
1

Caches and Memory Hierarchy:
Review

UCSB CS240A, Fall 2017



2

Motivation
• Most	applications	in	a	single	processor	runs	at	only	10-
20%	of	the	processor	peak

• Most	of	the	single	processor	performance	loss	is	in	the	
memory	system
– Moving	data	takes	much	longer	than	arithmetic	and	logic

• Parallel computing with low single machine 
performance is not good enough.

• Understand high performance computing and 
cost in a single machine setting

• Review of cache/memory hierarchy



Second-
Level
Cache
(SRAM)

Typical	Memory	Hierarchy

Control

Datapath

Secondary
Memory
(Disk

Or	Flash)

On-Chip	Components

RegFile

Main
Memory
(DRAM)Data

Cache
Instr
Cache

Speed	(cycles):								½’s												 1’s																	 10’s												 100’s							 1,000,000’s

Size	(bytes):				 100’s			 10K’s																									M’s																				G’s																						T’s

3

• Principle	of	locality	+	memory	hierarchy	presents	programmer	with	
≈	as	much	memory	as	is	available	in	the	cheapest technology	at	the	
≈	speed	offered	by	the	fastest technology

Cost/bit:									highest																																																																													 lowest

Third-
Level
Cache
(SRAM)



4

Idealized	Uniprocessor Model
• Processor	names	bytes,	words,	etc.	in	its	address	space

– These	represent	integers,	floats,	pointers,	arrays,	etc.
• Operations	include

– Read	and	write	into	very	fast	memory	called	registers
– Arithmetic	and	other	logical	operations	on	registers

• Order	specified	by	program

– Read	returns	the	most	recently	written	data
– Compiler	and	architecture	translate	high	level	expressions	into	
“obvious”	lower	level	instructions

– Hardware	executes	instructions	in	order	specified	by	compiler
• Idealized	Cost

– Each	operation	has	roughly	the	same	cost
(read,	write,	add,	multiply,	etc.)

A	=	B	+	C	Þ

Read	address(B)	to	R1
Read	address(C)	to	R2
R3	=	R1	+	R2
Write	R3	to	Address(A)



5

Uniprocessors in	the	Real	World
• Real	processors	have

– registers	and	caches
• small	amounts	of	fast	memory
• store	values	of	recently	used	or	nearby	data
• different	memory	ops	can	have	very	different	costs

– parallelism
• multiple	“functional	units”	that	can	run	in	parallel
• different	orders,	instruction	mixes	have	different	costs

– pipelining
• a	form	of	parallelism,	like	an	assembly	line	in	a	factory

• Why	is	this	your	problem?
• In	theory,	compilers	and	hardware	“understand”	all	this	and	
can	optimize	your	program;	in	practice	they	don’t.

• They	won’t	know	about	a	different	algorithm	that	might	be	
a	much	better	“match”	to	the	processor



6

Memory	Hierarchy
• Most	programs	have	a	high	degree	of	locality in	their	accesses

– spatial	locality: accessing	things	nearby	previous	accesses
– temporal	locality: reusing	an	item	that	was	previously	accessed

• Memory	hierarchy	tries	to	exploit	locality	to	improve	average

on-chip	
cacheregisters

datapath

control

processor

Second	
level	
cache	
(SRAM)

Main	
memory

(DRAM)

Secondary	
storage	
(Disk)

Tertiary	
storage

(Disk/Tape)

Speed 1ns 10ns 100ns 1-10ms 10sec

Size KB MB GB TB PB



Processor

Control

Datapath

Review:	Cache	in	Modern	Computer	
Architecture

7

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes
Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

Cache



8

Cache	Basics
• Cache	is	fast	(expensive)	memory	which	keeps	
copy	of	data	in	main	memory;	it	is	hidden	from	
software
– Simplest	example:	data	at	memory	address	xxxxx1101	is	stored	

at	cache	location	1101
• Memory	data	is	divided	into		blocks

– Cache	access	memory	by	a	block	(cache	line)
– Cache	line	length:	#	of	bytes	loaded	together	in	one	
entry

• Cache	is	divided	by	the	number	of	sets
– A	cache	block	can	be	hosted	in	one	set.

• Cache	hit:	in-cache	memory	access—cheap
• Cache	miss:	Need	to	access	next,	slower	level	of	
cache



00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

8 88
Byte

Word
8-Byte 
Block

address address address

2 LSBs are 0 3 LSBs are 0

0

1

2

3

0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7

Byte offset in block
Block #10/4/17 9

Memory	Block-addressing	example



Processor	Address	Fields	used	by	
Cache	Controller

• Block	Offset:	Byte	address	within	block
– B	is	number	of	bytes	per	block

• Set	Index:	Selects	which	set.		S	is	the	number	of	sets
• Tag:	Remaining	portion	of	processor	address

• Size	of	Tag	=	Address	size	– log(S)	– log(B)

Block offsetSet	IndexTag

10

Processor	Address	

Cache	Size	C	= Associativity N × #	of	Set	S × Cache	Block	Size	B
Example:		Cache	size	16K.		8	bytes	as	a	block.	à 2K	blocks	à If	N=1,		S=2K	using	11	bits.

Associativity N represents	#	items	that	can	be	held	per set



010100100000

010100110000

010101000000

010101010000

010101100000

010101110000

010110000000

010110010000

010110100000

010110110000

010100100000

010100110000

010101000000

010101010000

010101100000

010101110000

010110000000

010110010000

010110100000

010110110000

82

83

84

85

86

87

88

89

90

91

2

3

4

5

6

7

0

1

2

3

0

1

0

1

0

1

0

1

0

1

010100100000

010100110000

010101000000

010101010000

010101100000

010101110000

010110000000

010110010000

010110100000

010110110000

Block	number	aliasing	example

10/4/17 11

Block	# Block	#	mod	8 Block	#	mod	2

12-bit	memory	addresses,	16	Byte	blocks

3-bit	set	index 1-bit	set	index



• 4byte	blocks,	cache	size	=	1K	words	(or	4KB)

Direct-Mapped	Cache:	N=1.	S=Number	of	Blocks=210

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31	30							.	.	.							 13	12		11					.	.	.							 2		1		0
Byte	offset

20

Data

32

Hit

12

Valid	bit	
ensures	

something	
useful	in	
cache	for	
this	index

Compare	
Tag	with	

upper	part	of	
Address	to	
see	if	a	Hit

Read
data	
from	
cache	
instead	

of	
memory	
if	a	Hit

Comparator

Cache	Size	C	= Associativity N × #	of	Set	S × Cache	Block	Size	B



Cache	Organizations

• “Fully	Associative”:	Block	can	go	anywhere
– N=	number	of	blocks.	S=1

• “Direct	Mapped”:	Block	goes	one	place	
– N=1.	S=	cache	capacity	in	terms	of		number	of	blocks

• “N-way	Set	Associative”:	N	places	for	a	block

Block	IDBlock	ID

Cache	Size	C	= N × #	of	Set	S × Size	B
Associativity N represents	#	items	that	can	be	held	per set



Four-Way	Set-Associative	Cache
• 28 =	256	sets	each	with	four	ways	(each	with	one	block)

31	30							.	.	.																13	12		11					.	.	.											2		1		0 Byte	offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Set	Index

DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1	select

Way	0 Way	1 Way	2 Way	3

14



How	to	find	if	a	data	address	in	cache?

15

• Assume	block	size	8	bytes	àlast	3	bits	of	
address	are	offset.

• Set	index	2	bits.	
• Given	address	0b1001011,	where	to	find	this	

item	from	cache?

0b	means	binary	number



How	to	find	if	a	data	address	in	cache?

16

• Assume	block	size	8	bytes	àlast	3	bits	of	
address	are	offset.

• Set	index	2	bits.	
• 0b1001011à Block	number	0b1001.
• Set index	2	bits	(mod	4)

• Set number	à 0b01.
• Tag =	0b10.

• If directory	based	cache,	only	one	block	in	
set	#1.

• If 4	ways,		there	could	be	4	blocks	in	set	#1.
• Use tag	0b10 to	compare	what	is	in	the	set.

0b	means	binary	number



Cache	Replacement	Policies
• Random	Replacement

– Hardware	randomly	selects	a	cache	evict
• Least-Recently	Used

– Hardware	keeps	track	of	access	history
– Replace	the	entry	that	has	not	been	used	for	the	longest	time
– For	2-way	set-associative	cache,	need	one	bit	for	LRU	replacement

• Example	of	a	Simple	“Pseudo”	LRU	Implementation
– Assume	64	Fully	Associative	entries
– Hardware	replacement	pointer	points	to	one	cache	entry
– Whenever	access	is	made	to	the	entry	the	pointer	points	to:

• Move	the	pointer	to	the	next	entry
– Otherwise:	do	not	move	the	pointer
– (example	of	“not-most-recently	used”	replacement	policy)

:

Entry	0
Entry	1

Entry		63

Replacement
Pointer

17



Handling	Data	Writing

• Store	instructions	write	to	memory,	changing	
values

• Need	to	make	sure	cache	and	memory	have	same	
values	on	writes:	2	policies
– 1)	Write-through	policy:	write	cache	and	write	
through	the	cache	to	memory

• Every	write	eventually	gets	to	memory
• Too	slow,	so	include	Write	Buffer	to	allow	processor	to	
continue	once	data	in	Buffer

• Buffer	updates	memory	in	parallel	to	processor
– 2)	Write-back	policy

18



Write-Through	
Cache

• Write	both	values	in	
cache	and	in	memory

• Write	buffer	stops	CPU	
from	stalling	if	memory	
cannot	keep	up

• Write	buffer	may	have	
multiple	entries	to	
absorb	bursts	of	writes

• What	if	store	misses	in	
cache?

19

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041 Addr Data

Write	
Buffer



Handling	Stores	with	Write-Back

2)	Write-Back	Policy:	write	only	to	cache	and	
then	write	cache	block	back	to	memory	when	
evict	block	from	cache
– Writes	collected	in	cache,	only	single	write	to	
memory	per	block

– Include	bit	to	see	if	wrote	to	block	or	not,	and	
then	only	write	back	if	bit	is	set

• Called	“Dirty”	bit	(writing	makes	it	“dirty”)

20



Write-Back	
Cache

• Store/cache	hit,	write	data	in	
cache	only	&	set	dirty	bit
– Memory	has	stale	value

• Store/cache	miss,	read	data	
from	memory,	then	update	
and	set	dirty	bit
– “Write-allocate”	policy

• Load/cache	hit,	use	value	
from	cache

• On	any	miss,	write	back	
evicted	block,	only	if	dirty.	
Update	cache	with	new	block	
and	clear	dirty	bit.

21

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041

D
D
D
D

Dirty	
Bits



Write-Through	vs.	Write-Back

• Write-Through:
– Simpler	control	logic
– More	predictable	timing	
simplifies	processor	control	
logic

– Easier	to	make	reliable,	since	
memory	always	has	copy	of	
data	(big	idea:	Redundancy!)

• Write-Back
– More	complex	control	logic
– More	variable	timing	(0,1,2	
memory	accesses	per	
cache	access)

– Usually	reduces	write	
traffic

– Harder	to	make	reliable,	
sometimes	cache	has	only	
copy	of	data

22



Cache	(Performance) Terms

• Hit	rate:	fraction	of	accesses	that	hit	in	the	cache
• Miss	rate:	1	– Hit	rate
• Miss	penalty:	time	to	replace	a	block	from	lower	
level	in	memory	hierarchy	to	cache

• Hit	time:	time	to	access	cache	memory	(including	
tag	comparison)

23



Average	Memory	Access	Time	(AMAT)
• Average	Memory	Access	Time	(AMAT)	is	the	
average	time	to	access	memory	considering	
both	hits	and	misses	in	the	cache

AMAT	=		 Time	for	a	hit		
+		Miss	rate	× Miss	penalty

24

Given	a	0.2ns	clock,	a	miss	penalty	of	50	clock	cycles,	a	
miss	rate	of		2%		per	instruction	and	a	cache	hit	time	of	1	
clock	cycle,	what	is	AMAT?
AMAT	=	1	cycle	+	0.02*50	=	2	cycles	=	0.4ns.


