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Motivation
• Most	applications	in	a	single	processor	runs	at	only	10-
20%	of	the	processor	peak

• Most	of	the	single	processor	performance	loss	is	in	the	
memory	system
– Moving	data	takes	much	longer	than	arithmetic	and	logic

• Parallel computing with low single machine 
performance is not good enough.

• Understand high performance computing and 
cost in a single machine setting

• Review of cache/memory hierarchy
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• Principle	of	locality	+	memory	hierarchy	presents	programmer	with	
≈	as	much	memory	as	is	available	in	the	cheapest technology	at	the	
≈	speed	offered	by	the	fastest technology

Cost/bit:									highest																																																																													 lowest
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Idealized	Uniprocessor Model
• Processor	names	bytes,	words,	etc.	in	its	address	space

– These	represent	integers,	floats,	pointers,	arrays,	etc.
• Operations	include

– Read	and	write	into	very	fast	memory	called	registers
– Arithmetic	and	other	logical	operations	on	registers

• Order	specified	by	program

– Read	returns	the	most	recently	written	data
– Compiler	and	architecture	translate	high	level	expressions	into	
“obvious”	lower	level	instructions

– Hardware	executes	instructions	in	order	specified	by	compiler
• Idealized	Cost

– Each	operation	has	roughly	the	same	cost
(read,	write,	add,	multiply,	etc.)

A	=	B	+	C	Þ

Read	address(B)	to	R1
Read	address(C)	to	R2
R3	=	R1	+	R2
Write	R3	to	Address(A)
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Uniprocessors in	the	Real	World
• Real	processors	have

– registers	and	caches
• small	amounts	of	fast	memory
• store	values	of	recently	used	or	nearby	data
• different	memory	ops	can	have	very	different	costs

– parallelism
• multiple	“functional	units”	that	can	run	in	parallel
• different	orders,	instruction	mixes	have	different	costs

– pipelining
• a	form	of	parallelism,	like	an	assembly	line	in	a	factory

• Why	is	this	your	problem?
• In	theory,	compilers	and	hardware	“understand”	all	this	and	
can	optimize	your	program;	in	practice	they	don’t.

• They	won’t	know	about	a	different	algorithm	that	might	be	
a	much	better	“match”	to	the	processor
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Memory	Hierarchy
• Most	programs	have	a	high	degree	of	locality in	their	accesses

– spatial	locality: accessing	things	nearby	previous	accesses
– temporal	locality: reusing	an	item	that	was	previously	accessed

• Memory	hierarchy	tries	to	exploit	locality	to	improve	average
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Cache	Basics
• Cache	is	fast	(expensive)	memory	which	keeps	
copy	of	data	in	main	memory;	it	is	hidden	from	
software
– Simplest	example:	data	at	memory	address	xxxxx1101	is	stored	

at	cache	location	1101
• Memory	data	is	divided	into		blocks

– Cache	access	memory	by	a	block	(cache	line)
– Cache	line	length:	#	of	bytes	loaded	together	in	one	
entry

• Cache	is	divided	by	the	number	of	sets
– A	cache	block	can	be	hosted	in	one	set.

• Cache	hit:	in-cache	memory	access—cheap
• Cache	miss:	Need	to	access	next,	slower	level	of	
cache
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Processor	Address	Fields	used	by	
Cache	Controller

• Block	Offset:	Byte	address	within	block
– B	is	number	of	bytes	per	block

• Set	Index:	Selects	which	set.		S	is	the	number	of	sets
• Tag:	Remaining	portion	of	processor	address

• Size	of	Tag	=	Address	size	– log(S)	– log(B)

Block offsetSet	IndexTag
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Processor	Address	

Cache	Size	C	= Associativity N × #	of	Set	S × Cache	Block	Size	B
Example:		Cache	size	16K.		8	bytes	as	a	block.	à 2K	blocks	à If	N=1,		S=2K	using	11	bits.

Associativity N represents	#	items	that	can	be	held	per set
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Block	# Block	#	mod	8 Block	#	mod	2

12-bit	memory	addresses,	16	Byte	blocks

3-bit	set	index 1-bit	set	index



• 4byte	blocks,	cache	size	=	1K	words	(or	4KB)

Direct-Mapped	Cache:	N=1.	S=Number	of	Blocks=210
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Cache	Organizations

• “Fully	Associative”:	Block	can	go	anywhere
– N=	number	of	blocks.	S=1

• “Direct	Mapped”:	Block	goes	one	place	
– N=1.	S=	cache	capacity	in	terms	of		number	of	blocks

• “N-way	Set	Associative”:	N	places	for	a	block

Block	IDBlock	ID

Cache	Size	C	= N × #	of	Set	S × Size	B
Associativity N represents	#	items	that	can	be	held	per set



Four-Way	Set-Associative	Cache
• 28 =	256	sets	each	with	four	ways	(each	with	one	block)
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How	to	find	if	a	data	address	in	cache?

15

• Assume	block	size	8	bytes	àlast	3	bits	of	
address	are	offset.

• Set	index	2	bits.	
• Given	address	0b1001011,	where	to	find	this	

item	from	cache?

0b	means	binary	number



How	to	find	if	a	data	address	in	cache?
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• Assume	block	size	8	bytes	àlast	3	bits	of	
address	are	offset.

• Set	index	2	bits.	
• 0b1001011à Block	number	0b1001.
• Set index	2	bits	(mod	4)

• Set number	à 0b01.
• Tag =	0b10.

• If directory	based	cache,	only	one	block	in	
set	#1.

• If 4	ways,		there	could	be	4	blocks	in	set	#1.
• Use tag	0b10 to	compare	what	is	in	the	set.

0b	means	binary	number



Cache	Replacement	Policies
• Random	Replacement

– Hardware	randomly	selects	a	cache	evict
• Least-Recently	Used

– Hardware	keeps	track	of	access	history
– Replace	the	entry	that	has	not	been	used	for	the	longest	time
– For	2-way	set-associative	cache,	need	one	bit	for	LRU	replacement

• Example	of	a	Simple	“Pseudo”	LRU	Implementation
– Assume	64	Fully	Associative	entries
– Hardware	replacement	pointer	points	to	one	cache	entry
– Whenever	access	is	made	to	the	entry	the	pointer	points	to:

• Move	the	pointer	to	the	next	entry
– Otherwise:	do	not	move	the	pointer
– (example	of	“not-most-recently	used”	replacement	policy)

:

Entry	0
Entry	1

Entry		63

Replacement
Pointer
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Handling	Data	Writing

• Store	instructions	write	to	memory,	changing	
values

• Need	to	make	sure	cache	and	memory	have	same	
values	on	writes:	2	policies
– 1)	Write-through	policy:	write	cache	and	write	
through	the	cache	to	memory

• Every	write	eventually	gets	to	memory
• Too	slow,	so	include	Write	Buffer	to	allow	processor	to	
continue	once	data	in	Buffer

• Buffer	updates	memory	in	parallel	to	processor
– 2)	Write-back	policy

18



Write-Through	
Cache

• Write	both	values	in	
cache	and	in	memory

• Write	buffer	stops	CPU	
from	stalling	if	memory	
cannot	keep	up

• Write	buffer	may	have	
multiple	entries	to	
absorb	bursts	of	writes

• What	if	store	misses	in	
cache?

19

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041 Addr Data

Write	
Buffer



Handling	Stores	with	Write-Back

2)	Write-Back	Policy:	write	only	to	cache	and	
then	write	cache	block	back	to	memory	when	
evict	block	from	cache
– Writes	collected	in	cache,	only	single	write	to	
memory	per	block

– Include	bit	to	see	if	wrote	to	block	or	not,	and	
then	only	write	back	if	bit	is	set

• Called	“Dirty”	bit	(writing	makes	it	“dirty”)
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Write-Back	
Cache

• Store/cache	hit,	write	data	in	
cache	only	&	set	dirty	bit
– Memory	has	stale	value

• Store/cache	miss,	read	data	
from	memory,	then	update	
and	set	dirty	bit
– “Write-allocate”	policy

• Load/cache	hit,	use	value	
from	cache

• On	any	miss,	write	back	
evicted	block,	only	if	dirty.	
Update	cache	with	new	block	
and	clear	dirty	bit.
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Write-Through	vs.	Write-Back

• Write-Through:
– Simpler	control	logic
– More	predictable	timing	
simplifies	processor	control	
logic

– Easier	to	make	reliable,	since	
memory	always	has	copy	of	
data	(big	idea:	Redundancy!)

• Write-Back
– More	complex	control	logic
– More	variable	timing	(0,1,2	
memory	accesses	per	
cache	access)

– Usually	reduces	write	
traffic

– Harder	to	make	reliable,	
sometimes	cache	has	only	
copy	of	data
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Cache	(Performance) Terms

• Hit	rate:	fraction	of	accesses	that	hit	in	the	cache
• Miss	rate:	1	– Hit	rate
• Miss	penalty:	time	to	replace	a	block	from	lower	
level	in	memory	hierarchy	to	cache

• Hit	time:	time	to	access	cache	memory	(including	
tag	comparison)
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Average	Memory	Access	Time	(AMAT)
• Average	Memory	Access	Time	(AMAT)	is	the	
average	time	to	access	memory	considering	
both	hits	and	misses	in	the	cache

AMAT	=		 Time	for	a	hit		
+		Miss	rate	× Miss	penalty
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Given	a	0.2ns	clock,	a	miss	penalty	of	50	clock	cycles,	a	
miss	rate	of		2%		per	instruction	and	a	cache	hit	time	of	1	
clock	cycle,	what	is	AMAT?
AMAT	=	1	cycle	+	0.02*50	=	2	cycles	=	0.4ns.


