Collective Communication in
MPI and Advanced Features

Pacheco’s book. Chapter 3

T. Yang, CS240A. Part of slides from the text book,
CS267 K. Yelick from UC Berkeley and B. Gropp,
ANL

Outline

Collective group communication
Application examples

= Picomputation

= Summation of long vectors

More applications

= Matrix-vector multiplication
— performance evaluation

= Parallel sorting
Safety and other MPI issues.

Copyright © 2010, Elsevier
Inc. All rights Reserved

a|mqgns Jaydey) #

What MPI Functions are commonly used

 For simple applications, these are common:
= Startup
— MPI_Init, MPI_Finalize
= |[nformation on the processes

— MPl_Comm_rank, MPl_Comm_size,
MPI| Get_processor name

= Point-to-point communication
— MPI _Irecv, MPI_Isend, MPI_Wait, MPI_Send, MP|_Recv

= Collective communication
— MPI_Allreduce, MPI_Bcast, MPI1_Aligather

 http://mpitutorial.com/mpi-broadcast-and-
collective-communication/

MPI Collective Communication

« Collective routines provide a higher-level way to
organize a parallel program

= Each process executes the same communication
operations

= Communication and computation is coordinated
among a group of processes in a communicator

= Tags are not used
= No non-blocking collective operations.

 Three classes of operations: synchronization, data
movement, collective computation.

’ Synchronization

* MPI Barrier(comm)

« Blocks until all processes in the group of the

communicator comm call it.
* Not used often. Sometime
used in measuring
performance and
load balancing

MPI Barrier()

T3

T2

T4

Q@%

©

OO0

Collective Data Movement: Broadcast,
Scatter, and Gather

PO
Pl

Broadcast,

P2
P3

PO
Pl

P2
P3

Scatter

Gather

Broadcast

Before MPI_Bcast

Process 1 Process 2 Process 3 Process 4
After MPI_Bcast
Process 1 Process 2 Process 3 Process 4

10 || 10

10

10

- Data belonging to a single process is sent to all of
the processes in the communicator.

int MPI Bcast (
void =
int
MPI_Datatype
int
MPI Comm

data_p
count
datatype
source_proc
comm

in
in
in
in
in

/out /.
*/
*/
*/ .
¥/)

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Comments on Broadcast

« All collective operations must be called by all
processes in the communicator

 MPI_Bcast is called by both the sender (called the
root process) and the processes that are to receive
the broadcast
= MPI_Bcast is not a “multi-send”

= “root” argument is the rank of the sender; this tells

MPI1 which process originates the broadcast and
which receive @

OOOOOOO .

Implementation View: A tree-structured
broadcast of a number 6 from Process 0

Processes

Copyright © 2010, Elsevier
Inc. All rights Reserved

A version of Get_input that uses MPI|_Bcast

in the trapezoidal program

void Get_input(

}

int my_rank /% in %/,

int comm_sz /% in x/,

doublex+ a p /+ out %/,

double+ b p /+ out /.,

int n_p /x out =/) {
if (mny_rank == 0) {

printf("Enter a, b, and n\n
scanf("%1f %1f %d", a_p, b_p, n_p):

;

MPI_Bcast(a_p, 1,
MPI_Bcast(b_p., 1,
MPI_Bcast(n_p, 1,

/¥ Get_input */

MPI_DOUBLE,
MPI_ DOUBLE,
MPI_INT, O,

")

O, MPI_COMM_WORLD);
0O, MPI_COMM_WORLD);
MPI_COMM_WORLD);:

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Collective Data Movement: Allgather and
AlltoAll

PO
P1 Allgather

P2
P3

PO
. Alltoall

P2
P3

11

Collective Computation: Reduce vs. Scan

PO
Pl

P2
P3

PO
P1

P2
P3

Reduce

Scan

12

Before MPI_Reduce

M P I_ Re d u C e Process 1 Process 2 Process 3 Process 4

1 2 3 4
After MPI_Reduce
Process 1 Process 2 Process 3 Process 4
10
int MPI Reduce(

void # input_data_p /% in %/,

void output_data_p /x out x/,

int count /% in %/,

MPI_Datatype datatype /[# 0in %/,

MPI_Op operator /[# 0in %/,

int dest_process /x in %/,

MPI_ Comm comm /= in x/);

MPI Reduce(&local int, &total int, 1, MPI DOUBLE, MPI_SUM, O,

MPI_COMM_WORLD):

double local x[N]. sum|[N]:

MPI_COMM_WORLD):

MPI_Reduce(local_x, sum, N, MPI_DOUBLE, MPI_SUM, O,

Predefined reduction operators in MPI

Operation Value | Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical and

MPI_BAND Bitwise and

MPI_LOR Logical or

MPI_BOR Bitwise or

MPI_LXOR Logical exclusive or

MPI_BXOR Bitwise exclusive or

MPI_MAXLOC Maximum and location of maximum
MPI_MINLOC Minimum and location of minimum

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Implementation View of Global Reduction

—using-atree-structured sum

Processes

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Implementation view: Tree-structured

— global reduction with sum operator

1. In the first phase:
(a) Process 1 sends to 0, 3 sends to 2, 5 sends to 4, and
/ sends to 6.
(b) Processes 0, 2, 4, and 6 add in the received values.
(c) Processes 2 and 6 send their new values to
processes 0 and 4, respectively.
(d) Processes 0 and 4 add the received values into their
new values.

2. (a) Process 4 sends its newest value to process 0.
(b) Process 0 adds the received value to its newest
value.

Copyright © 2010, Elsevier
Inc. All rights Reserved

' An alternative tree-structured global sum

Processes

Copyright © 2010, Elsevier
Inc. All rights Reserved

MPI Scan

MPI_Scan(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);

Before MPI_Scan

Process 1 Process 2 Process 3 Process 4

IR

After MPI_Scan

Process 1 Process 2 Process 3 Process 4

nnnin

Before MPI_Allreduce

cess 3

Process 2

Pro

MPI_Allreduce 1 > 15 1[4
- Affe‘r MPI_Al)lre‘:duce -
10 10 10 10

« Useful in a situation in which all of the processes
need the result of a global sum in order to complete
some larger computation.

int MPI Allreduce(

void =
void =
int

MPI_Datatype

MPI_Op

MP

_Comm

input_data_p

output_data_p

count
datatype
operator
comm

T T T B

in
out
in
in
in
in

Copyright ©

x/
x/
x/
x/
x/
%/).

2010, Elsevier
Inc. All rights Reserved

Processes

A global sum followed
by distribution of the
result.

3
Processes

Copyright © 2010, Elsevier
Inc. All rights Reserved

n
o
)
7]
O}
o
o

o

A butterfly-structured global sum.

nc. All rights Reserved

Copyright © 2010, Elsevier

MPI Collective Routines: Summary

 Many Routines: Allgather, Allgatherv,

Allreduce, Alltoall, Alltoallwv, Bcast,

Gather, Gatherv, Reduce, Reduce scatter,
Scan, Scatter, Scatterv

All versions deliver results to all participating
processes.

V versions allow the hunks to have variable sizes.

e Allreduce, Reduce, Reduce scatter, and Scan

take both built-in and user-defined combiner
functions.

MPI-2 adds A11toallw, Exscan,
intercommunicator versions of most routines

22

Example of MPI Pl program using 6

Functions ,
I
= 4 d
Y ./0 1+ 22 T

« Using basic MPI functions:

= MPI INIT

= MPI FINALIZE

= MPI_COMM SIZE

= MPI_COMM RANK
 Using MPI collectives:

= MPI_ BCAST

= MPI_REDUCE

Slide source: Bill Gropp, ANL

23

Midpoint Rule for =4 fo H#wgda:
b
[f(x)dx=(b-a)f(x,)

i

[P
"’=01+x2Ni=11 | (i—£.5)2

xample: PlinC -1

1
#include "mpi.h" T = f —dz
1]

#include <math.h>

1+ x2

#include <stdio.h>

int main(int argc, char *argv([])

{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;

MPI Init(&argc, &argv);

MPI Comm size (MPI_COMM WORLD, &numprocs) ;
MPI Comm rank (MPI_COMM WORLD, &myid) ;

while ('done) {
if (myid == 0) {
printf ("Enter the number of intervals: (0 quits) ") ;
scanf ("%d", &n) ;
}
MPI Bcast(&n, 1, MPI_INT, 0, MPI_COMM WORLD) ;
if (n == 0) break;

Input and broadcast parameters

Slide source: Bill Gropp, ANL

25

xample: PlinC -2

h =1.0/ (double) n; Compute local pi valugs
sum = 0.0;
for (1 = myid + 1; 1 <= n; i += numprocs) {

x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);
}

mypi = h * sum;

PI Reduce (&mypi, &pi, 1, MPI DOUBLE, MPI SUM, O,
MPI_COMM WORLD); Compute summation
if (myid == 0)
printf ("pi is approximately %.16f, Error is .16f\n",
pi, fabs(pi - PI25DT));

}
MPI Finalize();

return O;
Slide source: Bill Gropp, ANL 26

’ Collective vs. Point-to-Point Communications

« All the processes in the communicator must call the
same collective function.

= Will this program work?

if(my_rank==0) MPI| Reduce(&a,&b,1, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Recv(&a, MPI_INT, MPI_SUM,0,0,
MPI_COMM_WORLD);

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Collective vs. Point-to-Point Communications

« All the processes in the communicator must call the
same collective function.

= For example, a program that attempts to match a call
to MPIl Reduce on one process with a call to
MP| Recv on another process is erroneous, and, in all
likelihood, the program will hang or crash.

if(my_rank==0) MPI| Reduce(&a,&b,1, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Recv(&a, MPI_INT, MPI_SUM,0,0,
MPI_COMM_WORLD);

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Collective vs. Point-to-Point Communications

« The arguments passed by each process to an MPI
collective communication must be “compatible.”

= Will this program work?

if(my_rank==0) MPI_Reduce(&a,&b,1, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

else MP| Reduce(&a,&b,1, MPI_INT, MPI_SUM, 1,
MPI_COMM_WORLD);

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Collective vs. Point-to-Point Communications

« The arguments passed by each process to an MPI
collective communication must be “compatible.”

= For example, if one process passes in 0 as the
dest process and another passes in 1, then the
outcome of a call to MP| Reduce is erroneous, and,
once again, the program is likely to hang or crash.

iftmy_rank==0) MPI_Reduce(&a,&b,1, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

else MP| Reduce(&a,&b,1, MPI_INT, MPI_SUM, 1,
MPI_COMM_WORLD);

Copyright © 2010, Elsevier
Inc. All rights Reserved

Example of MPl _Reduce execution

Time || Process 0 Process | Process 2
0 a=1; c =2 a=1; ¢c =2 a=1;, c=2
| MPI_ Reduce(&a, &b, ...) | MPI_Reduce(&c, &d, ...) | MPI_Reduce(&a, &b, ...
2 MPI_Reduce(&c, &d, ...) | MPI_Reduce(&a, &b, ...) | MPI_Reduce(&c, &d, ...

Multiple calls to MPI Reduce with MPI_ SUM and Proc 0
as destination (root)

Is b=3 on Proc 0 after two MPI Reduce() calls?
Is d=6 on Proc 0?

int MPI Reduce(
void *
void *
int
MPI_Datatype
MPI_Op
int
MPI_ Comm

inpu
outp
coun
data
oper
dest
comm

t_data_p
ut_data_p
t

type

ator
_process

IR TR T T

in

*/

out =/ .

in
in
in
in
in

*/
*/
*/
*/
#/).

Example: Output results

 However, the names of the memory locations are
irrelevant to the matching of the calls to MPI Reduce.

* The order of the calls will determine the matching so
the value stored in b will be 1+2+1 = 4, and the value

stored in d will be 2+1+2 = 5.

Time || Process 0 / Process | Process 2
0 a=1;, c =2 / a=1; ¢c=2 a=1 c=2
| MPI_ Reduce (&a, &b,‘(/. ..) | MPI_Reduce(&c, &d, ... MPI_Reduce(&a, &b, ...
2 MPI_Reduce (&c, &d,’ ...) | MPI_Reduce (&a, &b, ... MPI_Reduce (&c, &d, ...

Parallel Matrix Vector Multiplication

Collective Communication Application
Textbook p. 113-116

Matrix-vector multiplication: y= A * x

(12 3) (1) [1x1+2+2+3%3\ [14)
4 5 6 | x| 2 | =] 4x1+5%x2+6%3 =1 32

\7 8 9) \3) \7+148%24+9%3/) \50)

Problem: y = A x x where A is a n X n matrix

and z is a column vector of dimension n.

Sequential code:

for:=1to n do
yi = 0;
for j =1 tondo
Yi = Yi + Q45 % Tj;
endfor

endfor

Partitioning and Task graph for matrix-vector

-‘mtitiplication

Partitioned code:

for 2 =1 to n do
Si: Yy =0;

for 7 =1 to n do

Yi = Y;i + Q5 * Tj;

endfor

endfor

S; : Read row A; and vector z.
. yi: ROW Ai * X
Write element y;

Task graph:

® & O ®

Execution Schedule and Task Mapping

S; : Read row A; and vector z.
. yi: ROW Ai * X
Write element y;

Task graph:

® & O ®

Schedule:
0 1 p—1

S1 |Sr+1
S2 |Sr+

Sr S2r Sn

Mapping function of tasks S;:

proccmap(i) = | =+] where r = [2].

Data Partitioning and Mapping for y= A*x

Data partitioning: for the above schedule:

Matrix A is divided into n rows A, Ao, --- A,,.

Local space

proc 0

proc 1

WN=0O wNh=0o

Data mapping:

Row A; is mapped to processor proc_map(i), the
same as task ¢. The indexing function is:
local(i) = (i — 1) mod r. Vectors x and y are

replicated to all processors.

' SPMD Code for y= A*x

Schedule:

0 1 p-1
S1 |Sr+1
S2 |Sr+
int x[n|, y[n], a[r|[n];
me—= mynode ()] Sr S2r l

for 2 =1 ton do

if proc_map(i) == me, then do S;:
Sit yli] = 0;
for 7 =1 ton do
yli] = yli] + allocal(2)][] * =[5];

endfor

endfor

' Evaluation: Parallel Time

*[gnore the cost of local address
calculation.

*Each task performs » additions and n
multiplications.

*Each addition/multiplication costs ®

*The parallel time is approximately " o

P

How is initial data distributed?

Assume initially matrix A and vector x are distributed
evenly among processes

A x

Proc 0

Proc 1

Proc 2

Proc 3

Need to redistribute vector x to everybody in order to perform
parallel computation!
What MPI collective communication is needed?

' Communication Pattern for Data Redistribution

Data requirement for

Process O

Data requirement for
all processes

Proc 0

Proc 1

Proc 2

Proc 3

Proc 0

Proc 1

Proc 2

Proc 3

MPI Gather

MPI_Allgather

MPI Code for Gathering Data

Data gather for float local_x[]; /*local storage for x*/
Process 0 float global_x[]; /*storage for all of xx*/

MPI_Gather(local_x, n/p, MPI_FLOAT,
global_x, n/p, MPI_FLOAT,
O, MPI_COMM_WORLD) ;

Repeat for all processes
It is the same as:

MPI_All_gather(local_x, n/p, MPI_FLOAT,
global_x, n/p, MPI_FLOAT,
MPI_COMM_WORLD) ;

Allgather

Allgather

 Concatenates the contents of each process’
send_ buf p and stores this in each process’
recv_buf p.

« As usual, recv_count is the amount of data being
received from each process.

int MPI_Allgather (

void = send_buf_p /% in =/,

int send_count /% in x/,
MPI_Datatype send_type /# 0In =/,
void = recv_buf_p /x out */,
int recv_count /% in %/,
MPI_Datatype recv_type /[in x/,
MPI_ Comm comm /% 0in */);

Copyright © 2010, Elsevier
Inc. All rights Reserved

MPI SPMD Code for y=A*x

void Parallel_matrix_vector_prod(A
LOCAL_MATRIX_T 1local_A Proc 0 _
int m Proc 1
int n Proc 2
float local_xI[] e
float global _x[]
float local_y[]
int local_m)
int local_n) {

/* local_m = n/p, local_n = n/p */

MPI_Allgather(local_x, local_n, MPI_FLOAT
global_x, local_n, MPI_FLOAT,
MPI_COMM_WORLD) ;

MPI SPMD Code for y=A*x

for (i = 0; i < local_m; i++) {
local_y[i] = 0.0;
for (j = 0; j < nj; j++)
local_y[i] = local_y[i] +
local_A[i] [jl*global_x[j];

} . :

Proc 1

Proc 2

Proc 3

Performance Evaluation of
Matrix Vector Multiplication

Copyright © 2010, Elsevier
Inc. All rights Reserved

How to measure elapsed parallel time

 Use MPI_Wtime() that returns the number of seconds
that have elapsed since some time in the past.

double MPI Wtime(void);: —

double start. finish:

start = MPI Wtime ():
/+ Code to be timed =/

finish = MPI Wtime ():
printf("Proc %d > Elapsed time = %e seconds\n"
my_rank, finish—start);

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Measure elapsed sequential time in Linux g

* This code works for Linux without using MPI functions

 Use GET_TIME() which returns time in microseconds
elapsed from some point in the past.

« Sample code for GET_TIME()
#include <sys/time.h>

/* The argument now should be a double (not a pointer to a
double) */

#define GET_TIME(now) {
struct timeval t;
gettimeofday(&t, NULL);
now = t.tv_sec + t.tv_usec/1000000.0;

Measure elapsed sequential time

#include "timer.h"
double start. finish:

GET TIME(start):

/+ Code to be timed +/

GET_TIME(finish);
printf("Elapsed time =

2e seconds\n".,

finish—start):

Copyright © 2010, Elsevier
Inc. All rights Reserved

Use MPI_Barrier() before time measurement

Start timing until every process in the communicator has
reached the same time stamp

double local_start, local_finish, local_elapsed, elapsed;

MPI Barrier(comm);
local start = MPI Wtime (
/+« Code to be timed +/

local finish = MPI Wtime():

local_elapsed = local_finish — local_start;

MPI_Reduce(&local_elapsed., &elapsed. 1, MPI_DOUBLE,
MPI MAX, 0O, comm);

if (my_rank == 0)
printf("Elapsed time = %e seconds\n", elapsed);:

’ Run-times of serial and parallel matrix-vector
multiplication

Order of Matrix
comm_sz || 1024 | 2048 | 4096 | 8192 | 16,384
I 411 16.0 | 640 | 270 1100
2 2.3 85| 33.0| 140 560
4 2.0 5.1 | 18.0 70 280
8 1.7 3.3 0.8 36 140
16 1.7 2.6 5.9 19 71

(Seconds)

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Speedup and Efficiency

S(n’ p) — Tseria] (")
Tparallel (n,p)
S, p) Tserial (")

E(n,p)= =
P p Tparallel(” .P)

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Speedups of Parallel Matrix-Vector
Multiplication

Order of Matrix
comm_sz || 1024 | 2048 | 4006 | 8192 | 16.384
I 1.0 1.0 1.0 1.0 1.0
2 [.8 1.9 1.9 1.9 2.0
4 2.1 3.1 3.6 3.9 3.9
8 2.4 4.8 6.5 7.5 7.9
16 2.4 6.2 10.8 | 14.2 15.5

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Efficiencies of Parallel Matrix-Vector
Multiplication

Order of Matrix
comm_sz || 1024 | 2048 | 4096 | 8192 | 16.384
| 1.0 [1.00 | 1.00 | 1.00 1.00

0.89 | 094 | 097 | 0.96 0.98
0.51 | 0.78 | 0.89 | 0.96 0.98
0.30 | 0.61 | 0.82 | 0.94 0.98
0.15| 039 | 0.68 | 0.89 0.97

0| = 2

o))

Copyright © 2010, Elsevier
Inc. All rights Reserved

Scalability

A program is scalable if the problem size can be
iIncreased at a rate so that the efficiency doesn’t
decrease as the number of processes increase.

Programs that can maintain a constant efficiency
without increasing the problem size are sometimes
said to be strongly scalable.

Programs that can maintain a constant efficiency if the
problem size increases at the same rate as the number

of processes are sometimes said to be weakly
scalable.

Copyright © 2010, Elsevier
Inc. All rights Reserved

.

Safety Issues in MPI programs

Safety in MPI programs

« Is it a safe program? (Assume tag/process ID is
assigned properly)

Process 0 Process 1

Send (1) Send (0)

Recv (1) Recv (0)
MPI_Send(msg, size, MPI_INT, (my_rank+1) % comm_sz, 0, comm);:
MPI_Recv(new_msg, size, MPI_INT, (my_rank+comm_sz—1) % comm_sz,

0O, comm, MP I_STATUS_IGNORE).

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Safety in MPI programs

« Is it a safe program? (Assume tag/process ID is
assigned properly)

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

 May be unsafe because MPI standard allows
MPI_Send to behave in two different ways:

= it can simply copy the message into an MPI
managed buffer and return,

= or it can block until the matching call to MPIl_Recv
starts.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Buffer a message implicitly during MPIl_Send()

When you send data, where d

Process O

User data

Local buffer

Process 1

the network

Local buffer

loes it go? One possibility is:

User data

Slide source: Bill Gropp, ANL

59

Avoiding Buffering

Avoiding copies uses less memory
 May use more time

Process O Process 1

User data

the network

User data

MPI Send() waits until a matching receive is
executed.

Slide source: Bill Gropp, ANL 60

' Safety in MPI programs

« Many implementations of MPI set a threshold at which
the system switches from buffering to blocking.

= Relatively small messages will be buffered by
MPI_Send.

= Larger messages, will cause it to block.

> If the MPI_Send() executed by each process blocks,
no process will be able to start executing a call to
MPI_Recv, and the program will hang or deadlock.

= Each process is blocked waiting for an event that will
never happen.

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Example of unsafe MPI code with
possible deadlocks

 Send a large message from process 0 to process
1

= |f there is insufficient storage at the destination, the
send must wait for the user to provide the memory
space (through a receive)

Process O Process 1

Send (1) Send (0)
Recv(l;::><:;Recv(O)
e This may be “unsafe” because it depends on

the availability of system buffers in which to
store the data sent until it can be received

Slide source: Bill Gropp, ANL 62

' Safety in MPI programs

« A program that relies on MPI provided buffering is
said to be unsafe.

« Such a program may run without problems for
various sets of input, but it may hang or crash with
other sets.

Copyright © 2010, Elsevier
Inc. All rights Reserved

How can we tell if a program is unsafe

Replace MPI_Send() with MPI_Ssend()

The extra “s” stands for synchronous and MPI_Ssend is
guaranteed to block until the matching receive starts.

If the new program does not hang/crash, the original
program is safe.

MPI_Send() and MPI_Ssend() have the same arguments

int MPI Ssend(

void msg_buf_p /% in x/,
int msg_size /% in /,
MPI_Datatype msg_type [In */,
int dest /% in */,
int tag /% in */,
MPI_ Comm communicator /% In x/);

Copyright © 2010, Elsevier
Inc. All rights Reserved

Some Solutions to the “unsafe” Problem

* Qrder the operations more carefully:

Process 0 Process 1
Send (1) Recv (0)
Recv (1) Send (0)

e Simultaneous send and receive 1n one call

Process O Process 1

Sendrecv (1) Sendrecv (0)

Slide source: Bill Gropp, ANL

65

Restructuring communication in odd-
— evensort

MPI_Send(msg, size, MPI_INT, (my_rank+1) % comm_sz, 0, comm);
MPI_Recv(new_msg, size, MPI_INT, (my_rank+comm_sz—1) % comm_sz,
O, comm, MPI_STATUS_IGNORE.

if (my_rank % 2 == 0) {
MPI_Send(msg, size, MPI_INT., (my_rank+1) % comm_sz, 0O, comm):
MPI_Recv(new_msg, size, MPI_INT, (my_rank+comm_sz—1) % comm_sz,
O, comm, MPI STATUS IGNORE.
} else |
MPI_Recv(new_msg, size, MPI_INT. (my_rank+comm_sz—1) % comm_sz,
O, comm, MPI_ STATUS_ IGNORE.
MPI_Send(msg, size, MPI_INT, (my_rank+1) % comm_sz, 0, comm);

Copyright © 2010, Elsevier
Inc. All rights Reserved

Use MPI_Sendrecv()

to conduct a blocking send and a receive in a
single call.

int MPI Sendrecv(

void #

int
MPI_Datatype
int

int

void

int
MPI_Datatype
int

int

MPI Comm
MPI_ Status

send_buf_p
send _buf size
send_buf_type
dest

send_tag

recv_buf_p
recv_buf size
recv_buf_type
source
recv_tag
communicator
status_p

/ #
/
/
/

/ *
/ *
/ #

/ #
/
/ *
/

in x/,
in x/,
in x/,
in x/,
in /.
out =/,
in */,
in %/,
in */,
in %/,
in %/,
in */):

Copyright © 2010, Elsevier

Inc. All rights Reserved

’ More Solutions to the “unsafe”
Problem

e Supply own space as buffer for send

Process 0 Process 1
Bsend (1) Bsend (0)
Recv (1) Recv (0)

e Use non-blocking operations:

Process O Process 1
Isend (1) Isend (0)
Irecv (1) Irecv (0)

Waitall Waitall

68

' Concluding Remarks (1)

« MPI works in C, C++, or Fortran.

A communicator is a collection of processes that
can send messages to each other.

« Many parallel programs use the SPMD approach.

* Most serial programs are deterministic: if we run the
same program with the same input we’'ll get the same
output.

= Parallel programs often don’t possess this property.

* Collective communications involve all the
processes in a communicator.

Copyright © 2010, Elsevier
Inc. All rights Reserved

' Concluding Remarks (2)

 Performance evaluation
= Use elapsed time or “wall clock time”.
= Speedup = sequential/parallel time
= Efficiency = Speedup/ p

= |f it's possible to increase the problem size (n) so
that the efficiency doesn’t decrease as p is
Increased, a parallel program is said to be scalable.

 An MPI program is unsafe if its correct behavior
depends on the fact that MPIl_Send is buffering its
input.

Copyright © 2010, Elsevier
Inc. All rights Reserved

