
Parallel Architecture, Software
And Performance

UCSB CS240A, T. Yang, 2017

Copyright © 2010, Elsevier
Inc. All rights Reserved

Roadmap

• Parallel architectures for high performance
computing

• Shared memory architecture with cache
coherence

• Performance evaluation
• Parallel program design

C
hapter Subtitle

Flynn’s Taxonomy

Copyright © 2010, Elsevier
Inc. All rights Reserved

SISD
Single instruction stream

Single data stream

(SIMD)
Single instruction stream

Multiple data stream

MISD
Multiple instruction stream

Single data stream

(MIMD)
Multiple instruction stream

Multiple data stream

SIMD

• Parallelism achieved by dividing data among the
processors.
§ Applies the same instruction to multiple data items.
§ Called data parallelism.

Copyright © 2010, Elsevier
Inc. All rights Reserved

control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)
x[i] += y[i];

x[1] x[2] x[n]

n data items
n ALUs

SIMD drawbacks

• All ALUs are required to execute the same
instruction, or remain idle.
§ In classic design, they must also operate

synchronously.
§ The ALUs have no instruction storage.

• Efficient for large data parallel problems, but not
flexible for more complex parallel problems.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Vector Processors

• Operate on vectors (arrays) with vector
instructions
§ conventional CPU’s operate on individual data

elements or scalars.
• Vectorized and pipelined functional units.

§ Use vector registers to store data
§ Example:

– A[1:10]=B[1:10] + C[1:10]
– Instruction execution

§ Read instruction and decode it
§ Fetch these 10 A numbers and 10 B numbers
§ Add them and save results.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Vector processors – Pros/Cons

• Pros
§ Fast. Easy to use.
§ Vectorizing compilers are good at identifying code to

exploit.
– Compilers also can provide information about code that

cannot be vectorized.
– Helps the programmer re-evaluate code.

§ High memory bandwidth. Use every item in a cache
line.

• Cons
§ Don’t handle irregular data structures well
§ Limited ability to handle larger problems (scalability)

Copyright © 2010, Elsevier
Inc. All rights Reserved

Graphics Processing Units (GPU)

• Computation for graphic applications is often parallel,
since they can be applied to multiple elements in the
graphics stream.

• GPU’s can often optimize performance by using SIMD
parallelism.
§ The current generation of GPU’s use SIMD

parallelism.
§ Although they are not pure SIMD systems.

• Key Market Players: Intel, NVIDA, AMD

Copyright © 2010, Elsevier
Inc. All rights Reserved

MIMD

• Supports multiple simultaneous instruction streams
operating on multiple data streams.

• Typically consist of a collection of fully independent
processing units or cores, each of which has its own
control unit and its own ALU.

• Types of MIMD systems
§ Shared-memory systems

– Most popular ones use multicore processors.
§ (multiple CPU’s or cores on a single chip)

§ Distributed-memory systems
– Computer clusters are the most popular

Copyright © 2010, Elsevier
Inc. All rights Reserved

Shared Memory System

• Each processor can access each memory
location.
§ The processors usually communicate implicitly by

accessing shared data structures
§ Two designs: UMA (Uniform Memory Access)

and NUMA (Non-uniform Memory Access)

Copyright © 2010, Elsevier
Inc. All rights Reserved

AMD 8-core CPU Bulldozer

Copyright © 2010, Elsevier
Inc. All rights Reserved

NUMA Multicore System

Copyright © 2010, Elsevier
Inc. All rights Reserved

Figure 2.6A memory location a core is directly
connected to can be accessed faster
than a memory location that must be
accessed through another chip.

Distributed Memory System

• Clusters (most popular)
§ A collection of commodity systems.
§ Connected by a commodity interconnection network.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Interconnection networks

• Affects performance of both distributed and shared
memory systems.

• Two categories:
§ Shared memory interconnects
§ Distributed memory interconnects

Copyright © 2010, Elsevier
Inc. All rights Reserved

Shared memory interconnects: Bus

§ Parallel communication wires together with some
hardware that controls access to the bus.

§ As the number of devices connected to the bus
increases, contention for shared bus use increases,
and performance decreases.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Shared memory interconnects:
Switched Interconnect

§ Uses switches to control the routing of data among
the connected devices.

§ Crossbar – Allows simultaneous communication
among different devices.

– Faster than buses. But higher cost.

Distributed memory interconnects

• Two groups
§ Direct interconnect

– Each switch is directly connected to a processor memory
pair, and the switches are connected to each other.

§ Indirect interconnect
– Switches may not be directly connected to a processor.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Direct interconnect

Copyright © 2010, Elsevier
Inc. All rights Reserved

ring 2D torus (toroidal mesh)

Direct interconnect: 2D Mesh vs 2D Torus

How to measure network quality?

• Bandwidth
§ The rate at which a link can transmit data.
§ Usually given in megabits or megabytes per second.

• Bisection width
§ A measure of “number of simultaneous

communications” between two subnetworks within a
network

§ The minimum number of links that must be removed
to partition the network into two equal halves

– 2 for a ring
§ Typically divide a network by a line or plane

(bisection cut)

21

Bisection width vs Bisection bandwidth

bisection
cut

not a
bisection
cut

• Example of bisection width

• Bisection bandwidth
§ Sum bandwidth of links that cut the network into two

equal halves.
§ Choose the minimum one.

More definitions on network performance

• Any time data is transmitted, we’re interested in how
long it will take for the data to reach its destination.

• Latency
§ The time that elapses between the source’s beginning

to transmit the data and the destination’s starting to
receive the first byte.

• Startup cost The startup time required to handle a
message at the sending and receiving nodes

• Bandwidth
§ The rate at which the destination receives data after it

has started to receive the first byte.

Message transmission time = α + m β

latency (seconds)

1/bandwidth (bytes per second)

length of message (bytes)

Network transmission cost

Typical latency/startup cost: Tens of microseconds ~ 1 millisecond
Typical bandwidth: 100 MB ~ 1GB per second

Fully connected network

• Each switch is directly connected to every other
switch.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Figure 2.11

bisection width = p2/4

Hypercube
• Built inductively:

§ A one-dimensional hypercube is a fully-connected system
with two processors.

§ A two-dimensional hypercube is built from two one-
dimensional hypercubes by joining “corresponding” switches.

§ Similarly a three-dimensional hypercube is built from two two-
dimensional hypercubes.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Commodity Computing Clusters

• Use already available computing
components

• Commodity servers,
interconnection network, & storage

• Less expensive while
Upgradable with standardization

• Great computing power at low cost

Typical network for a cluster

• 40 nodes/rack, 1000-4000 nodes in cluster
• 1 Gbps bandwidth in rack, 8 Gbps out of rack
• Node specs :

8-16 cores, 32 GB RAM, 8×1.5 TB disks

Aggregation switch

Rack switch

Layered Network in Clustered Machines

• A layered example from Cisco: core,
aggregation, the edge or top-of-rack switch.

• http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_3a.html

Hybrid Clusters with GPU

• A Maryland cluster couples CPUs, GPUs,
displays, and storage.

• Applications in visual and scientific computing

Node in a CPU/GPU cluster

host
GPU

Cloud Computing with Amazon EC2

• On-demand elastic computing
• Allocate a Linux or windows cluster only when you need.

• Pay based on time usage of computing instance/storage
• Expandable or shrinkable

Usage Examples with Amazon EC2

• A 32-node, 64-GPU cluster with 8TB storage
• Each node is a AWS computing instance extended

with 2 Nvidia M2050 GPUs, 22 GB of memory, and
a 10Gbps Ethernet interconnect.

• $82/hour to operate (based on Cycle
Computing blog)
• Annual cost in 2011: 82*8*52=$34,112.

Cheaper today.
• Otherwise: ~$150+K to purchase +

datacenter cost.

SHARED MEMORY
ARCHITECTURE WITH CACHE
COHERENCE

Copyright © 2010, Elsevier
Inc. All rights Reserved

Cache coherence

• Programmers have no
control over caches
and when they get updated.

• Hardware makes cache
updated cache coherently
• Snooping bus
• Directory-based

Shared Memory Architecture with Cache
Coherence

• Memory is a performance bottleneck even with one processor
• Use caches to reduce bandwidth demands on main memory
• Each core has a local private cache holding data it has accessed

recently
• Only cache misses have to access the shared common memory

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

34

Shared Memory and Caches

• What if?
§ Processors 1 and 2 read Memory[1000] (value 20)

35

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

1000

20

1000

1000 1000

20

0 1 2

Shared Memory and Caches

• Now:
§ Processor 0 writes Memory[1000] with 40

36

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

1000

1000 40

1000 40

Problem?

Keeping Multiple Caches Coherent

• Architect’s job: shared memory
=> keep cache values coherent

• Idea: When any processor has cache miss or writes,
notify other processors via interconnection network
§ If only reading, many processors can have copies
§ If a processor writes, invalidate any other copies

• Write transactions from one processor, other caches
“snoop” the common interconnect checking for tags
they hold
§ Invalidate any copies of same address modified in

other cache

37

Shared Memory and Caches

• Example, now with cache coherence
§ Processors 1 and 2 read Memory[1000]
§ Processor 0 writes Memory[1000] with 40

38

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

Processor 0
Write
Invalidates
Other Copies

1000

1000 40

1000 40

CS267 Yelick/Demmel
39

Snoopy Cache-Coherence Protocols

• Memory bus is a broadcast medium
• Caches contain information on which addresses they store
• Cache Controller “snoops” all transactions on the bus

§ A transaction is a relevant transaction if it involves a cache block currently
contained in this cache

§ Take action to ensure coherence
– invalidate, update, or supply value

§ Many possible designs

• Not scalable for a large number of processors

State
Address
Data P0

$ $

Pn

Mem Mem
memory bus

memory op from Pn

bus snoop

Scalable Shared Memory: Directories

• Every memory block has associated directory information
§ keeps track of copies of cached blocks and their states
§ on a miss, find directory entry, look it up, and communicate only with the nodes that

have copies if necessary
§ in scalable networks, communication with directory and copies is through network

transactions

• Each Reader recorded in directory
• Processor asks permission of memory before writing:

§ Send invalidation to each cache with read-only copy
§ Wait for acknowledgements before returning permission for writes

• k processors.
• With each cache-block in memory:

k presence-bits, 1 dirty-bit
• With each cache-block in cache:

1 valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

Slide source: John
Kubiatowicz

41

Directory Based Memory/Cache Coherence

• Keep Directory to keep track of which memory stores
latest copy of data. Meta information:
§Valid/invalid. Dirty (inconsistent with memory). Shared

• When a processor executes a write operation to shared
data, basic design choices are:
§With respect to memory:

–Write through cache: do the write in memory as well as cache
–Write back cache: wait and do the write later, when the item is

flushed
§With respect to other cached copies

–Update: give all other processors the new value
–Invalidate: all other processors remove from cache

Source:Demmel/Yellick
42

Intuitive Memory Model
• Reading an address should return the last

value written to that address
• Easy in uniprocessors

§ except for I/O
• Multiprocessor cache coherence problem is

more pervasive and more performance
critical

• More formally, this is called sequential
consistency:
“A multiprocessor is sequentially consistent if the result
of any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in this sequence in the order specified by its
program.” [Lamport, 1979]

CS267 Lecture 643

Sequential Consistency Intuition
• Sequential consistency says the machine behaves

as if it does the following

memory

P0 P1 P2 P3

LD1 A Þ 5
LD2 B Þ 7

LD5 B Þ 2
ST1 A,6

LD6 A Þ 6
ST4 B,21

LD3 A Þ 6

LD4 B Þ 21
LD7 A Þ 6
ST2 B,13

ST3 B,4

LD8 B Þ 4

Sequential Consistency Example

LD1 A Þ 5
LD2 B Þ 7
ST1 A,6

…

LD3 A Þ 6

LD4 B Þ 21
ST2 B,13
ST3 B,4

LD5 B Þ 2
…

LD6 A Þ 6
ST4 B,21

…

LD7 A Þ 6
…

LD8 B Þ 4

Processor 1 Processor 2 One Consistent Serial Order

Slide source: John
Kubiatowicz

Combine

CS267 Lecture 645

Memory Consistency Semantics

What does this imply about program behavior?
• No process ever sees “garbage” values. Processors always

see values written by some processor
• The value seen is constrained by program order on all

processors
§ Time always moves forward

• Example: spin lock
§ P1 writes data=1, then writes flag=1
§ P2 waits until flag=1, then reads data

If P2 sees the new value of
flag (=1), it must see the
new value of data (=1)

initially: flag=0
data=0

data = 1
flag = 1

While flag=0;
print data

P1 P2

If P2
reads flag

Then P2 may
read data

0 1
0 0
1 1

Demmel/Yellick
46

Cache Coherence and Sequential Consistency

• HW/SW features may break sequential consistency (SC):
§ The compiler reorders/removes code.
§ Write buffers (place to store writes while waiting to

complete)
– Processors may reorder writes to merge addresses (not

FIFO)
– Write X=1, Y=1, X=2 (second write to X may happen before

Y’s)
§ Prefetch instructions cause read reordering (read

data before flag)
§ The network reorders the two write messages. .

• Some commercial systems give up SC
§ A correct program on a SC processor may be

incorrect on one that is not

False Sharing: Cache Coherency Tracked by
Block

• Suppose block size is 32 bytes
• Suppose Processor 0 reading and writing variable X,

Processor 1 reading and writing variable Y
• Suppose in X location 4000, Y in 4012
• What will happen?

47

Processor 0 Processor 1

4000 4000 4004 4008 4012 4016 4028

Tag 32-Byte Data Block

Cache 0 Cache 1

Memory

False Sharing

• Block ping-pongs between two caches even though
processors are accessing disjoint variables
§ Shared data is modified by multiple processors.
§ Multiple processors update data within the same cache line.
§ This updating occurs very frequently (for example, in a tight

loop).
• Effect called false sharing

§ Cause cache miss for every write, even they write to different
locations.

• How can you prevent it?
§ Let parallel iterations write to different cache blocks (as much

as possible)
– allocate data used by each processor contiguously, or at least avoid

interleaving in memory
§ Make use of private data as much as possible

48

PERFORMANCE

Copyright © 2010, Elsevier
Inc. All rights Reserved

Speedup

• Number of cores = p
• Serial run-time = Tserial

• Parallel run-time = Tparallel

Copyright © 2010, Elsevier
Inc. All rights Reserved

Tparallel = Tserial / p

Speedup of a parallel program

Tserial

Tparallel
S =

Perfect speedup

Actual speedup

Speedup Graph Interpretation

Copyright © 2010, Elsevier
Inc. All rights Reserved

• Linear speedup
•Speedup proportionally increases as p increases

• Perfect linear speedup
•Speedup =p

• Superlinear speedup
•Speedup >p
•It is not possible in theory.
•It is possible in practice

•Data in sequential code does not fit into memory.
•Parallel code divides data into many machines and
they fit into memory.

Efficiency of a parallel program

E =

Tserial

TparallelSpeedup

p
=

p
=

Tserial

p Tparallel.
Measure how well-utilized the processors are, compared to effort
wasted in communication and synchronization.
Example:

Typical speedup and efficiency of parallel code

Efficiency often goes down as more cores are used

Problem Size Impact on Speedup and Efficiency

Efficiency often increases when
increasing problem size

Amdahl Law: Limitation of Parallel
Performance

Copyright © 2010, Elsevier
Inc. All rights Reserved

• Unless virtually all of a serial program is parallelized,
the possible speedup is going to be limited —
regardless of the number of cores available.

57

Finding Enough Parallelism

• Suppose only part of an application seems parallel
• Amdahl’s law

§ let x be the fraction of work done sequentially, so
(1-x) is fraction parallelizable

§ P = number of processors

Speedup(P) = Time(1)/Time(P)

<= 1/(x + (1-x)/P)

<= 1/x

• Even if the parallel part speeds up perfectly
performance is limited by the sequential part

Example of Amdahl’s Law

• Example:
• We can parallelize 90% of a serial program.
• Parallelization is “perfect” regardless of the number of

cores p we use.
• Tserial = 20 seconds
• Runtime of parallelizable part is

• Runtime of “unparallelizable” part is

Overall parallel run-time is
•

0.9 x Tserial / p = 18 / p

0.1 x Tserial = 2

Tparallel = 0.9 x Tserial / p + 0.1 x Tserial = 18 / p + 2

Example (cont.)

• Speed up

0.9 x Tserial / p + 0.1 x Tserial

Tserial
S = =

18 / p + 2

20

• S < 20/2 =10

6.45.7
4.7

2.5

How to measure sequential and parallel
time?

• What time?
§ CPU time vs wall clock time

• A program segment of interest?
§ Setup startup time
§ Measure finish time

Copyright © 2010, Elsevier
Inc. All rights Reserved

Taking Timings for a Code Segment

Copyright © 2010, Elsevier
Inc. All rights Reserved

Example
function

MPI_Wtime()
in MPI

gettimeofday()
in Linux

Taking Timings

Copyright © 2010, Elsevier
Inc. All rights Reserved

Measure parallel time with a barrier

Copyright © 2010, Elsevier
Inc. All rights Reserved

Several possible performance models

• Execution time and parallelism:
§ Work / Span Model with directed acyclic graph

• Detailed models that try to capture time for moving
data:
§ Latency / Bandwidth Model for message-passing
§ Disk IO

• Model computation with memory access (for
hierarchical memory)

• Other detailed models we won’t discuss: LogP, ….

§ From John Gibert’s 240A course

tp = execution time on p processors

Model Parallelism using a Directed
Acyclic Graph

tp = execution time on p processors
t1 = work

Work / Span Model

tp = execution time on p processors

*Also called critical-path length
or computational depth.

t1 = total work t∞ = span *

Work / Span Model

tp = execution time on p processors
t1 = total work t∞ = span *

*Also called critical-path length
or computational depth.

WORK LAW
∙tp ≥t1/p

SPAN LAW
∙tp ≥ t∞

Work / Span Model

Potential Parallelism

Because the Span Law requires tp ≥ t∞,
the maximum possible speedup is

t1/t∞ = (potential) parallelism

= the average
amount of work
per step along
the span.

Note
t1/tP = speedup on p processors.

PARALLEL PROGRAM
DESIGN

Copyright © 2010, Elsevier
Inc. All rights Reserved

Foster’s methodology: 4-stage design

1. Partitioning: divide the computation to be performed
and the data operated on by the computation into
small tasks.

The focus here should be on identifying tasks that can
be executed in parallel.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Data

Computation
Tasks

Foster’s methodology

2. Communication:
§ Identify dependence among tasks
§ Determine inter-task communication

Copyright © 2010, Elsevier
Inc. All rights Reserved

Foster’s methodology

3. Agglomeration or aggregation: combine tasks and
communications identified in the first step into larger
tasks.
§ Reduce communication overhead àCoarse grain

tasks
§ May reduce parallelism sometime

Copyright © 2010, Elsevier
Inc. All rights Reserved

Foster’s methodology

4. Mapping: assign the composite tasks identified in the
previous step to processes/threads.

This should be done so that communication is
minimized, and each process/thread gets roughly the
same amount of work.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Tasks Proc

Proc

Input and Output in Parallel Programs

• Two options for I/O
§ Option 1:

– In distributed memory programs, only process 0 will access
stdin.

– In shared memory programs, only the master thread or
thread 0 will access stdin.

§ Option 2:
– all the processes/threads can access stdout and stderr.

• Because of the indeterminacy of the order of output to
stdout, in most cases only a single process/thread will
be used for all output to stdout other than debugging
output.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Input and Output: Practical Strategies

• Debug output should always include the rank or id of
the process/thread that’s generating the output.

• Only a single process/thread will attempt to access any
single file other than stdin, stdout, or stderr. So, for
example, each process/thread can open its own,
private file for reading or writing, but no two
processes/threads will open the same file.

• fflush(stdout) may be necessary to ensure output is not
delayed when order is important.
§ printf(“hello \n”); fflush(stdout);

Concluding Remarks (1)

• Parallel hardware
§ Shared memory and distributed memory

architectures
§ Network topology for interconnect

• Parallel software
§ We focus on software for homogeneous MIMD

systems, consisting of a single program that obtains
parallelism by branching.

§ SPMD programs.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Concluding Remarks (2)

• Input and Output
§ One process or thread can access stdin, and all

processes can access stdout and stderr.
– However, because of nondeterminism, except for debug

output we’ll usually have a single process or thread
accessing stdout.

• Performance
§ Speedup/Efficiency
§ Amdahl’s law
§ Scalability

• Parallel Program Design
§ Foster’s methodology

Copyright © 2010, Elsevier
Inc. All rights Reserved

