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Outline

• Collective group communication
• Application examples

§ Pi computation
§ Summation of long vectors

• More applications
§ Matrix-vector multiplication

– performance evaluation

§ Parallel sorting
• Safety and other MPI issues.
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What MPI Functions are  commonly used

• For simple applications, these are common:
§ Startup

– MPI_Init, MPI_Finalize

§ Information on the processes 
– MPI_Comm_rank, MPI_Comm_size, 

MPI_Get_processor_name

§ Point-to-point communication
– MPI_Irecv, MPI_Isend, MPI_Wait, MPI_Send, MPI_Recv

§ Collective communication
– MPI_Allreduce, MPI_Bcast, MPI_Allgather

• http://mpitutorial.com/mpi-broadcast-and-
collective-communication/
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MPI Collective Communication

• Collective routines provide a higher-level way to 
organize a parallel program
§ Each process executes the same communication 

operations
§ Communication and computation is coordinated 

among a group of processes in a communicator
§ Tags are not used
§ No non-blocking collective operations.

• Three classes of operations: synchronization, data 
movement, collective computation.
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Synchronization

• MPI_Barrier( comm )

• Blocks until all processes in the group of the 
communicator comm call it.

• Not used often. Sometime 
used in measuring
performance and
load balancing
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Collective Data Movement: Broadcast, 
Scatter, and Gather
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Broadcast

• Data belonging to a single process is sent to all of 
the processes in the communicator.

Copyright © 2010, Elsevier 
Inc. All rights Reserved



8

Comments on Broadcast

• All collective operations must be called by all
processes in the communicator

• MPI_Bcast is called by both the sender (called the 
root process) and the processes that are to receive 
the broadcast
§ MPI_Bcast is not a “multi-send”
§ “root” argument is the rank of the sender; this tells 

MPI which process originates the broadcast and 
which receive
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Implementation View: A tree-structured 
broadcast of a number 6 from Process 0



A version of Get_input that uses MPI_Bcast
in the trapezoidal program
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Collective Data Movement: Allgather and 
AlltoAll
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Collective Computation: Reduce vs. Scan
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MPI_Reduce



Predefined reduction operators in MPI
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Implementation View of Global Reduction 
using  a tree-structured sum

Copyright © 2010, Elsevier 
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Implementation view: Tree-structured 
global reduction with sum operator

1. In the first phase: 
(a) Process 1 sends to 0, 3 sends to 2, 5 sends to 4, and 
7 sends to 6. 
(b) Processes 0, 2, 4, and 6 add in the received values. 
(c) Processes 2 and 6 send their new values to 
processes 0 and 4, respectively.
(d) Processes 0 and 4 add the received values into their 
new values.

2. (a) Process 4 sends its newest value to process 0.
(b) Process 0 adds the received value to its newest 
value.

Copyright © 2010, Elsevier 
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An alternative tree-structured global sum
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MPI Scan

MPI_Scan( void *sendbuf, void *recvbuf,  int count, 
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm );



MPI_Allreduce

• Useful in a situation in which all of the processes 
need the result of a global sum in order to complete 
some larger computation.

Copyright © 2010, Elsevier 
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A global sum followed
by distribution of the
result.
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A butterfly-structured global sum.
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MPI Collective Routines: Summary

• Many Routines:  Allgather, Allgatherv, 
Allreduce, Alltoall, Alltoallv, Bcast, 
Gather, Gatherv, Reduce, Reduce_scatter, 
Scan, Scatter, Scatterv

• All versions deliver results to all participating 
processes.

• V versions allow the hunks to have variable sizes.
• Allreduce, Reduce, Reduce_scatter, and Scan

take both built-in and user-defined combiner 
functions.

• MPI-2 adds Alltoallw, Exscan, 
intercommunicator versions of most routines
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Example of MPI PI program using 6 
Functions

• Using basic MPI  functions:
§ MPI_INIT

§ MPI_FINALIZE

§ MPI_COMM_SIZE

§ MPI_COMM_RANK

• Using  MPI collectives:
§ MPI_BCAST

§ MPI_REDUCE

Slide source: Bill Gropp, ANL



)(f
24
)ab()

2
ba(f)ab(

)x(f)ab(dx)x(f
3

m

b

a

h¢¢-
+

+
-=

-»ò

Midpoint Rule for 

a b x

f(x)

xm



25

Example:  PI in C - 1

#include "mpi.h"
#include <math.h>

#include <stdio.h>
int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done)  {
if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");
scanf("%d",&n);

}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n == 0) break;

Slide source: Bill Gropp, ANL

Input and broadcast parameters
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Example:  PI in C - 2

h   = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {
x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}
mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);

if (myid == 0)
printf("pi is approximately %.16f, Error is .16f\n",

pi, fabs(pi - PI25DT));
}
MPI_Finalize();
return 0;

} Slide source: Bill Gropp, ANL

Compute local pi values

Compute summation



Collective vs. Point-to-Point Communications

• All the processes in the communicator must call the 
same collective function. 
§ Will this program work?

if(my_rank==0)  MPI_Reduce(&a,&b,1, MPI_INT, 
MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Recv(&a, MPI_INT, MPI_SUM,0,0, 
MPI_COMM_WORLD);

Copyright © 2010, Elsevier 
Inc. All rights Reserved



Collective vs. Point-to-Point Communications

• All the processes in the communicator must call the 
same collective function. 
§ For example, a program that attempts to match a call 

to MPI_Reduce on one process with a call to 
MPI_Recv on another process is erroneous, and, in all 
likelihood, the program will hang or crash.

if(my_rank==0)  MPI_Reduce(&a,&b,1, MPI_INT, 
MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Recv(&a, MPI_INT, MPI_SUM,0,0, 
MPI_COMM_WORLD);

Copyright © 2010, Elsevier 
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Collective vs. Point-to-Point Communications

• The arguments passed by each process to an MPI 
collective communication must be “compatible.”
§ Will this program work?

if(my_rank==0)  MPI_Reduce(&a,&b,1, MPI_INT, 
MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Reduce(&a,&b,1, MPI_INT, MPI_SUM, 1, 
MPI_COMM_WORLD);

Copyright © 2010, Elsevier 
Inc. All rights Reserved



Collective vs. Point-to-Point Communications

• The arguments passed by each process to an MPI 
collective communication must be “compatible.”
§ For example, if one process passes in 0 as the 

dest_process and another passes in 1, then the 
outcome of a call to MPI_Reduce is erroneous, and, 
once again, the program is likely to hang or crash.

if(my_rank==0)  MPI_Reduce(&a,&b,1, MPI_INT, 
MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Reduce(&a,&b,1, MPI_INT, MPI_SUM, 1, 
MPI_COMM_WORLD);

Copyright © 2010, Elsevier 
Inc. All rights Reserved



Example  of MPI_Reduce execution

Copyright © 2010, Elsevier 
Inc. All rights Reserved

Multiple calls to MPI_Reduce with MPI_SUM and Proc 0 
as destination (root)

Is b=3  on Proc 0 after two MPI_Reduce() calls?
Is d=6 on Proc 0?



Example: Output results

• However, the names of the memory locations are 
irrelevant to the matching of the calls to MPI_Reduce. 

• The order of the calls will determine the matching so 
the value stored in b will be 1+2+1 = 4, and the value 
stored in d will be 2+1+2 = 5.



Parallel Matrix Vector Multiplication

Collective Communication Application
Textbook p. 113-116



Matrix-vector multiplication:  y= A * x



Partitioning and Task graph for matrix-vector 
multiplication

yi= Row Ai * x



Execution Schedule and Task Mapping

yi= Row Ai 
* x



Data Partitioning and Mapping for y= A*x



SPMD Code for y= A*x



Evaluation: Parallel Time

•Ignore the cost of local address 
calculation.

•Each task performs n additions and n
multiplications.

•Each addition/multiplication costs  ω

•The parallel time is approximately 



How is initial data distributed?

Assume initially matrix A and vector  x are distributed 
evenly among processes

Need to redistribute vector x to everybody in order to perform 
parallel computation!
What MPI collective communication is needed?



Communication Pattern for Data Redistribution

Data requirement for 
Process 0

Data requirement for
all processes

MPI_Gather

MPI_Allgather



MPI Code for Gathering Data

Data gather for 
Process 0

Repeat for all processes



Allgather

• Concatenates the contents of each process’ 
send_buf_p and stores this in each process’ 
recv_buf_p. 

• As usual, recv_count is the amount of data being 
received from each process.

Copyright © 2010, Elsevier 
Inc. All rights Reserved
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MPI SPMD Code for y=A*x



MPI SPMD Code for y=A*x



Performance Evaluation of 
Matrix Vector Multiplication

Copyright © 2010, Elsevier 
Inc. All rights Reserved



How to measure elapsed parallel time

• Use MPI_Wtime() that returns the number of seconds 
that have elapsed since some time in the past.

Copyright © 2010, Elsevier 
Inc. All rights Reserved



Measure elapsed sequential time in Linux

• This code works for Linux without using MPI functions
• Use GET_TIME() which returns time in microseconds 

elapsed from some point in the past.

• Sample code for GET_TIME()
#include <sys/time.h>

/* The argument now should be a double (not a pointer to a 
double) */

#define GET_TIME(now) { 
struct timeval t; 
gettimeofday(&t, NULL); 
now = t.tv_sec + t.tv_usec/1000000.0; 

}



Measure elapsed sequential time

Copyright © 2010, Elsevier 
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Use MPI_Barrier()  before time measurement 
Start timing until every process in the communicator has 
reached the same time stamp



Run-times of serial and parallel matrix-vector 
multiplication

Copyright © 2010, Elsevier 
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(Seconds)



Speedup  and Efficiency
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Speedups of Parallel Matrix-Vector 
Multiplication
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Efficiencies of Parallel Matrix-Vector 
Multiplication
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Scalability

• A program is scalable if the problem size can be 
increased at a rate so that the efficiency doesn’t 
decrease as the number of processes increase.

• Programs that can maintain a constant efficiency 
without increasing the problem size are sometimes 
said to be strongly scalable.

• Programs that can maintain a constant efficiency if the 
problem size increases at the same rate as the number 
of processes are sometimes said to be weakly 
scalable.

• Copyright © 2010, Elsevier 
Inc. All rights Reserved



Safety Issues in MPI programs



Safety in MPI programs

• Is it a safe program? (Assume tag/process ID is 
assigned properly)

Copyright © 2010, Elsevier 
Inc. All rights Reserved

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

)



Safety in MPI programs

• Is it a safe program? (Assume tag/process ID is 
assigned properly)

• May be unsafe because MPI standard allows 
MPI_Send to behave in two different ways: 
§ it can simply copy the message into an MPI 

managed buffer and return, 
§ or it can block until the matching call to MPI_Recv 

starts.
Copyright © 2010, Elsevier 

Inc. All rights Reserved

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)
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Buffer a message implicitly during MPI_Send()

• When you send data, where does it go?  One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Slide source: Bill Gropp, ANL
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Avoiding Buffering

• Avoiding copies uses less memory
• May use more time

MPI_Send() waits until a matching receive is 
executed.

Process 0 Process 1

User data

User data

the network

Slide source: Bill Gropp, ANL



Safety in MPI programs

• Many implementations of MPI set a threshold at which 
the system switches from buffering to blocking. 
§ Relatively small messages will be buffered by 

MPI_Send.
§ Larger messages, will cause it to block.

Copyright © 2010, Elsevier 
Inc. All rights Reserved

• If the MPI_Send() executed by each process blocks, 
no process will be able to start executing a call to 
MPI_Recv, and the program will hang or deadlock.

§ Each process is blocked waiting for an event that will 
never happen.
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• Send a large message from process 0 to process 
1
§ If there is insufficient storage at the destination, the 

send must wait for the user to provide the memory 
space (through a receive)

Example  of unsafe MPI code with  
possible deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

• This may be “unsafe” because it depends on 
the availability of system buffers in which to 
store the data sent until it can be received 

Slide source: Bill Gropp, ANL



Safety in MPI programs

• A program that relies on MPI provided buffering is 
said to be unsafe. 

• Such a program may run without problems for 
various sets of input, but it may hang or crash with 
other sets.

Copyright © 2010, Elsevier 
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How can we tell if a program is unsafe 

• Replace MPI_Send() with  MPI_Ssend()
• The extra “s” stands for synchronous and MPI_Ssend is 

guaranteed to block until the matching receive starts.
• If the new program does not hang/crash, the original 

program is safe.
• MPI_Send() and MPI_Ssend() have the same arguments

Copyright © 2010, Elsevier 
Inc. All rights Reserved
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Some Solutions to the “unsafe” Problem

• Order the operations more carefully:

• Simultaneous send and receive in one call

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

Slide source: Bill Gropp, ANL



Restructuring communication in odd-
even sort

Copyright © 2010, Elsevier 
Inc. All rights Reserved



Use MPI_Sendrecv()
to conduct a blocking send and a receive in a 
single call. 

Copyright © 2010, Elsevier 
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More Solutions to the “unsafe” 
Problem

• Supply own space as buffer for send

• Use non-blocking operations:

Process 0

Bsend(1)
Recv(1)

Process 1

Bsend(0)
Recv(0)

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall



Concluding Remarks (1)

• MPI works in C, C++, or Fortran.
• A communicator is a collection of processes that 

can send messages to each other.
• Many parallel programs use the SPMD approach.
• Most serial programs are deterministic: if we run the 

same program with the same input we’ll get the same 
output. 
§ Parallel programs often don’t possess this property.

• Collective communications involve all the 
processes in a communicator.
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Concluding Remarks (2)

• Performance evaluation
§ Use elapsed time or “wall clock time”.
§ Speedup = sequential/parallel time
§ Efficiency = Speedup/ p 
§ If it’s possible to increase the problem size (n) so 

that the efficiency doesn’t decrease as p is 
increased, a parallel program is said to be scalable.

• An MPI program is unsafe if its correct behavior 
depends on the fact that MPI_Send is buffering its 
input.
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