data parallelism
– Apply the Map function to each record in the split
– Each Map function returns a list of (key, value) pairs

• Shuffle/Partition and Sort
– Shuffle distributes sorting & aggregation to many reducers
– All records for key k are directed to the same reduce processor
– Sort groups the same keys together, and prepares for aggregation

• Reduce task for data parallelism
– Apply the Reduce function to each key
– The result of the Reduce function is a list of (key, value) pairs

• Performance consideration in mappers/reducers: Too many  key-
value pairs? Not enough pairs?
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How to create and execute map tasks?

• The system spawns a number of mapper processes and reducer 
processes

– A typical/default setting 2 mappers and 1 reducer per core.
– User can specify/change setting

• Input reader
– Input is typically a directory of files.
– Divide  each input file  into splits,
– Assign each split to a Map task

• Map task
– Executed by a mapper process
– Apply the user-defined map 

function to each record in the split
– Each Map function
returns a list of (key, value) pairs
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How to create and execute reduce tasks?

• Partition (key, value) output  pairs of map tasks

Partitioning is based on hashing, and can be modified.

Key Hash Hash % 4

of -1463488791 4

course 2334184425 0

you 1116843962 2

don’t -482782459 1

know 326123353 3
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How to create and execute reduce tasks?

• Shuffle/partition outputs of map tasks
– Sort  keys and group values of  the same key together.
– Direct  (key, values) pairs to the partitions, and then distribute to 

the right destinations.
• Reduce task

– Apply the Reduce function to the list of each key
• Multiple map tasks -> one reduce
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Multiple map tasks and multiple reduce tasks

• When there are multiple reducers, the map tasks partition their 
output, each creating one partition for each reduce task. There can be 
many keys (and their associated values) in each partition, but the 
records for any given key are all in a single partition



MapReduce: Fault Tolerance
• Handled via re-execution of tasks.

� Task completion committed through master 
• Mappers save outputs to local disk before serving to reducers

– Allows recovery if a reducer crashes
– Allows running more reducers than # of nodes

• If a task crashes:
– Retry on another node
» OK for a map because it had no dependencies
» OK for reduce because map outputs are on disk
– If the same task repeatedly fails, fail the job or ignore that input block
– : For the fault tolerance to work, user tasks must be deterministic and side-

effect-free
2. If a node crashes:

– Relaunch its current tasks on other nodes
– Relaunch any maps the node previously ran
» Necessary because their output files were lost along with the crashed node



MapReduce: Redundant Execution

•Slow workers are source of bottleneck, may delay 
completion time.

•spawn backup tasks, one to finish first wins.
•Effectively utilizes computing power, reducing job 

completion time by a factor. 



User Code Optimization: Combining Phase

• Run on map machines after map phase
– “Mini-reduce,” only on local map output
– E.g.  job.setCombinerClass(Reduce.class);

• save bandwidth before sending data to full reduce tasks
• Requirement:  commutative & associative

Combiner 
replaces with:

Map output

To reducer

On one mapper machine:

To reducer



MapReduce Applications (I)

• Distributed grep (search for words)
•Map: emit a line if it matches a given 

pattern
• URL access frequency
•Map: process logs of web page access; 

output
• Reduce: add all values for the same URL

37



MapReduce Applications (II)

• Reverse web-link graph 
•Map:  Input is node-outgoing links. 

Output each link with the target as a key. 
• Reduce: Concatenate the list of all source 

nodes associated with a target. 
• Inverted index
•Map: Input is words for a document. 

Emit word-document pairs
• Reduce: for the same word, sort the document 

IDs that contain this word; emits a pair. 



Types of MapReduce Applications

• Map only parallel processing
• Count word usage for each document

• Map-reduce two-stage processing
• Count word usage for the entire document 

collection
• Multiple map-reduce stages

1. Count word usage in a document set
2. Identify most frequent words in each 

document, but exclude those most popular 
words in the entire document set39



MapReduce Job Chaining

• Run a sequence of map-reduce jobs

•Use job.waitForComplete()
– Define the first job including input/output directories, and 

map/combiner/reduce classes.
» Run the first job with job.waitForComplete()

– Define the second job 
» Run the second job with job.waitForComplete()

•Use JobClient.runJob(job)



Example
Job job = new Job(conf, "word count"); //mapreduce job

job.setJarByClass(WordCount.class); //set jar file
job.setMapperClass(TokenizerMapper.class); // set mapper class
...
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));   // input path
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); // output path
job.waitForCompletion(true) ;

Job job1 = new Job(conf, "word count"); //mapreduce job
job1.setJarByClass(WordCount.class); //set jar file
job1. setMapperClass(TokenizerMapper.class); // set mapper class
...
FileInputFormat.addInputPath(job1, new Path(otherArgs[1]));   // input path
FileOutputFormat.setOutputPath(job1, new Path(otherArgs[2])); // output path
System.exit(job1.waitForCompletion(true) ? 0 : 1);  //exit status 

}



MapReduce Use Case: Inverted Indexing
Preliminaries

Construction of inverted lists for document 
search

•Input: documents: (docid, [term, term..]), 
(docid, [term, ..]), ..

•Output: (term, [docid, docid, …])
– E.g., (apple, [1, 23, 49, 127, …])

A document id is an internal document id, e.g., 
a unique integer

•Not an external document id such as a url
© 2010, Jamie Callan 42



Inverted Indexing: Data flow

This page contains 
so much text

My page contains 
text too

Foo

Bar

contains: Bar
My: Bar
page : Bar
text: Bar
too: Bar

contains: Foo
much: Foo
page : Foo
so : Foo
text: Foo
This : Foo

contains: Foo, Bar
much: Foo
My: Bar
page : Foo, Bar
so : Foo
text: Foo, Bar
This : Foo
too: Bar

Reduced output

Foo map output

Bar map output



Using MapReduce to Construct Inverted Indexes

• Each Map task is a document parser
– Input:  A stream of documents
– Output:  A stream of (term, docid) tuples

» (long, 1) (ago, 1) (and, 1) … (once, 2) (upon, 2) …
» We may create internal IDs for words.

• Shuffle sorts tuples by key and routes tuples to Reducers
• Reducers convert streams of keys into streams of inverted lists

– Input: (long, 1) (long, 127) (long, 49) (long, 23) …
– The reducer sorts the values for a key and builds an inverted list
– Output:  (long, [frequency:492, docids:1, 23, 49, 127, …])

© 2010, Jamie Callan 44



Combine: Special Local Reduction 

•Combine locally if possible

k k k



Using Combiner () to Reduce Communication

• Map: (docid1, content1) à (t1, ilist1,1) (t2, ilist2,1) (t3, ilist3,1) …
– Each output inverted list covers just one document

• Combine locally
Sort by t
Combiner:  (t1 [ilist1,2 ilist1,3 ilist1,1 …]) à (t1, ilist1,27) 
– Each output inverted list covers a sequence of documents

• Shuffle and sort by t
(t4, ilist4,1) (t5, ilist5,3) … à (t4, ilist4,2) (t4, ilist4,4) (t4, ilist4,1) …

• Reduce:  (t7, [ilist7,2, ilist3,1, ilist7,4, …]) à (t7, ilistfinal)

ilisti,j: the j’th inverted list fragment for term i
© 2010, Jamie Callan 46



Hadoop and Tools

• Various Linux Hadoop clusters
– Cluster +Hadoop:  http://hadoop.apache.org
– Amazon EC2

• Windows and other platforms
– The NetBeans plugin simulates Hadoop
– The workflow view works on Windows

• Hadoop-based tools
– For Developing in Java, NetBeans plugin

• Pig Latin, a SQL-like high level data processing script language
• Hive, Data warehouse, SQL
• HBase, Distributed data store as a large table

47



New Hadoop Develpment

48

Cluster resource management


