
Collective Communication in
MPI and Advanced Features

Pacheco’s book. Chapter 3

T. Yang, CS240A. Part of slides from the text book,
CS267 K. Yelick from UC Berkeley and B. Gropp,
ANL

Copyright © 2010, Elsevier
Inc. All rights Reserved

Outline

• Collective group communication
• Application examples

§ Pi computation
§ Summation of long vectors

• More applications
§ Matrix-vector multiplication

– performance evaluation

§ Parallel sorting
• Safety and other MPI issues.

C
hapter Subtitle

3

What MPI Functions are commonly used

• For simple applications, these are common:
§ Startup

– MPI_Init, MPI_Finalize

§ Information on the processes
– MPI_Comm_rank, MPI_Comm_size,

MPI_Get_processor_name

§ Point-to-point communication
– MPI_Irecv, MPI_Isend, MPI_Wait, MPI_Send, MPI_Recv

§ Collective communication
– MPI_Allreduce, MPI_Bcast, MPI_Allgather

• http://mpitutorial.com/mpi-broadcast-and-
collective-communication/

4

MPI Collective Communication

• Collective routines provide a higher-level way to
organize a parallel program
§ Each process executes the same communication

operations
§ Communication and computation is coordinated

among a group of processes in a communicator
§ Tags are not used
§ No non-blocking collective operations.

• Three classes of operations: synchronization, data
movement, collective computation.

5

Synchronization

• MPI_Barrier(comm)

• Blocks until all processes in the group of the
communicator comm call it.

• Not used often. Sometime
used in measuring
performance and
load balancing

6

Collective Data Movement: Broadcast,
Scatter, and Gather

A
A

A
A

Broadcast

A
B

D
C

B C D Scatter

Gather

A

A

P0
P1

P2

P3

P0
P1

P2

P3

Broadcast

• Data belonging to a single process is sent to all of
the processes in the communicator.

Copyright © 2010, Elsevier
Inc. All rights Reserved

8

Comments on Broadcast

• All collective operations must be called by all
processes in the communicator

• MPI_Bcast is called by both the sender (called the
root process) and the processes that are to receive
the broadcast
§ MPI_Bcast is not a “multi-send”
§ “root” argument is the rank of the sender; this tells

MPI which process originates the broadcast and
which receive

Copyright © 2010, Elsevier
Inc. All rights Reserved

Implementation View: A tree-structured
broadcast of a number 6 from Process 0

A version of Get_input that uses MPI_Bcast
in the trapezoidal program

Copyright © 2010, Elsevier
Inc. All rights Reserved

11

Collective Data Movement: Allgather and
AlltoAll

A
B

D
C

A B C D
A B C D

A B C D
A B C D

Allgather

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

12

Collective Computation: Reduce vs. Scan

P0

P1

P2

P3

P0

P1

P2

P3

A
B

D
C

A
B

D
C

R(ABCD)

R(A)
R(AB)

R(ABC)
R(ABCD)

Reduce

Scan

MPI_Reduce

Predefined reduction operators in MPI

Copyright © 2010, Elsevier
Inc. All rights Reserved

Implementation View of Global Reduction
using a tree-structured sum

Copyright © 2010, Elsevier
Inc. All rights Reserved

Implementation view: Tree-structured
global reduction with sum operator

1. In the first phase:
(a) Process 1 sends to 0, 3 sends to 2, 5 sends to 4, and
7 sends to 6.
(b) Processes 0, 2, 4, and 6 add in the received values.
(c) Processes 2 and 6 send their new values to
processes 0 and 4, respectively.
(d) Processes 0 and 4 add the received values into their
new values.

2. (a) Process 4 sends its newest value to process 0.
(b) Process 0 adds the received value to its newest
value.

Copyright © 2010, Elsevier
Inc. All rights Reserved

An alternative tree-structured global sum

Copyright © 2010, Elsevier
Inc. All rights Reserved

MPI Scan

MPI_Scan(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);

MPI_Allreduce

• Useful in a situation in which all of the processes
need the result of a global sum in order to complete
some larger computation.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Copyright © 2010, Elsevier
Inc. All rights Reserved

A global sum followed
by distribution of the
result.

Copyright © 2010, Elsevier
Inc. All rights Reserved

A butterfly-structured global sum.

22

MPI Collective Routines: Summary

• Many Routines: Allgather, Allgatherv,
Allreduce, Alltoall, Alltoallv, Bcast,
Gather, Gatherv, Reduce, Reduce_scatter,
Scan, Scatter, Scatterv

• All versions deliver results to all participating
processes.

• V versions allow the hunks to have variable sizes.
• Allreduce, Reduce, Reduce_scatter, and Scan

take both built-in and user-defined combiner
functions.

• MPI-2 adds Alltoallw, Exscan,
intercommunicator versions of most routines

23

Example of MPI PI program using 6
Functions

• Using basic MPI functions:
§ MPI_INIT

§ MPI_FINALIZE

§ MPI_COMM_SIZE

§ MPI_COMM_RANK

• Using MPI collectives:
§ MPI_BCAST

§ MPI_REDUCE

Slide source: Bill Gropp, ANL

)(f
24
)ab()

2
ba(f)ab(

)x(f)ab(dx)x(f
3

m

b

a

h¢¢-
+

+
-=

-»ò

Midpoint Rule for

a b x

f(x)

xm

25

Example: PI in C - 1

#include "mpi.h"
#include <math.h>

#include <stdio.h>
int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done) {
if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");
scanf("%d",&n);

}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n == 0) break;

Slide source: Bill Gropp, ANL

Input and broadcast parameters

26

Example: PI in C - 2

h = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {
x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}
mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);

if (myid == 0)
printf("pi is approximately %.16f, Error is .16f\n",

pi, fabs(pi - PI25DT));
}
MPI_Finalize();
return 0;

} Slide source: Bill Gropp, ANL

Compute local pi values

Compute summation

Collective vs. Point-to-Point Communications

• All the processes in the communicator must call the
same collective function.
§ Will this program work?

if(my_rank==0) MPI_Reduce(&a,&b,1, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Recv(&a, MPI_INT, MPI_SUM,0,0,
MPI_COMM_WORLD);

Copyright © 2010, Elsevier
Inc. All rights Reserved

Collective vs. Point-to-Point Communications

• All the processes in the communicator must call the
same collective function.
§ For example, a program that attempts to match a call

to MPI_Reduce on one process with a call to
MPI_Recv on another process is erroneous, and, in all
likelihood, the program will hang or crash.

if(my_rank==0) MPI_Reduce(&a,&b,1, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Recv(&a, MPI_INT, MPI_SUM,0,0,
MPI_COMM_WORLD);

Copyright © 2010, Elsevier
Inc. All rights Reserved

Collective vs. Point-to-Point Communications

• The arguments passed by each process to an MPI
collective communication must be “compatible.”
§ Will this program work?

if(my_rank==0) MPI_Reduce(&a,&b,1, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Reduce(&a,&b,1, MPI_INT, MPI_SUM, 1,
MPI_COMM_WORLD);

Copyright © 2010, Elsevier
Inc. All rights Reserved

Collective vs. Point-to-Point Communications

• The arguments passed by each process to an MPI
collective communication must be “compatible.”
§ For example, if one process passes in 0 as the

dest_process and another passes in 1, then the
outcome of a call to MPI_Reduce is erroneous, and,
once again, the program is likely to hang or crash.

if(my_rank==0) MPI_Reduce(&a,&b,1, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Reduce(&a,&b,1, MPI_INT, MPI_SUM, 1,
MPI_COMM_WORLD);

Copyright © 2010, Elsevier
Inc. All rights Reserved

Example of MPI_Reduce execution

Copyright © 2010, Elsevier
Inc. All rights Reserved

Multiple calls to MPI_Reduce with MPI_SUM and Proc 0
as destination (root)

Is b=3 on Proc 0 after two MPI_Reduce() calls?
Is d=6 on Proc 0?

Example: Output results

• However, the names of the memory locations are
irrelevant to the matching of the calls to MPI_Reduce.

• The order of the calls will determine the matching so
the value stored in b will be 1+2+1 = 4, and the value
stored in d will be 2+1+2 = 5.

Parallel Matrix Vector Multiplication

Collective Communication Application
Textbook p. 113-116

Matrix-vector multiplication: y= A * x

Partitioning and Task graph for matrix-vector
multiplication

yi= Row Ai * x

Execution Schedule and Task Mapping

yi= Row Ai
* x

Data Partitioning and Mapping for y= A*x

SPMD Code for y= A*x

Evaluation: Parallel Time

•Ignore the cost of local address
calculation.

•Each task performs n additions and n
multiplications.

•Each addition/multiplication costs ω

•The parallel time is approximately

How is initial data distributed?

Assume initially matrix A and vector x are distributed
evenly among processes

Need to redistribute vector x to everybody in order to perform
parallel computation!
What MPI collective communication is needed?

Communication Pattern for Data Redistribution

Data requirement for
Process 0

Data requirement for
all processes

MPI_Gather

MPI_Allgather

MPI Code for Gathering Data

Data gather for
Process 0

Repeat for all processes

Allgather

• Concatenates the contents of each process’
send_buf_p and stores this in each process’
recv_buf_p.

• As usual, recv_count is the amount of data being
received from each process.

Copyright © 2010, Elsevier
Inc. All rights Reserved

A
B

D
C

A B C D
A B C D

A B C D
A B C D

Allgather

MPI SPMD Code for y=A*x

MPI SPMD Code for y=A*x

Performance Evaluation of
Matrix Vector Multiplication

Copyright © 2010, Elsevier
Inc. All rights Reserved

How to measure elapsed parallel time

• Use MPI_Wtime() that returns the number of seconds
that have elapsed since some time in the past.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Measure elapsed sequential time in Linux

• This code works for Linux without using MPI functions
• Use GET_TIME() which returns time in microseconds

elapsed from some point in the past.

• Sample code for GET_TIME()
#include <sys/time.h>

/* The argument now should be a double (not a pointer to a
double) */

#define GET_TIME(now) {
struct timeval t;
gettimeofday(&t, NULL);
now = t.tv_sec + t.tv_usec/1000000.0;

}

Measure elapsed sequential time

Copyright © 2010, Elsevier
Inc. All rights Reserved

Use MPI_Barrier() before time measurement
Start timing until every process in the communicator has
reached the same time stamp

Run-times of serial and parallel matrix-vector
multiplication

Copyright © 2010, Elsevier
Inc. All rights Reserved

(Seconds)

Speedup and Efficiency

Copyright © 2010, Elsevier
Inc. All rights Reserved

Speedups of Parallel Matrix-Vector
Multiplication

Copyright © 2010, Elsevier
Inc. All rights Reserved

Efficiencies of Parallel Matrix-Vector
Multiplication

Copyright © 2010, Elsevier
Inc. All rights Reserved

Scalability

• A program is scalable if the problem size can be
increased at a rate so that the efficiency doesn’t
decrease as the number of processes increase.

• Programs that can maintain a constant efficiency
without increasing the problem size are sometimes
said to be strongly scalable.

• Programs that can maintain a constant efficiency if the
problem size increases at the same rate as the number
of processes are sometimes said to be weakly
scalable.

• Copyright © 2010, Elsevier
Inc. All rights Reserved

Safety Issues in MPI programs

Safety in MPI programs

• Is it a safe program? (Assume tag/process ID is
assigned properly)

Copyright © 2010, Elsevier
Inc. All rights Reserved

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

)

Safety in MPI programs

• Is it a safe program? (Assume tag/process ID is
assigned properly)

• May be unsafe because MPI standard allows
MPI_Send to behave in two different ways:
§ it can simply copy the message into an MPI

managed buffer and return,
§ or it can block until the matching call to MPI_Recv

starts.
Copyright © 2010, Elsevier

Inc. All rights Reserved

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

59

Buffer a message implicitly during MPI_Send()

• When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Slide source: Bill Gropp, ANL

60

Avoiding Buffering

• Avoiding copies uses less memory
• May use more time

MPI_Send() waits until a matching receive is
executed.

Process 0 Process 1

User data

User data

the network

Slide source: Bill Gropp, ANL

Safety in MPI programs

• Many implementations of MPI set a threshold at which
the system switches from buffering to blocking.
§ Relatively small messages will be buffered by

MPI_Send.
§ Larger messages, will cause it to block.

Copyright © 2010, Elsevier
Inc. All rights Reserved

• If the MPI_Send() executed by each process blocks,
no process will be able to start executing a call to
MPI_Recv, and the program will hang or deadlock.

§ Each process is blocked waiting for an event that will
never happen.

62

• Send a large message from process 0 to process
1
§ If there is insufficient storage at the destination, the

send must wait for the user to provide the memory
space (through a receive)

Example of unsafe MPI code with
possible deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

• This may be “unsafe” because it depends on
the availability of system buffers in which to
store the data sent until it can be received

Slide source: Bill Gropp, ANL

Safety in MPI programs

• A program that relies on MPI provided buffering is
said to be unsafe.

• Such a program may run without problems for
various sets of input, but it may hang or crash with
other sets.

Copyright © 2010, Elsevier
Inc. All rights Reserved

How can we tell if a program is unsafe

• Replace MPI_Send() with MPI_Ssend()
• The extra “s” stands for synchronous and MPI_Ssend is

guaranteed to block until the matching receive starts.
• If the new program does not hang/crash, the original

program is safe.
• MPI_Send() and MPI_Ssend() have the same arguments

Copyright © 2010, Elsevier
Inc. All rights Reserved

65

Some Solutions to the “unsafe” Problem

• Order the operations more carefully:

• Simultaneous send and receive in one call

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

Slide source: Bill Gropp, ANL

Restructuring communication in odd-
even sort

Copyright © 2010, Elsevier
Inc. All rights Reserved

Use MPI_Sendrecv()
to conduct a blocking send and a receive in a
single call.

Copyright © 2010, Elsevier
Inc. All rights Reserved

68

More Solutions to the “unsafe”
Problem

• Supply own space as buffer for send

• Use non-blocking operations:

Process 0

Bsend(1)
Recv(1)

Process 1

Bsend(0)
Recv(0)

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

Concluding Remarks (1)

• MPI works in C, C++, or Fortran.
• A communicator is a collection of processes that

can send messages to each other.
• Many parallel programs use the SPMD approach.
• Most serial programs are deterministic: if we run the

same program with the same input we’ll get the same
output.
§ Parallel programs often don’t possess this property.

• Collective communications involve all the
processes in a communicator.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Concluding Remarks (2)

• Performance evaluation
§ Use elapsed time or “wall clock time”.
§ Speedup = sequential/parallel time
§ Efficiency = Speedup/ p
§ If it’s possible to increase the problem size (n) so

that the efficiency doesn’t decrease as p is
increased, a parallel program is said to be scalable.

• An MPI program is unsafe if its correct behavior
depends on the fact that MPI_Send is buffering its
input.

Copyright © 2010, Elsevier
Inc. All rights Reserved

