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Roadmap

• Parallel architectures for high performance 
computing

• Shared memory architecture with cache 
coherence

• Performance evaluation
• Parallel program design
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Flynn’s Taxonomy
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SISD
Single instruction stream

Single data stream

(SIMD)
Single instruction stream

Multiple data stream

MISD
Multiple instruction stream

Single data stream

(MIMD)
Multiple instruction stream

Multiple data stream



SIMD

• Parallelism achieved by dividing data among the 
processors.
§ Applies the same instruction to multiple data items.
§ Called data parallelism.
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control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)
x[i] += y[i];

x[1] x[2] x[n]

n data items
n ALUs



SIMD drawbacks

• All ALUs are required to execute the same 
instruction, or remain idle.
§ In classic design, they must also operate 

synchronously.
§ The ALUs have no instruction storage.

• Efficient for large data parallel problems, but not 
flexible for more complex parallel problems.
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Vector Processors

• Operate on vectors (arrays) with vector 
instructions
§ conventional CPU’s operate on individual data 

elements or scalars.
• Vectorized and pipelined functional units.

§ Use  vector registers to store data
§ Example:

– A[1:10]=B[1:10] + C[1:10]
– Instruction execution

§ Read instruction and decode it 
§ Fetch these 10 A numbers and 10 B numbers 
§ Add them and save results.

Copyright © 2010, Elsevier 
Inc. All rights Reserved



Vector processors – Pros/Cons

• Pros
§ Fast. Easy to use.
§ Vectorizing compilers are good at identifying code to 

exploit.
– Compilers also can provide information about code that 

cannot be vectorized.
– Helps the programmer re-evaluate code.

§ High memory bandwidth. Use every item in a cache 
line.

• Cons
§ Don’t handle irregular  data structures well
§ Limited ability to handle larger problems (scalability)
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Graphics Processing Units (GPU)

• Computation for graphic applications is often parallel, 
since they can be applied to multiple elements in the 
graphics stream. 

• GPU’s can often optimize performance by using SIMD 
parallelism. 
§ The current generation of GPU’s use SIMD 

parallelism.
§ Although they are not pure SIMD systems.

• Key Market Players:  Intel, NVIDA, AMD
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MIMD

• Supports multiple simultaneous instruction streams 
operating on multiple data streams. 

• Typically consist of a collection of fully independent 
processing units or cores, each of which has its own 
control unit and its own ALU.

• Types of MIMD systems
§ Shared-memory systems

– Most  popular ones use multicore processors.
§ (multiple CPU’s or cores on a single chip)

§ Distributed-memory systems
– Computer clusters are the most popular
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Shared Memory System

• Each processor can access each memory 
location. 
§ The processors usually communicate implicitly by 

accessing shared data structures
§ Two designs: UMA (Uniform Memory Access) 

and NUMA (Non-uniform Memory Access)
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AMD 8-core CPU Bulldozer
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NUMA Multicore System
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Figure 2.6A memory location a core is directly 
connected to can be accessed faster 
than a memory location that must be 
accessed through another chip.



Distributed Memory System

• Clusters (most popular)
§ A collection of commodity systems.
§ Connected by a commodity interconnection network.
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Interconnection networks

• Affects performance of both distributed and shared 
memory systems.

• Two categories:
§ Shared memory interconnects
§ Distributed memory interconnects
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Shared memory interconnects: Bus

§ Parallel communication wires together with some 
hardware that controls access to the bus.

§ As the number of devices connected to the bus 
increases, contention for  shared bus use increases, 
and performance decreases.
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Shared memory interconnects: 
Switched Interconnect

§ Uses switches to control the routing of data among 
the connected devices.

§ Crossbar – Allows simultaneous communication 
among different devices.

– Faster than buses.  But higher cost.



Distributed memory interconnects

• Two groups
§ Direct interconnect 

– Each switch is directly connected to a processor memory 
pair, and the switches are connected to each other.

§ Indirect interconnect
– Switches may not be directly connected to a processor.
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Direct interconnect
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ring 2D torus (toroidal mesh)



Direct interconnect: 2D Mesh vs 2D Torus



How to measure network quality?

• Bandwidth 
§ The rate at which a link can transmit data.
§ Usually given in megabits or megabytes per second.

• Bisection width
§ A measure of “number of  simultaneous 

communications” between two subnetworks within a 
network

§ The minimum number of links that must be removed 
to partition the network into two equal halves

– 2 for a ring
§ Typically divide a network by a line or plane 

(bisection cut)
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Bisection width vs Bisection bandwidth

bisection 
cut

not a 
bisection
cut 

• Example of bisection width

• Bisection bandwidth
§ Sum bandwidth of links that cut the network into two 

equal halves.
§ Choose the minimum one.



More definitions on network performance

• Any time data is transmitted, we’re interested in how 
long it will take for the data to reach its destination.

• Latency
§ The time that elapses between the source’s beginning 

to transmit the data and the destination’s starting to 
receive the first byte.

• Startup cost The startup time required to handle a 
message at the sending and receiving nodes

• Bandwidth
§ The rate at which the destination receives data after it 

has started to receive the first byte.



Message transmission time = α + m β

latency (seconds)

1/bandwidth (bytes per second)

length of message (bytes)

Network transmission cost

Typical latency/startup cost:   Tens of microseconds ~ 1 millisecond
Typical bandwidth:    100 MB ~ 1GB per second



Fully connected network

• Each switch is directly connected to every other 
switch.
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Figure 2.11

bisection width = p2/4



Hypercube
• Built inductively:

§ A one-dimensional hypercube is a fully-connected system 
with two processors. 

§ A two-dimensional hypercube is built from two one-
dimensional hypercubes by joining “corresponding” switches. 

§ Similarly a three-dimensional hypercube is built from two two-
dimensional hypercubes.
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Commodity Computing Clusters

• Use already available computing 
components 

• Commodity servers, 
interconnection network,  & storage

• Less expensive while 
Upgradable with standardization

• Great computing power at low cost



Typical  network for a cluster

• 40 nodes/rack, 1000-4000 nodes in cluster
• 1 Gbps bandwidth in rack, 8 Gbps out of rack
• Node specs :

8-16 cores, 32 GB RAM, 8×1.5 TB disks

Aggregation switch

Rack switch



Layered Network in Clustered Machines

• A layered example from Cisco: core, 
aggregation,  the edge or top-of-rack switch.

• http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_3a.html



Hybrid Clusters with GPU

• A Maryland cluster couples CPUs, GPUs,
displays, and storage.

• Applications in visual and scientific computing

Node in a CPU/GPU cluster

host
GPU



Cloud Computing with Amazon EC2

• On-demand elastic computing
• Allocate a Linux or windows cluster only when you need.  

• Pay based on time usage of computing instance/storage
• Expandable or shrinkable



Usage Examples with Amazon EC2

• A 32-node, 64-GPU cluster with 8TB storage 
• Each node is a AWS computing instance extended 

with 2 Nvidia M2050 GPUs, 22 GB of memory, and 
a 10Gbps Ethernet interconnect.

• $82/hour to operate (based on Cycle 
Computing blog)
• Annual cost  in 2011: 82*8*52=$34,112. 

Cheaper today.
• Otherwise: ~$150+K to purchase + 

datacenter cost.



SHARED MEMORY 
ARCHITECTURE WITH CACHE 
COHERENCE
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Cache coherence

• Programmers have no 
control over caches 
and when they get updated.

• Hardware makes cache
updated cache coherently
• Snooping bus
• Directory-based



Shared Memory Architecture with Cache 
Coherence

• Memory is a performance bottleneck even with one processor
• Use caches to reduce bandwidth demands on main memory
• Each core has a local private cache holding data it has accessed 

recently
• Only cache misses have to access the shared common memory

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O
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Shared Memory and Caches

• What if? 
§ Processors 1 and 2 read Memory[1000] (value  20)

35

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

1000

20

1000 

1000 1000

20

0 1 2



Shared Memory and Caches

• Now:
§ Processor 0 writes Memory[1000] with 40

36

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

1000

1000 40

1000 40

Problem?



Keeping Multiple Caches Coherent

• Architect’s job: shared memory 
=> keep cache values coherent

• Idea: When any processor has cache miss or writes, 
notify other processors via interconnection network
§ If only reading, many processors can have copies
§ If a processor writes, invalidate any other copies

• Write transactions from one processor, other caches  
“snoop” the common interconnect checking for tags 
they hold
§ Invalidate any copies of same address modified in 

other cache

37



Shared Memory and Caches

• Example, now with cache coherence
§ Processors 1 and 2 read Memory[1000]
§ Processor 0 writes Memory[1000] with 40

38

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

Processor 0
Write
Invalidates
Other Copies

1000

1000 40

1000 40
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Snoopy Cache-Coherence Protocols

• Memory bus is a broadcast medium
• Caches contain information on which addresses they store
• Cache Controller “snoops” all transactions on the bus

§ A transaction is a relevant transaction if it involves a cache block currently 
contained in this cache

§ Take action to ensure coherence
– invalidate, update, or supply value

§ Many possible designs

• Not scalable for a large number of processors

State
Address
Data P0

$ $

Pn

Mem Mem
memory bus

memory op from Pn

bus snoop



Scalable Shared Memory: Directories

• Every memory block has associated directory information
§ keeps track of copies of cached blocks and their states
§ on a miss, find directory entry, look it up, and communicate only with the nodes that 

have copies if necessary
§ in scalable networks, communication with directory and copies is through network 

transactions

• Each Reader recorded in directory
• Processor asks permission of memory before writing:

§ Send invalidation to each cache with read-only copy
§ Wait for acknowledgements before returning permission for writes

•  k processors.  
•  With each cache-block in memory: 

k  presence-bits, 1 dirty-bit
•  With each cache-block in cache:    

1 valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

Slide source: John 
Kubiatowicz
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Directory Based Memory/Cache Coherence

• Keep Directory to keep track of which memory stores 
latest copy of data. Meta information:
§Valid/invalid. Dirty (inconsistent with memory). Shared

• When a processor executes a write operation to shared 
data, basic design choices are:
§With respect to memory:

–Write through cache: do the write in memory as well as cache
–Write back cache: wait and do the write later, when the item is 

flushed
§With respect to other cached copies

–Update: give all other processors the new value
–Invalidate: all other processors remove from cache
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Intuitive Memory Model
• Reading an address should return the last 

value written to that address
• Easy in uniprocessors

§ except for I/O
• Multiprocessor cache coherence problem is 

more pervasive and more performance 
critical

• More formally, this is called sequential 
consistency:
“A multiprocessor is sequentially consistent if the result 
of any execution is the same as if the operations of all 
the processors were executed in some sequential 
order, and the operations of each individual processor 
appear in this sequence in the order specified by its 
program.” [Lamport, 1979]



CS267 Lecture 643

Sequential Consistency Intuition
• Sequential consistency says the machine behaves 

as if it does the following

memory

P0 P1 P2 P3



LD1 A Þ 5
LD2 B Þ 7

LD5 B Þ 2
ST1 A,6

LD6 A Þ 6
ST4 B,21

LD3 A Þ 6

LD4 B Þ 21
LD7 A Þ 6
ST2 B,13

ST3 B,4

LD8 B Þ 4

Sequential Consistency Example

LD1 A Þ 5
LD2 B Þ 7
ST1 A,6

…

LD3 A Þ 6

LD4 B Þ 21
ST2 B,13
ST3 B,4

LD5 B Þ 2
…

LD6 A Þ 6
ST4 B,21

…

LD7 A Þ 6
…

LD8 B Þ 4

Processor 1 Processor 2 One Consistent Serial Order

Slide source: John 
Kubiatowicz

Combine
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Memory Consistency Semantics

What does this imply about program behavior?
• No process ever sees “garbage” values. Processors always 

see values written by some processor
• The value seen is constrained by program order on all 

processors
§ Time always moves forward

• Example: spin lock
§ P1 writes data=1, then writes flag=1
§ P2 waits until flag=1, then reads data

If P2 sees the new value of 
flag (=1), it must see the 
new value of data (=1)

initially:     flag=0
data=0

data = 1
flag = 1

While flag=0;
print  data

P1 P2

If P2 
reads flag

Then P2 may 
read data

0 1
0 0
1 1



Demmel/Yellick
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Cache Coherence and Sequential Consistency

• HW/SW features may break sequential consistency (SC):
§ The compiler reorders/removes code.
§ Write buffers (place to store writes while waiting to 

complete)
– Processors may reorder writes to merge addresses (not 

FIFO)
– Write X=1, Y=1, X=2 (second write to X may happen before 

Y’s)
§ Prefetch instructions cause read reordering (read 

data before flag)
§ The network reorders the two write messages. .

• Some commercial systems give up SC
§ A correct program on a SC processor may be 

incorrect on one that is not



False Sharing: Cache Coherency Tracked by 
Block

• Suppose block size is 32 bytes
• Suppose Processor 0 reading and writing variable X, 

Processor 1 reading and writing variable Y
• Suppose in X location 4000,  Y in 4012
• What will happen?

47

Processor 0 Processor 1

4000 4000 4004 4008 4012 4016 4028

Tag 32-Byte Data Block

Cache 0 Cache 1

Memory



False Sharing

• Block ping-pongs between two caches even though 
processors are accessing disjoint variables
§ Shared data is modified by multiple processors.
§ Multiple processors update data within the same cache line.
§ This updating occurs very frequently (for example, in a tight 

loop).
• Effect called false sharing 

§ Cause cache miss for every write, even they write to different 
locations.

• How can you prevent it?
§ Let parallel iterations write to different cache blocks (as much 

as possible)
– allocate data used by each processor contiguously, or at least avoid 

interleaving in memory
§ Make use of private data as much as possible

48



PERFORMANCE
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Speedup 

• Number of cores = p
• Serial run-time = Tserial

• Parallel run-time = Tparallel
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Tparallel = Tserial / p



Speedup of a parallel program

Tserial 

Tparallel
S = 

Perfect speedup

Actual speedup



Speedup Graph Interpretation
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• Linear speedup
•Speedup  proportionally increases as p increases

• Perfect linear speedup
•Speedup =p

• Superlinear speedup
•Speedup >p
•It is not possible in theory.
•It is possible in practice 

•Data in sequential code does not fit into memory.
•Parallel code divides data into many machines and 
they fit into memory.



Efficiency of a parallel program

E = 

Tserial 

TparallelSpeedup 

p 
= 

p 
= 

Tserial 

p  Tparallel.
Measure how well-utilized the processors are,  compared to effort  
wasted in  communication and synchronization.
Example:



Typical speedup and efficiency  of parallel code

Efficiency often goes down as more cores are used



Problem Size Impact on Speedup and Efficiency

Efficiency often increases when 
increasing problem size



Amdahl Law: Limitation of Parallel 
Performance
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• Unless virtually all of a serial program is parallelized, 
the possible speedup is going to be  limited —
regardless of the number of cores available.
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Finding Enough Parallelism

• Suppose only part of an application seems parallel
• Amdahl’s law

§ let x be the fraction of work done sequentially, so                                
(1-x) is fraction parallelizable

§ P = number of processors

Speedup(P) = Time(1)/Time(P)

<= 1/(x + (1-x)/P) 

<= 1/x

• Even if the parallel part speeds up perfectly           
performance is limited by the sequential part



Example of Amdahl’s Law

• Example:
• We can parallelize 90% of a serial program.
• Parallelization is “perfect” regardless of the number of 

cores p we use.
• Tserial = 20 seconds
• Runtime  of parallelizable part is 

• Runtime  of “unparallelizable” part is  

Overall parallel run-time is
•

0.9 x Tserial / p = 18 / p

0.1 x Tserial  = 2

Tparallel = 0.9 x Tserial / p + 0.1 x Tserial = 18 / p + 2



Example (cont.)

• Speed up

0.9 x Tserial / p + 0.1 x Tserial

Tserial
S = =

18 / p + 2

20

• S < 20/2 =10

6.45.7
4.7

2.5



How to measure sequential and parallel 
time?

• What time?
§ CPU time vs wall clock time

• A program segment of interest?
§ Setup startup time
§ Measure finish time
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Taking Timings for a Code Segment
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Example
function

MPI_Wtime()
in MPI

gettimeofday()
in Linux



Taking Timings

Copyright © 2010, Elsevier 
Inc. All rights Reserved



Measure parallel time with a barrier  
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Several possible performance models

• Execution time and parallelism: 
§ Work / Span Model with directed acyclic graph

• Detailed models that try to capture time for moving 
data:
§ Latency / Bandwidth Model    for message-passing
§ Disk IO

• Model computation with memory access (for 
hierarchical memory)

• Other detailed models we won’t discuss:  LogP, ….

§ From John Gibert’s 240A course



tp = execution time on p processors

Model Parallelism using a Directed 
Acyclic Graph



tp = execution time on p processors
t1 = work

Work / Span Model



tp = execution time on p processors

*Also called critical-path length
or computational depth.

t1 = total work t∞ = span *

Work / Span Model



tp = execution time on p processors
t1 = total work t∞ = span *

*Also called critical-path length
or computational depth.

WORK LAW
∙tp ≥t1/p

SPAN LAW
∙tp ≥ t∞

Work / Span Model



Potential Parallelism

Because the Span Law requires tp ≥ t∞, 
the maximum possible speedup is

t1/t∞ = (potential) parallelism

= the average 
amount of work 
per step along 
the span.

Note
t1/tP = speedup on p processors.



PARALLEL PROGRAM
DESIGN
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Foster’s methodology: 4-stage design

1. Partitioning: divide the computation to be performed 
and the data operated on by the computation into 
small tasks. 

The focus here should be on identifying tasks that can 
be executed in parallel.
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Data

Computation
Tasks



Foster’s methodology

2. Communication: 
§ Identify dependence among tasks 
§ Determine inter-task communication
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Foster’s methodology

3. Agglomeration or aggregation: combine tasks and 
communications identified in the first step into larger 
tasks. 
§ Reduce communication overhead àCoarse grain 

tasks
§ May reduce parallelism sometime
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Foster’s methodology

4. Mapping: assign the composite tasks identified in the 
previous step to processes/threads.

This should be done so that communication is 
minimized, and each process/thread gets roughly the 
same amount of work.
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Tasks Proc

Proc



Input and Output in Parallel Programs

• Two options for I/O
§ Option 1: 

– In distributed memory programs, only process 0 will access 
stdin. 

– In shared memory programs, only the master thread or 
thread 0 will access stdin.

§ Option 2: 
– all the processes/threads can access stdout and stderr.

• Because of the indeterminacy of the order of output to 
stdout, in most cases only a single process/thread will 
be used for all output to stdout other than debugging 
output.
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Input and Output: Practical Strategies

• Debug output should always include the rank or id of 
the process/thread that’s generating the output.

• Only a single process/thread will attempt to access any 
single file other than stdin, stdout, or stderr. So, for 
example, each process/thread can open its own, 
private file for reading or writing, but no two 
processes/threads will open the same file.

• fflush(stdout) may be necessary to ensure output is not 
delayed when order is important.
§ printf(“hello \n”); fflush(stdout);



Concluding Remarks (1)

• Parallel hardware
§ Shared memory and distributed memory 

architectures
§ Network topology for interconnect

• Parallel software
§ We focus on software for homogeneous MIMD 

systems, consisting of a single program that obtains 
parallelism by branching.

§ SPMD programs.
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Concluding Remarks (2)

• Input and Output
§ One process or thread can access stdin, and all 

processes can access stdout and stderr. 
– However, because of nondeterminism, except for debug 

output we’ll usually have a single process or thread 
accessing stdout.

• Performance
§ Speedup/Efficiency
§ Amdahl’s law
§ Scalability

• Parallel Program Design
§ Foster’s methodology
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